SZ-Derivations, PZ-Derivations and S-Derivations of a Matrix Algebra over Commutative Rings

WANG Xian^{1,2}, WANG Deng Yin¹
(1. Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China;
2. Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan) (E-mail: wdengyin@126.com)

Abstract Let R be a commutative ring with identity, $N_n(R)$ the matrix algebra consisting of all $n \times n$ strictly upper triangular matrices over R with the usual product operation. An R-linear map $\phi: N_n(R) \to N_n(R)$ is said to be an SZ-derivation of $N_n(R)$ if $x^2 = 0$ implies that $\phi(x)x + x\phi(x) = 0$. It is said to be an S-derivation of $N_n(R)$ if $\phi(x^2) = \phi(x)x + x\phi(x)$ for any $x \in$ $N_n(R)$. It is said to be a PZ-derivation of $N_n(R)$ if xy = 0 implies that $\phi(x)y + x\phi(y) = 0$. In this paper, by constructing several types of standard SZ-derivations of $N_n(R)$, we first characterize all SZ-derivations of $N_n(R)$. Then, as its application, we determine all S-derivations and PZderivations of $N_n(R)$, respectively.

Keywords SZ-derivations; S-derivations; PZ-derivations.

Document code A MR(2000) Subject Classification 15A04; 15A27; 16S50; 17B20 Chinese Library Classification 0152.2

1. Introduction

Let R be a commutative ring with identity. By an R-algebra (not necessarily associative) we simply mean an R-module \mathcal{U} over R endowed with a bilinear operation $\mathcal{U} \times \mathcal{U} \to \mathcal{U}$, usually denoted by juxtaposition (unless \mathcal{U} is a Lie algebra, in which case we always use the bracket). Recall that a linear map $\delta: \mathcal{U} \to \mathcal{U}$ is called a derivation of \mathcal{U} if it satisfies the familiar product rule $\delta(xy) = x\delta(y) + \delta(x)y$. The problem of characterizing the derivations of matrix algebras and matrix Lie algebras has attracted the attention of some authors. For instance, $J\phi$ ndrup^[1] characterized all derivations of the matrix ring $T_n(R)$, consisting of all upper triangular matrices over R. Wang^[2] described all derivations of every parabolic Lie subalgebras of the general linear Lie algebra $gl_n(R)$. Wang^[3] determined all derivations of any intermediate Lie algebra between the Lie algebra of diagonal matrices and the Lie algebra $T_n(R)$ (with the usual bracket operation). Ou^[4] characterized all derivations of the Lie algebra $N_n(R)$ (with the usual bracket operation). Benkovic^[5] considered the Jordan derivations and anti-derivations on the R-algebra $T_n(R)$ (with the usual product operation). In the present article we intend to generalize the notion derivations

Received date: 2008-03-18; Accepted date: 2008-07-07

Foundation item: Fond of China University of Mining and Technology.

to other more general cases.

Definition 1.1 Let \mathcal{A} be an associative *R*-algebra. A linear map $\phi : \mathcal{A} \to \mathcal{A}$ is said to be an SZ-derivation of \mathcal{A} if $x^2 = 0$ implies that $\phi(x)x + x\phi(x) = 0$. It is said to be an S-derivation of \mathcal{A} if $\phi(x^2) = \phi(x)x + x\phi(x)$ for any $x \in \mathcal{A}$. It is said to be a PZ-derivation of \mathcal{A} if xy = 0 implies that $\phi(x)y + x\phi(y) = 0$.

Remark 1.1 It should be pointed out that the notion of an S-derivation of \mathcal{A} is commonly known as a Jordan derivation.

Remark 1.2 To determine all derivations of a given R-algebra \mathcal{A} is an important task, since it is useful for us to learn more about the relationships between elements in \mathcal{A} as well as the algebraic structure of \mathcal{A} . However, one easily sees that the condition for an R-linear map on \mathcal{A} to be a derivation is much strong, so we try to relax such condition and define the so-called SZ-derivation of \mathcal{A} . Indeed, when one has determined all SZ-derivations on \mathcal{A} , then one can easily obtain all derivations of it. So the study of determining all SZ-derivations on R-algebras has significant applications.

It is easy to see that

derivations of
$$\mathcal{A} \Rightarrow$$
 PZ-derivations of $\mathcal{A} \Rightarrow$ SZ-derivations of \mathcal{A} ;
derivations of $\mathcal{A} \Rightarrow$ S-derivations of $\mathcal{A} \Rightarrow$ SZ-derivations of \mathcal{A} .

Now one might wonder:

- 1) Whether an SZ-derivation of \mathcal{A} is a PZ-derivation of \mathcal{A} ;
- 2) Whether an SZ-derivation of \mathcal{A} is an S-derivation of \mathcal{A} ;
- 3) Whether a PZ-derivation of \mathcal{A} is a derivation of \mathcal{A} ;
- 4) Whether an S-derivation of \mathcal{A} is a derivation of \mathcal{A} .

The following two examples give negative answers.

Example 1.2 Let E_{ij} be the standard matrix units, $n \ge 4$, $a \in R$. We define $\phi : N_n(R) \rightarrow N_n(R)$, by

$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto aa_{13} E_{2n} - aa_{12} E_{3n} + ba_{n-2,n} E_{1,n-1} - ba_{n-1,n} E_{1,n-2}.$$

Then it is not difficult to verify that ϕ is an SZ-derivation of $N_n(R)$; it is a PZ-derivation if and only if a = b = 0 and it is an S-derivation if and only if 2a = 2b = 0.

Example 1.3 Let $n \ge 4$, $a \in R$. We define $\phi : N_n(R) \to N_n(R)$ by

$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto \sum_{k=1}^{n-1} a(k-1) \sum_{j-i=k} a_{ij} E_{ij}.$$

Then it is verified that ϕ is a PZ-derivation of $N_n(R)$ but fails to be a derivation when $a \neq 0$.

Above two examples show that it is somewhat interesting to characterize all SZ-derivations, all S-derivations and PZ-derivations on certain *R*-algebras. As a maximal nilpotent subalgebra of the full matrix algebra, $N_n(R)$ is an interesting object of study.

2. Construction of standard SZ-derivations of $N_n(R)$

Let R be a commutative ring, R^* the set of all nonzero elements in R. Let n be a positive integer. We denote by $M_n(R)$ (resp., $N_n(R)$; resp., $D_n(R)$) the set of all $n \times n$ matrices (resp., strictly upper triangular matrices; resp., diagonal matrices) over R. We denote by E_{ij} the standard matrix unit whose (i, j)-entry is 1 and all other entries are 0. $N_n(R)$ has a basis $\{E_{ij} | 1 \leq i < j \leq n\}$, which consists of square-zero matrices. Let $\text{Der } N_n(R)$ denote the derivation algebra of $N_n(R)$ and let $\text{Dsz } N_n(R)$ (resp., $\text{Ds } N_n(R)$, resp., $\text{Dpz } N_n(R)$) denote the set consisting of all SZ-derivations (resp., S-derivations, resp., PZ-derivations) of $N_n(R)$. It is obvious that $\text{Dsz } N_n(R)$, $\text{Ds } N_n(R)$ and $\text{Dpz } N_n(R)$ all form additive groups and

$$Der N_n(R) \subseteq Dpz N_n(R) \subseteq Dsz N_n(R);$$
$$Der N_n(R) \subseteq Ds N_n(R) \subseteq Dsz N_n(R).$$

We now construct several types of standard SZ-derivations of $N_n(R)$.

(1) Inner derivations

If $X \in N_n(R)$, then the map $\operatorname{ad}_X : N_n(R) \to N_n(R), Y \mapsto [X, Y] = XY - YX$, is a derivation of $N_n(R)$, called the inner derivation of $N_n(R)$ induced by X.

(2) Diagonal derivations

If $H \in D_n(R)$, then the map $\text{Dig}_H : N_n(R) \to N_n(R), Y \mapsto [H,Y] = HY - YH$, is a derivation of $N_n(R)$, called the diagonal derivation of $N_n(R)$ induced by H.

(3) Central SZ-derivations

Let
$$n \ge 3$$
, $Y = \sum_{1 \le i < j \le n} y_{ij} E_{ij} \in N_n(R)$. We define $\eta_Y : N_n(R) \to N_n(R)$ by
$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto (\sum_{1 \le i < j \le n} a_{ij} y_{ij}) E_{1n}.$$

Then it is easy to check that $\eta_Y \in Dsz N_n(R)$, but generally η_Y fails to be a derivation of $N_n(R)$. η_Y is said to be a central SZ-derivation of $N_n(R)$.

(4) Extremal SZ-derivations

Suppose $n \ge 4$ and $e_1, e_2 \in R$, define $\chi_{e_1}^c : N_n(R) \to N_n(R)$ by

$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto e_1 a_{13} E_{2n} - e_1 a_{12} E_{3n}$$

and define $\chi_{e_2}^r: N_n(R) \to N_n(R)$ by

$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto e_2 a_{n-2,n} E_{1,n-1} - e_2 a_{n-1,n} E_{1,n-2}.$$

Then it is not difficult to check that $\chi_{e_1}^c$ and $\chi_{e_2}^r$ both are SZ-derivations of $N_n(R)$, called extremal SZ-derivations of $N_n(R)$.

(5) Extensible SZ-derivations

Suppose $n \ge 4$ and $f \in R$, define $\lambda_f : N_n(R) \to N_n(R)$ by

$$\sum_{1 \le i < j \le n} a_{ij} E_{ij} \mapsto \sum_{k=1}^{n-1} f(k-1) (\sum_{j-i=k} a_{ij} E_{ij}).$$

Then it is easy to check that λ_f is an SZ-derivation of $N_n(R)$, called an extensible SZ-derivation of $N_n(R)$.

With above standard SZ-derivations in hands, we can now describe all SZ-derivations, Sderivations and PZ-derivations of $N_n(R)$.

Theorem 2.1 ϕ is an SZ-derivation of $N_n(R)$ if and only if

- 1) $\phi = \text{Dig}_H$, when n = 2;
- 2) $\phi = \text{Dig}_H + \eta_Y$, when n = 3;
- 3) $\phi = \chi_{e_1}^c + \chi_{e_2}^r + \operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y$, when $n \ge 4$,

where ad_X , Dig_H , $\chi_{e_1}^c$, $\chi_{e_2}^r$, λ_f , and η_Y are the inner derivation, diagonal derivation, extremal SZ-derivation, extensible SZ-derivation and central SZ-derivation of $N_n(R)$, respectively.

Theorem 2.2 ϕ is a PZ-derivation of $N_n(R)$ if and only if

- 1) $\phi = \operatorname{Dig}_H$, when n = 2;
- 2) $\phi = \text{Dig}_H + \eta_Y$, when n = 3;
- 3) $\phi = \operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y$, when $n \ge 4$,

where ad_X , Dig_H , λ_f , η_Y are the inner derivation, diagonal derivation, extensible SZ-derivation and central SZ-derivation of $N_n(R)$, respectively.

Theorem 2.3 ϕ is an S-derivation of $N_n(R)$ if and only if

- 1) When n = 2, $\phi = \text{Dig}_H$;
- 2) When n = 3, $\phi = \text{Dig}_H + \eta_Y$;
- 3) When $n \ge 4$, $\phi = \chi_{e_1}^c + \chi_{e_2}^r + \operatorname{ad}_X + \operatorname{Dig}_H + \eta_Y$,

where ad_X , Dig_H , $\chi_{e_1}^c$, $\chi_{e_2}^r$, and η_Y are the inner derivation, diagonal derivation, extremal SZderivation and central SZ-derivation of $N_n(R)$, respectively, $Y \in \sum_{i=1}^{n-1} RE_{i,i+1}$ and $2e_1 = 2e_2 = 0$.

Corollary 2.4 ϕ is a derivation of $N_n(R)$ if and only if $\phi = \operatorname{ad}_X + \operatorname{Dig}_H + \eta_Y$, where ad_X , Dig_H and η_Y are the inner derivation, diagonal derivation and central SZ-derivation of $N_n(R)$, respectively, and $Y \in \sum_{i=1}^{n-1} RE_{i,i+1}$.

3. Lemmas and proof of the main theorem

For $X, Y \in N_n(R)$ we denote XY + YX by $X \circ Y$ for brevity. Let ϕ be a given SZ-derivation of $N_n(R)$, it is now necessary to study the invariant ideals of $N_n(R)$ under ϕ .

Lemma 3.1 Let ϕ be an SZ-derivation of $N_n(R)$. If X, Y and X+Y all are square-zero elements in $N_n(R)$, then $\phi(X) \circ Y + X \circ \phi(Y) = 0$.

Proof An easy verification leads to the result.

Let S be a subalgebra of $N_n(R)$, and denote by C(S) the centralizer of S in $N_n(R)$:

$$C(S) = \{A \in N_n(R) \mid AX = XA = 0, \forall X \in S\}.$$

Lemma 3.2 Let S be a subalgebra of $N_n(R)$, $\phi \in \text{Dsz } N_n(R)$. If S and C(S) both are spanned by standard matrix units and $\phi(S) \subseteq S$, then $\phi(C(S)) \subseteq C(S)$.

Proof If $\phi(C(S)) \notin C(S)$, choose a square-zero element $X \in C(S)$ such that $\phi(X) \notin C(S)$ (recall that C(S) is spanned by square-zero elements). Then there exists a matrix unit $E_{ij} \in S$ with i < j such that $\phi(X)E_{ij} \neq 0$ or there exists a matrix unit $E_{kl} \in S$ with k < l such that $E_{kl}\phi(X) \neq 0$. When the first case happens, it is shown that

$$\phi(X) \circ E_{ij} \neq 0.$$

Otherwise, if $\phi(X) \circ E_{ij} = 0$, assume that $\phi(X) = \sum_{1 \le p,q \le n} x_{pq} E_{pq} \in N_n(R)$, where $x_{pq} = 0$ when $p \ge q$. Then by

$$E_{ij}\phi(X) = -\phi(X)E_{ij} \neq 0$$

we obtain

$$x_{jj}E_{ij} = -x_{ii}E_{ij} \neq 0$$

absurd. So

$$\phi(X) \circ E_{ij} \neq 0.$$

By assumption we know

$$\phi(E_{ij}) \circ X = 0.$$

Thus we have

$$\phi(X) \circ E_{ij} + \phi(E_{ij}) \circ X \neq 0$$

This is in contradiction with Lemma 3.1 (note that E_{ij} , X and $X + E_{ij}$ all are square zero). Similarly, the later case does not happen. So $\phi(C(S)) \subseteq C(S)$.

The center of $N_n(R)$, denoted by M_n , is RE_{1n} . The center of $N_n(R)/M_n$ obviously is M_{n-1}/M_n , where $M_{n-1} = \sum_{j=i \ge n-2} RE_{ij}$. Go on considering the center of $N_n(R)/M_{n-1}$, it is M_{n-2}/M_{n-1} , where $M_{n-2} = \sum_{j=i \ge n-3} RE_{ij}$. Generally, for $3 \le k \le n$, the center of $N_n(R)/M_k$ is M_{k-1}/M_k , where $M_{k-1} = \sum_{j=i \ge k-2} RE_{ij}$. Thus we get the upper central series of $N_n(R)$:

$$0 \subset M_n = RE_{1n} \subset M_{n-1} \subset \cdots \leq M_k \subset \cdots \subset M_3 \subset M_2 = N_n(R), \text{ where } M_k = \sum_{j-i \geq k-1} RE_{ij}$$

Lemma 3.3 Let ϕ be an SZ-derivation of $N_n(R)$. Then $\phi(M_n) \subseteq M_n$.

Proof M_n , as the centralizer of $N_n(R)$ in $N_n(R)$, naturally is invariant under ϕ (by Lemma 3.2).

Set $I_k = \sum_{i=k}^n RE_{1i}$, k = 2, 3, ..., n and set $\alpha_k = \sum_{i=k+1}^n RE_{ki}$, k = 1, 3, ..., n - 1. Obviously, α_1 exactly is I_2 .

Lemma 3.4 If ϕ is an SZ-derivation of $N_n(R)$, then $\phi(E_{1j}) \in \alpha_1 + RE_{2n} + RE_{j+1,n}$, $j = 2, 3, \ldots, n-1$.

Proof Fix j $(2 \le j \le n-1)$. If 1 < i < n and $i \ne j$, then $E_{1j}, E_{i,i+1}$ and $E_{1j} + E_{i,i+1}$ all are

SZ-derivations, PZ-derivations and S-derivations of a matrix algebra over commutative rings

square-zero matrices. By Lemma 3.1, we have

$$\phi(E_{1j}) \circ E_{i,i+1} + E_{1j} \circ \phi(E_{i,i+1}) = 0.$$
(3.1)

By multiplying E_{1i} from the left side to the above equation we have that

$$E_{1i}\phi(E_{1j})E_{i,i+1} + E_{1,i+1}\phi(E_{1j}) = 0.$$

It is obvious that $E_{1i}\phi(E_{1j})E_{i,i+1} = 0$. So $E_{1,i+1}\phi(E_{1j}) = 0$. This shows that the (i+1)-th row of $\phi(E_{1j})$ is zero for every *i* satisfying 1 < i < n and $i \neq j$. So $\phi(E_{1j}) \in \alpha_1 + \alpha_2 + \alpha_{j+1}$. We have known, for any fixed *i* satisfying $1 < i < n, i \neq j$, that $E_{i,i+1}\phi(E_{1j}) = 0$. So by Equation 3.1 we get

$$\phi(E_{1i})E_{i,i+1} + E_{1i}\phi(E_{i,i+1}) = 0.$$

This shows that all positions of the *i*-th column of $\phi(E_{1j})$ are zero, except for the (1, i)-position. Then we see that

$$\phi(E_{1j}) \in \alpha_1 + RE_{2j} + RE_{2n} + RE_{j+1,n}$$

It follows from $(E_{12} + E_{1j})^2 = 0$ that

$$E_{1j}\phi(E_{12}) + E_{12}\phi(E_{1j}) = 0,$$

which follows that the (2, j)-entry of $\phi(E_{1j})$ is zero. So $\phi(E_{1j}) \in \alpha_1 + RE_{2n} + RE_{j+1,n}$.

Proof of Theorem 2.1

Case 1 n = 2.

When n = 2, there is nothing to prove.

Case 2 n = 3.

Suppose that

$$\phi(E_{12}) \equiv tE_{12} + sE_{23} \pmod{RE_{13}}; \quad \phi(E_{23}) \equiv uE_{23} + vE_{12} \pmod{RE_{13}},$$

It follows from $(E_{12})^2 = 0$ that $\phi(E_{12})E_{12} + E_{12}\phi(E_{12}) = 0$, which shows that s = 0. Similarly, v = 0. Let $H = \text{diag}\{0, t, t + u\} \in D_3(R)$. Then

$$(\text{Dig}_H + \phi)(E_{12}) = xE_{13}; \quad (\text{Dig}_H + \phi)(E_{23}) = yE_{13}$$

for certain $x, y \in R$. Assume that $(\text{Dig}_H + \phi)(E_{13}) = zE_{13}$. Let $Y = -xE_{12} - yE_{23} - zE_{13}$. Then $\eta_Y + \text{Dig}_H + \phi$ sends E_{12} , E_{23} and E_{13} to zero, respectively. So $\eta_Y + \text{Dig}_H + \phi = 0$. By this one can get the desired expression of ϕ .

Case 3 $n \ge 4$

We give the proof of this case by steps.

Step 1. There exists an extremal SZ-derivation $\chi_{e_1}^c$ such that $(\chi_{e_1}^c + \phi)(E_{12}) \in \alpha_1$.

By Lemma 3.4, we may assume that $\phi(E_{12}) \equiv xE_{2n} + yE_{3n} \pmod{\alpha_1}$. It follows from $(E_{12})^2 = 0$ that $\phi(E_{12})E_{12} + E_{12}\phi(E_{12}) = 0$. It follows that x = 0. Choose $e_1 = y$, then one may verify that $(\chi_{e_1}^c + \phi)(E_{12}) \in \alpha_1$, as desired. Now we replace $\chi_{e_1}^c + \phi$ with ϕ .

979

Step 2. $\phi(E_{1j}) \in I_j$ for j = 2, 3, ..., n.

The case when j = 2 has been proved in Step 1. The case when j = n is obvious by Lemma 3.3. Now we consider the case when $3 \le j \le n - 1$. Since E_{12}, E_{1j} and $E_{12} + E_{1j}$ all are square zero, we see, by Lemma 3.1, that $E_{12}\phi(E_{1j}) + E_{1j}\phi(E_{12}) = 0$. This shows that the (2, n)-entry of $\phi(E_{1j})$ is zero. So

$$\phi(E_{1j}) \in RE_{j+1,n} + \alpha_1, \ j = 3, \dots, n-1$$

Now by square zero of $E_{1j} + E_{1,j+1}$, we have that $E_{1j}\phi(E_{1,j+1}) + E_{1,j+1}\phi(E_{1j}) = 0$, which implies that the (j+1,n)-entry of $\phi(E_{1j})$ is zero. So $\phi(E_{1j}) \in \alpha_1$ for $j = 3, 4, \ldots, n-1$. For any fixed k satisfying $2 \le k \le j-1$, it follows from $(E_{1j} + E_{kj})^2 = 0$ that

$$E_{1i}\phi(E_{ki}) + \phi(E_{1i})E_{ki} + E_{ki}\phi(E_{1i}) = 0$$

By considering the (1, j)-entry of the left side we see that the (1, k)-entry of $\phi(E_{1j})$ is zero. So $\phi(E_{1j}) \in I_j$ for all j satisfying $3 \le j \le n-1$. Combining this with $\phi(E_{12}) \in I_2$ and $\phi(E_{1n}) \in I_n$, we finally get $\phi(E_{1j}) \in I_j$ for j = 2, 3, ..., n.

Step 3. Let $K_i = \sum_{k=1}^{i} RE_{kn}$, i = 1, 2, ..., n-1. There exists an extremal SZ-derivation $\chi_{e_2}^r$ such that $(\chi_{e_2}^r + \phi)(E_{in}) \in K_i$, i = 1, 2, ..., n-1.

The proof being analogous to that of Steps 1 and 2, is omitted. Replace $\chi_{e_2}^r + \phi$ with ϕ .

Step 4. There exists $X_1 \in N_n(R)$ such that $(ad_{X_1} + \phi)(E_{1j}) \in RE_{1j} + RE_{1n}, j = 2, 3, ..., n$.

By Step 2 we may assume that

$$\phi(E_{1j}) = \sum_{k=j}^{n} c_{jk} E_{1,k}, \quad j = 2, 3, \dots, n.$$

Let

$$X_1 = \sum_{l=2}^{n-1} \sum_{k=l+1}^n c_{lk} E_{lk}.$$

Then

$$(\mathrm{ad}_{X_1} + \phi)(E_{1j}) \equiv c_{jj}E_{1j} \pmod{RE_{1n}}, \quad j = 2, 3, \dots, n.$$

As required. Now replace $\operatorname{ad}_{X_1} + \phi$ again with ϕ .

Step 5. There exists $X_2 \in N_n(R)$ such that $(ad_{X_2} + \phi)(E_{ij}) \in RE_{ij} + RE_{1n}$ for all $1 \le i < j \le n$.

Firstly, we prove that $\phi(\alpha_i) \subseteq \alpha_i + \alpha_1$ for i = 1, 2, ..., n-1. By Step 4, we have known that $\phi(\alpha_1) \subseteq \alpha_1$. When $2 \leq i \leq n-1$, for any $x \in \alpha_i$, suppose that $\phi(x) = \sum_{1 \leq k < l \leq n} x_{kl} E_{kl}$. When $p \neq 1$ and $p \neq i$, by square zero of $E_{1p} + x$, we have

$$\phi(E_{1p}) \circ x + \phi(x) \circ E_{1p} = 0.$$

Obviously, $\phi(x)E_{1p} = x\phi(E_{1p}) = \phi(E_{1p})x = 0$. So $E_{1p}\phi(x) = 0$. This shows that the *p*-th row of $\phi(x)$ is zero, which implies that $\phi(x) \in \alpha_i + \alpha_1$. Furthermore,

$$\phi(\alpha_i) \subseteq \alpha_i + \alpha_1, \quad i = 1, 2, \dots, n-1.$$

Combining this with Step 3, we know that

$$\phi(E_{in}) \in RE_{in} + RE_{1n}, \quad i = 1, 2, \dots, n-1.$$

Let
$$\beta_j = \sum_{i=1}^{j-1} RE_{ij}, j = 2, 3, ..., n$$
. Obviously, $\beta_n = K_{n-1}$. Next we intend to prove that
 $\phi(\beta_j) \subseteq \beta_j + \beta_n, \quad j = 2, 3, ..., n$.

When j = n there is nothing to prove. For $2 \leq j \leq n - 1$, let $y \in \beta_j$, and suppose that $\phi(y) = \sum_{1 \leq k \leq l \leq n} y_{kl} E_{kl}$. When $q \neq n$ and $q \neq j$, by square zero of $E_{qn} + y$, we have

$$\phi(E_{qn}) \circ y + \phi(y) \circ E_{qn} = 0.$$

This shows that the q-th column of $\phi(y)$ is zero (recall that $\phi(E_{in}) \in RE_{in} + RE_{1n}$, $i = 1, 2, \ldots, n-1$), which implies that $\phi(y) \in \beta_j + \beta_n$. Furthermore,

$$\phi(\beta_j) \subseteq \beta_j + \beta_n, \ j = 2, 3, \dots, n.$$

Since $E_{ij} \in \alpha_i \cap \beta_j$, we see that

$$\phi(E_{ij}) \in RE_{ij} + RE_{1j} + RE_{in} + RE_{1n}$$
, for all pair i, j satisfying $1 \le i \le j \le n$.

Now assume that

$$\phi(E_{i,i+1}) \equiv s_{i,i+1}E_{i,i+1} + s_{1,i+1}E_{1,i+1} + s_{in}E_{in} \pmod{RE_{1n}}, \quad i = 2, 3, \dots, n-2.$$

Let

$$X_2 = \sum_{l=2}^{n-2} s_{ln} E_{l+1,n} - \sum_{k=2}^{n-2} s_{1,k+1} E_{1k}.$$

Then

$$(\mathrm{ad}_{X_2} + \phi)(E_{i,i+1}) \equiv s_{i,i+1}E_{i,i+1} \pmod{RE_{1n}}, \quad i = 2, 3, \dots, n-2.$$

Simultaneously,

$$(\mathrm{ad}_{X_2} + \phi)(E_{1j}) \in RE_{1j} + RE_{1n}, \quad j = 2, 3, \dots, n;$$

 $(\mathrm{ad}_{X_2} + \phi)(E_{in}) \in RE_{in} + RE_{1n}, \quad i = 1, 2, \dots, n-1.$

Replace $\operatorname{ad}_{X_2} + \phi$ again with ϕ . Now consider $\phi(E_{ij})$ for any pair i, j satisfying $2 \leq i \leq n-3, i+2 \leq j \leq n-1$. By square zero of $E_{i,i+1} - E_{ij} + E_{i+1,n} + E_{jn}$ we know that

$$(E_{i,i+1} - E_{ij} + E_{i+1,n} + E_{jn}) \circ \phi(E_{i,i+1} - E_{i,j} + E_{i+1,n} + E_{jn}) = 0.$$

By this we see that the (1, j)-entry of $\phi(E_{ij})$ is zero. Similarly, by square zero of $E_{ij} - E_{j-1,j} + E_{1i} + E_{1,j-1}$ we know that the (i, n)-entry of $\phi(E_{ij})$ is zero. Thus we have

$$\phi(E_{ij}) \in RE_{ij} + RE_{1n}$$

for all pair *i*, *j* satisfying $2 \le i \le n-3$ and $i+2 \le j \le n-1$. Combining this with those we have obtained, we finally get $\phi(E_{kl}) \in RE_{kl} + RE_{1n}$ for all *k*, *l* satisfying $1 \le k < l \le n$.

Step 6. There exists $H \in D_n(R)$, $t \in R$, $Y \in N_n(R)$ such that $\eta_Y + \lambda_t + \text{Dig}_H + \phi = 0$.

By Step 5, we may assume that

$$\phi(E_{i,i+1}) \equiv s_{i,i+1}E_{i,i+1} \pmod{RE_{1n}}, \quad i = 1, 2, \dots, n-1.$$

Let

$$H = \text{diag}\{1, s_{12}, \sum_{i=1}^{2} s_{i,i+1}, \dots, \sum_{i=1}^{n-1} s_{i,i+1}\}.$$

Then we see that $\text{Dig}_H + \phi$ sends each one of $\{E_{12}, E_{23}, \dots, E_{n-1,n}\}$ to zero. Now we may assume that

$$(\operatorname{Dig}_H + \phi)(E_{ij}) \equiv t_{ij}E_{ij} \pmod{RE_{1n}}$$

for all i, j satisfying $1 \le i < j \le n$, where $t_{i,i+1} = 0$ for $i = 1, 2, \ldots, n-1$. Now by square zero of $E_{i,i+2} + E_{i+2,i+3} + E_{i,i+1} - E_{i+1,i+3}$, we know that

$$(E_{i,i+2} + E_{i+2,i+3} + E_{i,i+1} - E_{i+1,i+3}) \circ \phi(E_{i,i+2} + E_{i+2,i+3} + E_{i,i+1} - E_{i+1,i+3}) = 0.$$

This shows that $t_{i,i+2} = t_{i+1,i+3}$ for i = 1, 2, ..., n-3. Denote t_{13} by t. Similarly, by square zero of $E_{i,i+3} + E_{i,i+1} + E_{i+3,i+4} - E_{i+1,i+4}$, we have that

$$(E_{i,i+3} + E_{i,i+1} + E_{i+3,i+4} - E_{i+1,i+4}) \circ \phi(E_{i,i+3} + E_{i,i+1} + E_{i+3,i+4} - E_{i+1,i+4}) = 0,$$

which yields that $t_{i,i+3} = t_{i+1,i+4}$ for i = 1, 2, ..., n - 4. Then by

$$(E_{i,i+3} + E_{i+3,i+4} + E_{i,i+2} - E_{i+2,i+4}) \circ \phi(E_{i,i+3} + E_{i+3,i+4} + E_{i,i+2} - E_{i+2,i+4}) = 0,$$

we have that

$$t_{i,i+3} = 2t, i = 1, 2, \dots, n-3.$$

By similar discussions, we further obtain that

$$t_{i,i+4} = 3t, \quad i = 1, 2, \dots, n-4;$$

 $t_{i,i+5} = 4t, \quad i = 1, 2, \dots, n-5;$
 $\dots, \dots, \dots, t_{1,n-1} = t_{2n} = (n-3)t.$

Using $t \in R$, we construct the extensible SZ-derivation λ_{-t} . Then we have that

$$(\lambda_{-t} + \text{Dig}_H + \phi)(E_{ij}) \in RE_{1n}$$
, for all i, j satisfying $1 \le i < j \le n$.

Assume that

$$(\lambda_{-t} + \operatorname{Dig}_H + \phi)(E_{ij}) = y_{ij}E_{1n}$$
 for all i, j satisfying $1 \le i < j \le n$.

Let $Y = -(\sum_{1 \le i < j \le n} y_{ij} E_{ij})$. Then we see that $\eta_Y + \lambda_{-t} + \text{Dig}_H + \phi$ sends all E_{ij} to zero. So

$$\eta_Y + \lambda_{-t} + \mathrm{Dig}_H + \phi = 0.$$

Now we have that

$$\eta_Y + \lambda_{-t} + \operatorname{Dig}_H + \operatorname{ad}_{X_2} + \operatorname{ad}_{X_1} + \chi_{e_2}^r + \chi_{e_1}^c + \phi = 0.$$

By this we can easily get the desired expression of ϕ .

Proof of Theorem 2.2 Firstly, one can easily see that $\text{Dpz} N_n(R)$ forms an additive subgroup of $\text{Dsz} N_n(R)$. It is trivial to verify that ad_X , Dig_H , λ_f and η_Y all belong to $\text{Dpz} N_n(R)$, so the sufficient condition obviously holds. Now consider another direction. When n = 2 or n = 3, there is nothing to say.

When $n \ge 4$, if $\phi \in \text{Dpz} N_n(R)$, naturally $\phi \in \text{Dsz} N_n(R)$. Then by Theorem 2.1, ϕ takes the form

$$\phi = \chi_{e_1}^c + \chi_{e_2}^r + \operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y.$$

Since

$$\operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y \in \operatorname{Dpz} N_n(R),$$

we know that

$$\chi_{e_1}^c + \chi_{e_2}^r \in \operatorname{Dpz} N_n(R)$$

To achieve the aim, it suffices to show that $e_1 = e_2 = 0$. By $E_{23}E_{12} = 0$, we have that

$$[(\chi_{e_1}^c + \chi_{e_2}^r)(E_{23})] \cdot E_{12} + E_{23} \cdot [(\chi_{e_1}^c + \chi_{e_2}^r)(E_{12})] = -e_1 E_{2,n} = 0,$$

which leads to $e_1 = 0$. Then $\chi_{e_2}^r \in \text{Dpz} N_n(R)$. Similarly, by $E_{n-1,n}E_{n-2,n-1} = 0$, we have that

$$[\chi_{e_2}^r(E_{n-1,n})] \cdot E_{n-2,n-1} + E_{n-1,n} \cdot \chi_{e_2}^r(E_{n-2,n-1}) = -e_2 E_{1,n-1} = 0,$$

which leads to $e_2 = 0$. So $\phi = \operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y$, as desired.

Proof of Theorem 2.3 We only prove the case when $n \ge 4$. Firstly, one can easily see that $\operatorname{Ds} N_n(R)$ forms an additive subgroup of $\operatorname{Dsz} N_n(R)$. ad_X and Dig_H , being derivations of $N_n(R)$, naturally are S-derivations of $N_n(R)$. It is easy to verify that $\eta_Y \in \operatorname{Ds} N_n(R)$ if $Y \in M_3$. It is not difficult to verify that $\chi_{e_1}^c \in \operatorname{Ds} N_n(R)$ if $2e_1 = 0$ and $\chi_{e_2}^r \in \operatorname{Ds} N_n(R)$ if $2e_2 = 0$. So the sufficient condition holds. Now consider the contrary direction. If $\phi \in \operatorname{Ds} N_n(R)$, naturally $\phi \in \operatorname{Ds} N_n(R)$. Then by Theorem 2.1, ϕ takes the form

$$\phi = \chi_{e_1}^c + \chi_{e_2}^r + \operatorname{ad}_X + \operatorname{Dig}_H + \lambda_f + \eta_Y.$$

Since

$$\operatorname{ad}_X + \operatorname{Dig}_H \in \operatorname{Ds} N_n(R),$$

we know that $\chi_{e_1}^c + \chi_{e_2}^r + \lambda_f + \eta_Y$ is an S-derivation of $N_n(R)$. We denote it by ϕ_1 . By applying ϕ_1 to $(E_{12} + E_{23})^2 = E_{13}$, we get

$$(E_{12} + E_{23}) \circ \phi(E_{12} + E_{23}) = \phi(E_{13}),$$

which yields

$$-e_1 E_{3n}(E_{12} + E_{23}) - e_1(E_{12} + E_{23}) E_{3n} \equiv f E_{13} + e_1 E_{2n} \pmod{RE_{1n}}.$$

This leads to $2e_1 = f = 0$. By a similar discussion, one can get $2e_2 = 0$. Note that if $2e_1 = 2e_2 = 0$, then $\chi_{e_1}^c$ and $\chi_{e_2}^r$ both are S-derivations of $N_n(R)$. Then we further get $\eta_Y \in \text{Ds } N_n(R)$.

Write $Y = \sum_{1 \le i < j \le n} y_{ij} E_{ij} \in N_n(R)$. If $j - i \ge 2$, we can choose k such that i < k < j. Then by applying η_Y to $(E_{ik} + E_{kj})^2 = E_{ij}$, we have that

$$(E_{ik} + E_{kj}) \circ \phi(E_{ik} + E_{kj}) = \phi(E_{ij}),$$

which results in $y_{ij} = 0$. So $Y \in \sum_{i=1}^{n-1} RE_{i,i+1}$, as desired. This completes the proof. \Box

Proof of Corollary 2.4 If $Y \in \sum_{i=1}^{n-1} RE_{i,i+1}$, then $\eta_Y \in Der N_n(R)$. So the sufficient condition holds. On the contrary, if ϕ is a derivation of $N_n(R)$, then $\phi \in \text{Ds } N_n(R) \cap \text{Dpz } N_n(R)$. Then by using Theorems 2.2 and 2.3, one easily obtains that $\phi = \text{ad}_X + \text{Dig}_H + \eta_Y$, where $Y \in \sum_{i=1}^{n-1} RE_{i,i+1}$.

References

- JφNDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.
- [2] WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763–774.
- [3] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369–377.
- [4] OU Shikun, WANG Dengyin, YAO Ruiping. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2007, 424(2-3): 378–383.
- [5] BENKOVIČ D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl., 2005, 397: 235-244.