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Abstract Let R be a commutative ring with identity, N,(R) the matrix algebra consisting
of all n X n strictly upper triangular matrices over R with the usual product operation. An
R-linear map ¢ : Nn(R) — N (R) is said to be an SZ-derivation of N, (R) if 2 = 0 implies that
d(x)x+zp(x) = 0. It is said to be an S-derivation of N, (R) if ¢p(2?) = ¢(z)z +x¢(x) for any = €
Ny (R). It is said to be a PZ-derivation of N, (R) if zy = 0 implies that ¢(z)y+x¢(y) = 0. In this
paper, by constructing several types of standard SZ-derivations of N,(R), we first characterize
all SZ-derivations of N,(R). Then, as its application, we determine all S-derivations and PZ-
derivations of N, (R), respectively.

Keywords SZ-derivations; S-derivations; PZ-derivations.
Document code A

MR(2000) Subject Classification 15A04; 15A27; 16550; 17B20
Chinese Library Classification 0152.2

1. Introduction

Let R be a commutative ring with identity. By an R-algebra (not necessarily associative)
we simply mean an R-module U/ over R endowed with a bilinear operation U x U — U, usually
denoted by juxtaposition (unless U is a Lie algebra, in which case we always use the bracket).
Recall that a linear map 6 : Y — U is called a derivation of U if it satisfies the familiar product
rule §(zy) = x6(y) + §(x)y. The problem of characterizing the derivations of matrix algebras
and matrix Lie algebras has attracted the attention of some authors. For instance, Jondrup!!
characterized all derivations of the matrix ring T, (R), consisting of all upper triangular matrices

(2l described all derivations of every parabolic Lie subalgebras of the general linear

over R. Wang
Lie algebra gl (R). Wang!®! determined all derivations of any intermediate Lie algebra between
the Lie algebra of diagonal matrices and the Lie algebra T, (R) (with the usual bracket operation).
Oul¥ characterized all derivations of the Lie algebra N, (R) (with the usual bracket operation).

(5]

Benkovicl® considered the Jordan derivations and anti-derivations on the R-algebra T, (R) (with

the usual product operation). In the present article we intend to generalize the notion derivations
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to other more general cases.

Definition 1.1 Let A be an associative R-algebra. A linear map ¢ : A — A is said to be an
SZ-derivation of A if x? = 0 implies that ¢(z)x + x¢(x) = 0. It is said to be an S-derivation of
A if $(2?) = ¢(z)x + 2¢(x) for any x € A. It is said to be a PZ-derivation of A if xy = 0 implies
that ¢(x)y + z¢(y) = 0.

Remark 1.1 It should be pointed out that the notion of an S-derivation of A is commonly

known as a Jordan derivation.

Remark 1.2 To determine all derivations of a given R-algebra A is an important task, since
it is useful for us to learn more about the relationships between elements in A as well as the
algebraic structure of A. However, one easily sees that the condition for an R-linear map on
A to be a derivation is much strong, so we try to relax such condition and define the so-called
SZ-derivation of A. Indeed, when one has determined all SZ-derivations on A, then one can
easily obtain all derivations of it. So the study of determining all SZ-derivations on R-algebras
has significant applications.

It is easy to see that

derivations of A = PZ-derivations of A = SZ-derivations of A;
derivations of A = S-derivations of A = SZ-derivations of A.

Now one might wonder:
1) Whether an SZ-derivation of A is a PZ-derivation of A,
2) Whether an SZ-derivation of A is an S-derivation of A;
3) Whether a PZ-derivation of A is a derivation of A,
4) Whether an S-derivation of A is a derivation of A.

The following two examples give negative answers.

Example 1.2 Let E;; be the standard matrix units, n > 4, ¢ € R. We define ¢ : N,(R) —
Ny (R), by
Z aijFij — aa13F2, — aa12E3, + ban—2nE1n—1 — ban—1.nF1 n_2.
1<i<j<n
Then it is not difficult to verify that ¢ is an SZ-derivation of N, (R); it is a PZ-derivation if and
only if a = b =0 and it is an S-derivation if and only if 2a = 2b = 0.

Example 1.3 Let n >4, a € R. We define ¢ : N,(R) — N,(R) by

n—1
Z aijEij — Z a(k — 1) Z aijEij-
k=1

1<i<j<n j—i=k
Then it is verified that ¢ is a PZ-derivation of NV,,(R) but fails to be a derivation when a # 0.
Above two examples show that it is somewhat interesting to characterize all SZ-derivations,
all S-derivations and PZ-derivations on certain R-algebras. As a maximal nilpotent subalgebra

of the full matrix algebra, N, (R) is an interesting object of study.
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2. Construction of standard SZ-derivations of N, (R)

Let R be a commutative ring, R* the set of all nonzero elements in R. Let n be a positive
integer. We denote by M,,(R) (resp., Ny, (R); resp., D, (R)) the set of all n x n matrices (resp.,
strictly upper triangular matrices; resp., diagonal matrices) over R. We denote by E;; the
standard matrix unit whose (i, j)-entry is 1 and all other entries are 0. N,(R) has a basis
{E;j 11 < i < j < n}, which consists of square-zero matrices. Let Der N, (R) denote the
derivation algebra of N, (R) and let Dsz N,,(R) (resp., Ds N,,(R), resp., Dpz N,,(R)) denote the
set consisting of all SZ-derivations (resp., S-derivations, resp., PZ-derivations) of N, (R). It is
obvious that Dsz N,,(R), Ds N,,(R) and Dpz N,,(R) all form additive groups and

Der N,,(R) € Dpz N,,(R) C Dsz N, (R);
Der N,,(R) C Ds N, (R) C Dsz N, (R).

We now construct several types of standard SZ-derivations of N, (R).

(1) Inner derivations

If X € N, (R), then the map ady : N,(R) — N,(R),Y — [X,Y] = XY -Y X, is a derivation
of N,,(R), called the inner derivation of N, (R) induced by X.

(2) Diagonal derivations

If H € D,(R), then the map Digy : Np(R) — N,(R), Y — [H,Y] = HY —YH, is a
derivation of N, (R), called the diagonal derivation of N,,(R) induced by H.

(3) Central SZ-derivations

Let n>3,Y =3 i, ¥ijEij € No(R). We define ny : N, (R) — Nn(R) by

Z a;i; Eij — ( Z aijYij ) En.
1<i<j<n 1<i<j<n

Then it is easy to check that ny € Dsz N, (R), but generally 7y fails to be a derivation of N, (R).
Ny is said to be a central SZ-derivation of N, (R).

(4) Extremal SZ-derivations

Suppose n > 4 and ey, ez € R, define x¢, : Np(R) — Nyp(R) by

E ai;j Eij — era13Ba, — e1a12E3,,

1<i<j<n
and define x7, : Np(R) — N, (R) by
Z aij Eij — eatn_2nF1n_1 — €20n_1nE1n—2.
1<i<j<n

Then it is not difficult to check that x¢, and xi, both are SZ-derivations of N,(R), called
extremal SZ-derivations of N, (R).

(5) Extensible SZ-derivations

Suppose n > 4 and f € R, define Ay : N, (R) — N,(R) by

Z ai; Eij — ];f(k— 1)( Z aij Eij).

1<i<j<n j—i=k
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Then it is easy to check that Ay is an SZ-derivation of N, (R), called an extensible SZ-derivation
of Np(R).

With above standard SZ-derivations in hands, we can now describe all SZ-derivations, S-
derivations and PZ-derivations of N, (R).

Theorem 2.1 ¢ is an SZ-derivation of N, (R) if and only if
1) ¢ =Digy, when n = 2;
2) ¢ = Digy +ny, when n = 3;
3) ¢ =x¢& +xL, +adx +Digy + Af +ny, when n > 4,
where adx, Digy, X¢,, Xt,, Ay, and ny are the inner derivation, diagonal derivation, extremal

SZ-derivation, extensible SZ-derivation and central SZ-derivation of N, (R), respectively.

Theorem 2.2 ¢ is a PZ-derivation of N, (R) if and only if
1) ¢ =Digy, when n = 2;
2) ¢ = Digy +ny, when n = 3;
3) ¢ =adx + Digy + Ay +ny, when n > 4,
where adx, Digy, Af, ny are the inner derivation, diagonal derivation, extensible SZ-derivation

and central SZ-derivation of N, (R), respectively.

Theorem 2.3 ¢ is an S-derivation of N,,(R) if and only if

1) When n =2, ¢ = Digy;

2) Whenn =3, ¢ =Digy +ny;

3) Whenn >4, ¢ = x¢, + x¢, +adx + Digy +ny,
where adx, Digy, X¢,, X&,, and ny are the inner derivation, diagonal derivation, extremal SZ-
derivation and central SZ-derivation of N, (R), respectively, Y € Z;:ll RE; ;11 and 2e; = 2eg =
0.

Corollary 2.4 ¢ is a derivation of N,(R) if and only if ¢ = adx + Digy + ny, where adx,
Digy and ny are the inner derivation, diagonal derivation and central SZ-derivation of N, (R),
respectively, and Y € Z;:ll RE; ;11.

3. Lemmas and proof of the main theorem

For X, Y € N, (R) we denote XY +Y X by X oY for brevity. Let ¢ be a given SZ-derivation
of N, (R), it is now necessary to study the invariant ideals of N,,(R) under ¢.

Lemma 3.1 Let ¢ be an SZ-derivation of N,,(R). If X, Y and X +Y all are square-zero elements
in N, (R), then $(X) oY + X 0 $(Y) = 0.

Proof An easy verification leads to the result. O
Let S be a subalgebra of N,,(R), and denote by C(S) the centralizer of S in N, (R):

C(S)={A e N,(R) | AX = XA =0,¥X € S}.
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Lemma 3.2 Let S be a subalgebra of N,,(R), ¢ € Dsz Ny, (R). If S and C(S) both are spanned
by standard matrix units and ¢(S) C S, then ¢(C(S)) C C(S).

Proof If ¢(C(S)) € C(S), choose a square-zero element X € C(S) such that ¢(X) ¢ C(S)
(recall that C(S) is spanned by square-zero elements). Then there exists a matrix unit E;; € S
with i < j such that ¢(X)E;; # 0 or there exists a matrix unit Ey; € S with k < [ such that
Ero(X) # 0. When the first case happens, it is shown that

#(X) o Ey; # 0.
Otherwise, if ¢(X) o Ey; = 0, assume that ¢(X) = >, TpgEpq € Nn(R), where 2,4 = 0
when p > ¢q. Then by

Eijdp(X) = —¢(X)Eij #0
we obtain
zjjEij = —xuEiy; #0,

absurd. So

$(X) o E;; #0.

By assumption we know
¢(Eij) o X =0.

Thus we have

This is in contradiction with Lemma 3.1 (note that E;;, X and X + E;; all are square zero).
Similarly, the later case does not happen. So ¢(C(S)) C C(S). O
The center of N,(R), denoted by M,, is RFEi,. The center of N,(R)/M, obviously is
M,,_1/M,,, where M, _1 = Zj—iZn—Q RE;;. Go on considering the center of N, (R)/M,_1, it is
M,,—2/M,,_1, where M,,_o = Zjﬂ-ang RE;;. Generally, for 3 < k < n, the center of N,,(R)/Mj
is My—1 /My, where My,_1 = ijiZka RE;;. Thus we get the upper central series of Ny (R):
0CM,=RE,,CM,1C---M,C---CMsC My=N,(R), where M}, = Z RE;;.
j—i>k—1
Lemma 3.3 Let ¢ be an SZ-derivation of Ny (R). Then ¢(M,) C M,.
Proof M, as the centralizer of N,(R) in N, (R), naturally is invariant under ¢ (by Lemma
3.2). O
Set Iy = Y1, RE1, k=2,3,...,nand set g, = >/, | REy;, k=1,3,...,n — 1. Obvi-

ously, oy exactly is Is.

Lemma 3.4 If ¢ is an SZ-derivation of N,(R), then ¢(E1j) € cq + REs, + REj1145, j =
2,3,....n—1.

Proof FlX] (2 <j<n-— 1) Ifl1<i<mnandi }é 7, then Elj;Ei,iJrl and Elj + Ei,iJrl all are
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square-zero matrices. By Lemma 3.1, we have

d(E1j) o Eiip1 + Evjod(E;i11) = 0. (3.1)
By multiplying F4; from the left side to the above equation we have that

Evi¢(Evj)E; iv1 + B iv1¢(Erj) = 0.

It is obvious that Eq;¢(Er;)E; i+1 = 0. So E1 ;+1¢(Er;) = 0. This shows that the (¢ 4 1)-th row
of ¢(En;) is zero for every i satisfying 1 < i <mn and i # j. So ¢(E1;) € a1 + a2 + ajy1. We
have known, for any fixed 4 satisfying 1 < ¢ < n, i # j, that E; ;+1¢(F1;) = 0. So by Equation
3.1 we get

&(Evj)Eiiv1 + E1jo(Ei i) = 0.

This shows that all positions of the i-th column of ¢(E;) are zero, except for the (1, 4)-position.
Then we see that
¢(E1j) € a1 + REy; + REy, + REj 1.

It follows from (E12 + E1;)% = 0 that
Ev;j¢(E12) + Eva¢(Enr;) = 0,

which follows that the (2, j)-entry of ¢(E1;) is zero. So ¢(E1j) € a1 + RE2, + REj11 . O
Proof of Theorem 2.1

Case 1l n=2.

When n = 2, there is nothing to prove.

Case 2 n=3.
Suppose that

¢(E12) = tE12 —+ SEQg (InOd RElg); ¢(E23) = ’U,Egg —+ UE12 (InOd RElg).

It follows from (E12)? = 0 that ¢(E12)Ei2 + Ei12¢(E12) = 0, which shows that s = 0. Similarly,
v=0. Let H = diag{0,¢,¢t+ u} € D3(R). Then

(Digy + ¢)(E12) = zE13; (Digy + ¢)(Fa3) = yFEis

for certain x,y € R. Assume that (Digy + ¢)(F13) = 2E15. Let Y = —zFEj9 — yFa3 — zE13.
Then ny + Digy + ¢ sends Eqa, Eas and Ej3 to zero, respectively. So ny + Digy + ¢ = 0. By

this one can get the desired expression of ¢.

Case 3 n>4
We give the proof of this case by steps.

Step 1. There exists an extremal SZ-derivation x¢, such that (x¢, + ¢)(E12) € a1.

By Lemma 3.4, we may assume that ¢(F12) = xFE3, + yE3, (moday). It follows from
(E12)? = 0 that ¢(E12)E12 + E12¢(E12) = 0. It follows that = 0. Choose e; = y, then one
may verify that (x¢, + ¢)(E12) € a1, as desired. Now we replace x¢, + ¢ with ¢.
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Step 2. ¢(En;) € I for j =2,3,...,n.

The case when j = 2 has been proved in Step 1. The case when j = n is obvious by Lemma
3.3. Now we consider the case when 3 < j <n — 1. Since Eig, F1; and Fq3 + Ey; all are square
zero, we see, by Lemma 3.1, that Ei2¢(E1;) + E1j¢(E12) = 0. This shows that the (2, n)-entry
of ¢(E1;) is zero. So

¢(Erj) € REjyin+o1, j=3,...,n—1.

Now by square zero of E1;+ F1 j+1, we have that E1;¢(En j+1)+E1,j+16(E1;) = 0, which implies
that the (j + 1,n)-entry of ¢(E1;) is zero. So ¢(E1;) € aq for j = 3,4,...,n — 1. For any fixed
k satisfying 2 < k < j — 1, it follows from (E1; + Ej;)? = 0 that

Erjd(Erj) + 0(Er)Erj + Erj¢(Enj) = 0.
By considering the (1, j)-entry of the left side we see that the (1, k)—entry of ¢(E1;) is zero. So

¢(E1;) € I; for all j satisfying 3 < j < n—1. Combining this with ¢(E12) € I and ¢(En,) € I,
we finally get ¢(E4;) € I, for j =2,3,...,n.

Step 3. Let K; = 22:1 REkn, i =1,2,...,n — 1. There exists an extremal SZ-derivation xg,
such that (x7, + ¢)(Ein) € Ky, i =1,2,...,n — 1.
The proof being analogous to that of Steps 1 and 2, is omitted. Replace xg, + ¢ with ¢.

Step 4. There exists X; € N,,(R) such that (adx, + ¢)(E1;) € RE1; + RE1,, j =2,3,...,n.
By Step 2 we may assume that

n

P(Erj) = chkEl,k, ji=2,3,...,n.
k=i

Let
n—1 n
X1 = Z Z ek F-
=2 k=l+1
Then
(adx1 + ¢)(E1]) = ijElj (mod REln), j = 2, 3, e, n.

As required. Now replace adx, + ¢ again with ¢.

Step 5. There exists X9 € N, (R) such that (adx, +¢)(Ei;) € RE;j+RE 1, foralll <i< j<mn.
Firstly, we prove that ¢(a;) C a; +aq fori=1,2,...,n—1. By Step 4, we have known that
d(a1) € 3. When 2 < i <n—1, for any € o, suppose that ¢(z) = El§k<l§n T Er. When
p # 1 and p # 4, by square zero of E1, + x, we have
@(E1p) ox + ¢(x) o Eqp = 0.
Obviously, ¢(z)Er, = z¢(E1p) = ¢(Erp)r = 0. So Eip¢(x) = 0. This shows that the p-th row
of ¢(x) is zero, which implies that ¢(z) € a; + a1. Furthermore,

dle) Coy+ay, i=1,2,...,n—1.
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Combining this with Step 3, we know that
&(Fin) € REjp + RE1,, i=1,2,...,n—1.
Let 8; = Zf;ll RE;;, j =2,3,...,n. Obviously, 8, = K;,,—1. Next we intend to prove that
@(B5) € Bj + Bny G=2,3,...,n.

When j = n there is nothing to prove. For 2 < j < n —1, let y € 3;, and suppose that
o(y) = Zl§k<l§n Y Er. When ¢ # n and g # j, by square zero of Ey, + y, we have

®(Egn) 0y + é(y) © Egn = 0.

This shows that the ¢-th column of ¢(y) is zero (recall that ¢(E;,) € RE;, + RE1,, i =
1,2,...,n— 1), which implies that ¢(y) € 8; + B,. Furthermore,

O(B5) € Bj+ Bny §=2,3,...,m.
Since E;; € a; N B;, we see that
¢(Ei;) € RE;; + RE1j; + RE;, + RE\,, for all pair 4, j satisfying 1 <i < j <n.
Now assume that

O(Fiit1) = Siit1Eiiv1 + $1.i+1F1,i41 + SinFin (mod RE1,), i=2,3,...,n— 2.

Let
n—2 n—2
Xy = Z SinEi41,n — Z $1,k+1E1k.
1=2 k=2
Then
(adX2 =+ ¢)(Ei,i+1) = Si,i-i-lEi,i-i-l (mod REln), 1=2,3,...,n—2.
Simultaneously,

(adx, + ¢)(E1j) € REv; + RE1,, j=2,3,...,n;
(adx, + ¢)(Ein) € REjn + RE1n, i=1,2,...,n— 1.

Replace adx, + ¢ again with ¢. Now consider ¢(E;;) for any pair 4,j satisfying 2 < ¢ <
n—3,i+2<j<n—1. By square zero of F; ;11 — E;j + Eiy1,n + Ejn we know that

(Eiit1 — Eij + Eiyin + Ejn) 0 9(Eiiv1 — Eij + Eiyin + Ejn) = 0.

By this we see that the (1, j)-entry of ¢(E;;) is zero. Similarly, by square zero of E;; — E,;_1 ; +
E1; 4+ Eq j—1 we know that the (i, n)-entry of ¢(E;;) is zero. Thus we have

¢(EU) € RE;; + REy,

for all pair 7, j satisfying 2 < ¢ <n—3 and i +2 < 5 < n — 1. Combining this with those we
have obtained, we finally get ¢(Ey;) € REy + RE1, for all k, [ satisfying 1 <k <[ < n.

Step 6. There exists H € D,(R), t € R, Y € N,(R) such that ny + A + Digy + ¢ = 0.
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By Step 5, we may assume that

#(Eiit1) = siit1Biip1 (mod REy,), i=1,2,...,n—1.

Let
2 n—1
H = diag{1, s12, Z Siitlyee s Z Siig1)
i=1 i=1
Then we see that Digy; + ¢ sends each one of { E12, Eag, . .., Ep_1.,} to zero. Now we may assume
that

(Digy + ¢)(Eij) = tijE;; (mod RE1,)

for all 4, j satisfying 1 <+¢ < j <mn, where ¢; ;11 =0 for i =1,2,...,n — 1. Now by square zero
of Eiiyo + Eiy2it3 + Eiiy1 — Fiy1,i+3, we know that

(Bijive + Eiy2ita + Eiiv1 — Eiy1i43) © ¢(Eijiva + Eiv2irs + Eiit1 — Eiv1i43) = 0.

This shows that ¢; ;42 = tiy1,i43 for ¢ = 1,2,...,n — 3. Denote 13 by ¢t. Similarly, by square
zero of Ei,i+3 + Ei,i-i—l + Ei+3,i+4 - Ei+1,i+47 we have that

(Eiiv3+ Eiig1 + Eiysiva — Eig1i14) o 9(Ej i13 + Ei i1 + FEiysiva — Eig1,i14) =0,
which yields that ¢; ;43 = t;y1,i44 for ¢ =1,2,...,n — 4. Then by
(Eiiv3+ Eivsiva+ Eiiyo — Eizoi1a) o 9(E; ix3 + Eigsiva + Eiiyo — Eigoi14) =0,

we have that
tiiqz=2t, 1=1,2,...,n—3.

By similar discussions, we further obtain that
tiiqa=3t, 1=1,2,...,n—4
tiigs =4t, 1=1,2,...,n—5;
tino1 = ton = (n — 3)L.
Using t € R, we construct the extensible SZ-derivation A_;. Then we have that
(A_t + Digy + ¢)(Ei;) € REn,, for all 4, j satisfying 1 <i < j < n.
Assume that
(A_t + Digy + ¢)(Eij) = yij Erp for all 4, j satisfying 1 < i < j < n.
Let Y = _(Zlgz‘qgn yijEij). Then we see that ny + A_; + Digy + ¢ sends all E;; to zero. So
Ny + At + Digy + ¢ =0.
Now we have that

Ny + A+ DlgH + aJdXz + aXm + ng + Xgl + (b =0.
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By this we can easily get the desired expression of ¢. O

Proof of Theorem 2.2 Firstly, one can easily see that Dpz N, (R) forms an additive subgroup
of Dsz N,,(R). It is trivial to verify that adx, Digy, Ay and ny all belong to Dpz N,,(R), so the
sufficient condition obviously holds. Now consider another direction. When n = 2 or n = 3,
there is nothing to say.

When n > 4, if ¢ € Dpz N,,(R), naturally ¢ € Dsz N,,(R). Then by Theorem 2.1, ¢ takes the

form

o= Xgl + XZ2 +adx + Digg + A +ny.

Since

adx + Digy + Ay +ny € Dpz Ny, (R),
we know that
Xe, T Xe, € Dpz Ny (R).

To achieve the aim, it suffices to show that e; = e; = 0. By Es3FE712 = 0, we have that
[(Xe, + Xe,)(E23)] - Era + Eas - [(x, + Xe,)(Er2)] = —e1E2 =0,
which leads to e; = 0. Then x, € Dpz N,,(R). Similarly, by E;, 1, En—2n—1 = 0, we have that
Xey (En—1m)] En—om—1+ En_1n-Xe,(Bn—2n-1) = —€2E1,1 =0,

which leads to e = 0. So ¢ = adx + Digy + A¢ + 1y, as desired. O
Proof of Theorem 2.3 We only prove the case when n > 4. Firstly, one can easily see that
Ds N,,(R) forms an additive subgroup of Dsz N,,(R). adx and Digj, being derivations of N, (R),
naturally are S-derivations of N, (R). It is easy to verify that ny € DsN,(R) if Y € Mj. It
is not difficult to verify that x¢ € DsN,(R) if 2¢; = 0 and x7, € DsN,(R) if 2e2 = 0. So
the sufficient condition holds. Now consider the contrary direction. If ¢ € Ds N,,(R), naturally
¢ € Dsz N,,(R). Then by Theorem 2.1, ¢ takes the form

¢ =Xg, + X0, +adx +Digy + Ay + 1y

Since
adx + Digy € Ds N, (R),

we know that x¢, + X7, + Ay + 7y is an S-derivation of N,,(R). We denote it by ¢1. By applying
¢1 to (Er2 + Ea3)® = Eu3, we get

(Era + E23) 0 ¢(E12 + Ea3) = ¢(En3),
which yields
—e1Esn (B2 + Ea3) — e1(E12 + Ea3)Esy, = fE13 + e1Ea, (mod REY,).

This leads to 2e; = f = 0. By a similar discussion, one can get 2es = 0. Note that if 2e; =
2e3 = 0, then ¢, and xi, both are S-derivations of N, (R). Then we further get ny € Ds N, (R).
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Write Y =3 i<, vijEij € No(R). If j —i > 2, we can choose k such that ¢ <k < j. Then
by applying 1y to (Eix + Ei;)? = Ei;, we have that

(Eix + Eij) 0 9(Eix + Eij) = ¢(Eij),
which results in y;; =0. So Y € Z?;ll RE; ;11, as desired. This completes the proof. O

Proof of Corollary 2.4 IfY € E;:ll RE; i+1, then ny € Der Np(R). So the sufficient
condition holds. On the contrary, if ¢ is a derivation of N,,(R), then ¢ € Ds N,,(R) NDpz N,,(R).
Then by using Theorems 2.2 and 2.3, one easily obtains that ¢ = adx + Digy + 7y, where
Y e Y RE; 1. 0
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