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Abstract Let R be a commutative ring with identity, Nn(R) the matrix algebra consisting

of all n × n strictly upper triangular matrices over R with the usual product operation. An

R-linear map φ : Nn(R) → Nn(R) is said to be an SZ-derivation of Nn(R) if x2 = 0 implies that

φ(x)x+xφ(x) = 0. It is said to be an S-derivation of Nn(R) if φ(x2) = φ(x)x+xφ(x) for any x ∈

Nn(R). It is said to be a PZ-derivation of Nn(R) if xy = 0 implies that φ(x)y+xφ(y) = 0. In this

paper, by constructing several types of standard SZ-derivations of Nn(R), we first characterize

all SZ-derivations of Nn(R). Then, as its application, we determine all S-derivations and PZ-

derivations of Nn(R), respectively.
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1. Introduction

Let R be a commutative ring with identity. By an R-algebra (not necessarily associative)

we simply mean an R-module U over R endowed with a bilinear operation U × U → U , usually

denoted by juxtaposition (unless U is a Lie algebra, in which case we always use the bracket).

Recall that a linear map δ : U → U is called a derivation of U if it satisfies the familiar product

rule δ(xy) = xδ(y) + δ(x)y. The problem of characterizing the derivations of matrix algebras

and matrix Lie algebras has attracted the attention of some authors. For instance, Jφndrup[1]

characterized all derivations of the matrix ring Tn(R), consisting of all upper triangular matrices

over R. Wang[2] described all derivations of every parabolic Lie subalgebras of the general linear

Lie algebra gln(R). Wang[3] determined all derivations of any intermediate Lie algebra between

the Lie algebra of diagonal matrices and the Lie algebra Tn(R) (with the usual bracket operation).

Ou[4] characterized all derivations of the Lie algebra Nn(R) (with the usual bracket operation).

Benkovic[5] considered the Jordan derivations and anti-derivations on the R-algebra Tn(R) (with

the usual product operation). In the present article we intend to generalize the notion derivations
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to other more general cases.

Definition 1.1 Let A be an associative R-algebra. A linear map φ : A → A is said to be an

SZ-derivation of A if x2 = 0 implies that φ(x)x + xφ(x) = 0. It is said to be an S-derivation of

A if φ(x2) = φ(x)x+xφ(x) for any x ∈ A. It is said to be a PZ-derivation of A if xy = 0 implies

that φ(x)y + xφ(y) = 0.

Remark 1.1 It should be pointed out that the notion of an S-derivation of A is commonly

known as a Jordan derivation.

Remark 1.2 To determine all derivations of a given R-algebra A is an important task, since

it is useful for us to learn more about the relationships between elements in A as well as the

algebraic structure of A. However, one easily sees that the condition for an R-linear map on

A to be a derivation is much strong, so we try to relax such condition and define the so-called

SZ-derivation of A. Indeed, when one has determined all SZ-derivations on A, then one can

easily obtain all derivations of it. So the study of determining all SZ-derivations on R-algebras

has significant applications.

It is easy to see that

derivations of A ⇒ PZ-derivations of A ⇒ SZ-derivations of A;

derivations of A ⇒ S-derivations of A ⇒ SZ-derivations of A.

Now one might wonder:

1) Whether an SZ-derivation of A is a PZ-derivation of A;

2) Whether an SZ-derivation of A is an S-derivation of A;

3) Whether a PZ-derivation of A is a derivation of A;

4) Whether an S-derivation of A is a derivation of A.

The following two examples give negative answers.

Example 1.2 Let Eij be the standard matrix units, n ≥ 4, a ∈ R. We define φ : Nn(R) →

Nn(R), by
∑

1≤i<j≤n

aijEij 7→ aa13E2n − aa12E3n + ban−2,nE1,n−1 − ban−1,nE1,n−2.

Then it is not difficult to verify that φ is an SZ-derivation of Nn(R); it is a PZ-derivation if and

only if a = b = 0 and it is an S-derivation if and only if 2a = 2b = 0.

Example 1.3 Let n ≥ 4, a ∈ R. We define φ : Nn(R) → Nn(R) by

∑

1≤i<j≤n

aijEij 7→
n−1∑

k=1

a(k − 1)
∑

j−i=k

aijEij .

Then it is verified that φ is a PZ-derivation of Nn(R) but fails to be a derivation when a 6= 0.

Above two examples show that it is somewhat interesting to characterize all SZ-derivations,

all S-derivations and PZ-derivations on certain R-algebras. As a maximal nilpotent subalgebra

of the full matrix algebra, Nn(R) is an interesting object of study.
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2. Construction of standard SZ-derivations of Nn(R)

Let R be a commutative ring, R∗ the set of all nonzero elements in R. Let n be a positive

integer. We denote by Mn(R) (resp., Nn(R); resp., Dn(R)) the set of all n × n matrices (resp.,

strictly upper triangular matrices; resp., diagonal matrices) over R. We denote by Eij the

standard matrix unit whose (i, j)-entry is 1 and all other entries are 0. Nn(R) has a basis

{Eij |1 ≤ i < j ≤ n}, which consists of square-zero matrices. Let Der Nn(R) denote the

derivation algebra of Nn(R) and let Dsz Nn(R) (resp., Ds Nn(R), resp., Dpz Nn(R)) denote the

set consisting of all SZ-derivations (resp., S-derivations, resp., PZ-derivations) of Nn(R). It is

obvious that Dsz Nn(R), Ds Nn(R) and Dpz Nn(R) all form additive groups and

Der Nn(R) ⊆ Dpz Nn(R) ⊆ Dsz Nn(R);

Der Nn(R) ⊆ Ds Nn(R) ⊆ Dsz Nn(R).

We now construct several types of standard SZ-derivations of Nn(R).

(1) Inner derivations

If X ∈ Nn(R), then the map adX : Nn(R) → Nn(R), Y 7→ [X, Y ] = XY −Y X , is a derivation

of Nn(R), called the inner derivation of Nn(R) induced by X .

(2) Diagonal derivations

If H ∈ Dn(R), then the map DigH : Nn(R) → Nn(R), Y 7→ [H, Y ] = HY − Y H , is a

derivation of Nn(R), called the diagonal derivation of Nn(R) induced by H .

(3) Central SZ-derivations

Let n ≥ 3, Y =
∑

1≤i<j≤n yijEij ∈ Nn(R). We define ηY : Nn(R) → Nn(R) by
∑

1≤i<j≤n

aijEij 7→ (
∑

1≤i<j≤n

aijyij)E1n.

Then it is easy to check that ηY ∈ Dsz Nn(R), but generally ηY fails to be a derivation of Nn(R).

ηY is said to be a central SZ-derivation of Nn(R).

(4) Extremal SZ-derivations

Suppose n ≥ 4 and e1, e2 ∈ R, define χc
e1

: Nn(R) → Nn(R) by
∑

1≤i<j≤n

aijEij 7→ e1a13E2n − e1a12E3n,

and define χr
e2

: Nn(R) → Nn(R) by
∑

1≤i<j≤n

aijEij 7→ e2an−2,nE1,n−1 − e2an−1,nE1,n−2.

Then it is not difficult to check that χc
e1

and χr
e2

both are SZ-derivations of Nn(R), called

extremal SZ-derivations of Nn(R).

(5) Extensible SZ-derivations

Suppose n ≥ 4 and f ∈ R, define λf : Nn(R) → Nn(R) by

∑

1≤i<j≤n

aijEij 7→
n−1∑

k=1

f(k − 1)(
∑

j−i=k

aijEij).
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Then it is easy to check that λf is an SZ-derivation of Nn(R), called an extensible SZ-derivation

of Nn(R).

With above standard SZ-derivations in hands, we can now describe all SZ-derivations, S-

derivations and PZ-derivations of Nn(R).

Theorem 2.1 φ is an SZ-derivation of Nn(R) if and only if

1) φ = DigH , when n = 2;

2) φ = DigH + ηY , when n = 3;

3) φ = χc
e1

+ χr
e2

+ adX + DigH + λf + ηY , when n ≥ 4,

where adX , DigH , χc
e1

, χr
e2

, λf , and ηY are the inner derivation, diagonal derivation, extremal

SZ-derivation, extensible SZ-derivation and central SZ-derivation of Nn(R), respectively.

Theorem 2.2 φ is a PZ-derivation of Nn(R) if and only if

1) φ = DigH , when n = 2;

2) φ = DigH + ηY , when n = 3;

3) φ = adX + DigH + λf + ηY , when n ≥ 4,

where adX , DigH , λf , ηY are the inner derivation, diagonal derivation, extensible SZ-derivation

and central SZ-derivation of Nn(R), respectively.

Theorem 2.3 φ is an S-derivation of Nn(R) if and only if

1) When n = 2, φ = DigH ;

2) When n = 3, φ = DigH + ηY ;

3) When n ≥ 4, φ = χc
e1

+ χr
e2

+ adX + DigH + ηY ,

where adX , DigH , χc
e1

, χr
e2

, and ηY are the inner derivation, diagonal derivation, extremal SZ-

derivation and central SZ-derivation of Nn(R), respectively, Y ∈
∑n−1

i=1 REi,i+1 and 2e1 = 2e2 =

0.

Corollary 2.4 φ is a derivation of Nn(R) if and only if φ = adX + DigH + ηY , where adX ,

DigH and ηY are the inner derivation, diagonal derivation and central SZ-derivation of Nn(R),

respectively, and Y ∈
∑n−1

i=1 REi,i+1.

3. Lemmas and proof of the main theorem

For X , Y ∈ Nn(R) we denote XY +Y X by X ◦Y for brevity. Let φ be a given SZ-derivation

of Nn(R), it is now necessary to study the invariant ideals of Nn(R) under φ.

Lemma 3.1 Let φ be an SZ-derivation of Nn(R). If X, Y and X+Y all are square-zero elements

in Nn(R), then φ(X) ◦ Y + X ◦ φ(Y ) = 0.

Proof An easy verification leads to the result. 2

Let S be a subalgebra of Nn(R), and denote by C(S) the centralizer of S in Nn(R):

C(S) = {A ∈ Nn(R) | AX = XA = 0, ∀X ∈ S}.
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Lemma 3.2 Let S be a subalgebra of Nn(R), φ ∈ Dsz Nn(R). If S and C(S) both are spanned

by standard matrix units and φ(S) ⊆ S, then φ(C(S)) ⊆ C(S).

Proof If φ(C(S)) * C(S), choose a square-zero element X ∈ C(S) such that φ(X) /∈ C(S)

(recall that C(S) is spanned by square-zero elements). Then there exists a matrix unit Eij ∈ S

with i < j such that φ(X)Eij 6= 0 or there exists a matrix unit Ekl ∈ S with k < l such that

Eklφ(X) 6= 0. When the first case happens, it is shown that

φ(X) ◦ Eij 6= 0.

Otherwise, if φ(X) ◦ Eij = 0, assume that φ(X) =
∑

1≤p,q≤n xpqEpq ∈ Nn(R), where xpq = 0

when p ≥ q. Then by

Eijφ(X) = −φ(X)Eij 6= 0

we obtain

xjjEij = −xiiEij 6= 0,

absurd. So

φ(X) ◦ Eij 6= 0.

By assumption we know

φ(Eij) ◦ X = 0.

Thus we have

φ(X) ◦ Eij + φ(Eij) ◦ X 6= 0.

This is in contradiction with Lemma 3.1 (note that Eij , X and X + Eij all are square zero).

Similarly, the later case does not happen. So φ(C(S)) ⊆ C(S). 2

The center of Nn(R), denoted by Mn, is RE1n. The center of Nn(R)/Mn obviously is

Mn−1/Mn, where Mn−1 =
∑

j−i≥n−2 REij . Go on considering the center of Nn(R)/Mn−1, it is

Mn−2/Mn−1, where Mn−2 =
∑

j−i≥n−3 REij . Generally, for 3 ≤ k ≤ n, the center of Nn(R)/Mk

is Mk−1/Mk, where Mk−1 =
∑

j−i≥k−2 REij . Thus we get the upper central series of Nn(R):

0 ⊂ Mn = RE1n ⊂ Mn−1 ⊂ · · ·Mk ⊂ · · · ⊂ M3 ⊂ M2 = Nn(R), where Mk =
∑

j−i≥k−1

REij .

Lemma 3.3 Let φ be an SZ-derivation of Nn(R). Then φ(Mn) ⊆ Mn.

Proof Mn, as the centralizer of Nn(R) in Nn(R), naturally is invariant under φ (by Lemma

3.2). 2

Set Ik =
∑n

i=k RE1i, k = 2, 3, . . . , n and set αk =
∑n

i=k+1 REki, k = 1, 3, . . . , n − 1. Obvi-

ously, α1 exactly is I2.

Lemma 3.4 If φ is an SZ-derivation of Nn(R), then φ(E1j) ∈ α1 + RE2n + REj+1,n, j =

2, 3, . . . , n − 1.

Proof Fix j (2 ≤ j ≤ n − 1). If 1 < i < n and i 6= j, then E1j , Ei,i+1 and E1j + Ei,i+1 all are
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square-zero matrices. By Lemma 3.1, we have

φ(E1j) ◦ Ei,i+1 + E1j ◦ φ(Ei,i+1) = 0. (3.1)

By multiplying E1i from the left side to the above equation we have that

E1iφ(E1j)Ei,i+1 + E1,i+1φ(E1j) = 0.

It is obvious that E1iφ(E1j)Ei,i+1 = 0. So E1,i+1φ(E1j) = 0. This shows that the (i + 1)-th row

of φ(E1j) is zero for every i satisfying 1 < i < n and i 6= j. So φ(E1j) ∈ α1 + α2 + αj+1. We

have known, for any fixed i satisfying 1 < i < n, i 6= j, that Ei,i+1φ(E1j) = 0. So by Equation

3.1 we get

φ(E1j)Ei,i+1 + E1jφ(Ei,i+1) = 0.

This shows that all positions of the i-th column of φ(E1j) are zero, except for the (1, i)-position.

Then we see that

φ(E1j) ∈ α1 + RE2j + RE2n + REj+1,n.

It follows from (E12 + E1j)
2 = 0 that

E1jφ(E12) + E12φ(E1j) = 0,

which follows that the (2, j)-entry of φ(E1j) is zero. So φ(E1j) ∈ α1 + RE2n + REj+1,n. 2

Proof of Theorem 2.1

Case 1 n = 2.

When n = 2, there is nothing to prove.

Case 2 n = 3.

Suppose that

φ(E12) ≡ tE12 + sE23 (mod RE13); φ(E23) ≡ uE23 + vE12 (mod RE13).

It follows from (E12)
2 = 0 that φ(E12)E12 + E12φ(E12) = 0, which shows that s = 0. Similarly,

v = 0. Let H = diag{0, t, t + u} ∈ D3(R). Then

(DigH + φ)(E12) = xE13; (DigH + φ)(E23) = yE13

for certain x, y ∈ R. Assume that (DigH + φ)(E13) = zE13. Let Y = −xE12 − yE23 − zE13.

Then ηY + DigH + φ sends E12, E23 and E13 to zero, respectively. So ηY + DigH + φ = 0. By

this one can get the desired expression of φ.

Case 3 n ≥ 4

We give the proof of this case by steps.

Step 1. There exists an extremal SZ-derivation χc
e1

such that (χc
e1

+ φ)(E12) ∈ α1.

By Lemma 3.4, we may assume that φ(E12) ≡ xE2n + yE3n (mod α1). It follows from

(E12)
2 = 0 that φ(E12)E12 + E12φ(E12) = 0. It follows that x = 0. Choose e1 = y, then one

may verify that (χc
e1

+ φ)(E12) ∈ α1, as desired. Now we replace χc
e1

+ φ with φ.
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Step 2. φ(E1j) ∈ Ij for j = 2, 3, . . . , n.

The case when j = 2 has been proved in Step 1. The case when j = n is obvious by Lemma

3.3. Now we consider the case when 3 ≤ j ≤ n − 1. Since E12, E1j and E12 + E1j all are square

zero, we see, by Lemma 3.1, that E12φ(E1j) + E1jφ(E12) = 0. This shows that the (2, n)-entry

of φ(E1j) is zero. So

φ(E1j) ∈ REj+1,n + α1, j = 3, . . . , n − 1.

Now by square zero of E1j +E1,j+1, we have that E1jφ(E1,j+1)+E1,j+1φ(E1j) = 0, which implies

that the (j + 1, n)-entry of φ(E1j) is zero. So φ(E1j) ∈ α1 for j = 3, 4, . . . , n − 1. For any fixed

k satisfying 2 ≤ k ≤ j − 1, it follows from (E1j + Ekj)
2 = 0 that

E1jφ(Ekj) + φ(E1j)Ekj + Ekjφ(E1j) = 0.

By considering the (1, j)-entry of the left side we see that the (1, k)−entry of φ(E1j) is zero. So

φ(E1j) ∈ Ij for all j satisfying 3 ≤ j ≤ n−1. Combining this with φ(E12) ∈ I2 and φ(E1n) ∈ In,

we finally get φ(E1j) ∈ Ij for j = 2, 3, . . . , n.

Step 3. Let Ki =
∑i

k=1 REkn, i = 1, 2, . . . , n − 1. There exists an extremal SZ-derivation χr
e2

such that (χr
e2

+ φ)(Ein) ∈ Ki, i = 1, 2, . . . , n − 1.

The proof being analogous to that of Steps 1 and 2, is omitted. Replace χr
e2

+ φ with φ.

Step 4. There exists X1 ∈ Nn(R) such that (adX1
+ φ)(E1j) ∈ RE1j + RE1n, j = 2, 3, . . . , n.

By Step 2 we may assume that

φ(E1j) =

n∑

k=j

cjkE1,k, j = 2, 3, . . . , n.

Let

X1 =
n−1∑

l=2

n∑

k=l+1

clkElk.

Then

(adX1
+ φ)(E1j) ≡ cjjE1j (mod RE1n), j = 2, 3, . . . , n.

As required. Now replace adX1
+ φ again with φ.

Step 5. There exists X2 ∈ Nn(R) such that (adX2
+φ)(Eij) ∈ REij +RE1n for all 1 ≤ i < j ≤ n.

Firstly, we prove that φ(αi) ⊆ αi + α1 for i = 1, 2, . . . , n− 1. By Step 4, we have known that

φ(α1) ⊆ α1. When 2 ≤ i ≤ n − 1, for any x ∈ αi, suppose that φ(x) =
∑

1≤k<l≤n xklEkl. When

p 6= 1 and p 6= i, by square zero of E1p + x, we have

φ(E1p) ◦ x + φ(x) ◦ E1p = 0.

Obviously, φ(x)E1p = xφ(E1p) = φ(E1p)x = 0. So E1pφ(x) = 0. This shows that the p-th row

of φ(x) is zero, which implies that φ(x) ∈ αi + α1. Furthermore,

φ(αi) ⊆ αi + α1, i = 1, 2, . . . , n − 1.
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Combining this with Step 3, we know that

φ(Ein) ∈ REin + RE1n, i = 1, 2, . . . , n − 1.

Let βj =
∑j−1

i=1 REij , j = 2, 3, . . . , n. Obviously, βn = Kn−1. Next we intend to prove that

φ(βj) ⊆ βj + βn, j = 2, 3, . . . , n.

When j = n there is nothing to prove. For 2 ≤ j ≤ n − 1, let y ∈ βj , and suppose that

φ(y) =
∑

1≤k<l≤n yklEkl. When q 6= n and q 6= j, by square zero of Eqn + y, we have

φ(Eqn) ◦ y + φ(y) ◦ Eqn = 0.

This shows that the q-th column of φ(y) is zero (recall that φ(Ein) ∈ REin + RE1n, i =

1, 2, . . . , n − 1), which implies that φ(y) ∈ βj + βn. Furthermore,

φ(βj) ⊆ βj + βn, j = 2, 3, . . . , n.

Since Eij ∈ αi ∩ βj , we see that

φ(Eij) ∈ REij + RE1j + REin + RE1n, for all pair i, j satisfying 1 ≤ i ≤ j ≤ n.

Now assume that

φ(Ei,i+1) ≡ si,i+1Ei,i+1 + s1,i+1E1,i+1 + sinEin (mod RE1n), i = 2, 3, . . . , n − 2.

Let

X2 =
n−2∑

l=2

slnEl+1,n −
n−2∑

k=2

s1,k+1E1k.

Then

(adX2
+ φ)(Ei,i+1) ≡ si,i+1Ei,i+1 (mod RE1n), i = 2, 3, . . . , n − 2.

Simultaneously,

(adX2
+ φ)(E1j) ∈ RE1j + RE1n, j = 2, 3, . . . , n;

(adX2
+ φ)(Ein) ∈ REin + RE1n, i = 1, 2, . . . , n − 1.

Replace adX2
+ φ again with φ. Now consider φ(Eij) for any pair i, j satisfying 2 ≤ i ≤

n − 3, i + 2 ≤ j ≤ n − 1. By square zero of Ei,i+1 − Eij + Ei+1,n + Ejn we know that

(Ei,i+1 − Eij + Ei+1,n + Ejn) ◦ φ(Ei,i+1 − Ei,j + Ei+1,n + Ejn) = 0.

By this we see that the (1, j)-entry of φ(Eij) is zero. Similarly, by square zero of Eij −Ej−1,j +

E1i + E1,j−1 we know that the (i, n)-entry of φ(Eij) is zero. Thus we have

φ(Eij) ∈ REij + RE1n

for all pair i, j satisfying 2 ≤ i ≤ n − 3 and i + 2 ≤ j ≤ n − 1. Combining this with those we

have obtained, we finally get φ(Ekl) ∈ REkl + RE1n for all k, l satisfying 1 ≤ k < l ≤ n.

Step 6. There exists H ∈ Dn(R), t ∈ R, Y ∈ Nn(R) such that ηY + λt + DigH + φ = 0.
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By Step 5, we may assume that

φ(Ei,i+1) ≡ si,i+1Ei,i+1 (mod RE1n), i = 1, 2, . . . , n − 1.

Let

H = diag{1, s12,

2∑

i=1

si,i+1, . . . ,

n−1∑

i=1

si,i+1}.

Then we see that DigH +φ sends each one of {E12, E23, . . . , En−1,n} to zero. Now we may assume

that

(DigH + φ)(Eij) ≡ tijEij (mod RE1n)

for all i, j satisfying 1 ≤ i < j ≤ n, where ti,i+1 = 0 for i = 1, 2, . . . , n − 1. Now by square zero

of Ei,i+2 + Ei+2,i+3 + Ei,i+1 − Ei+1,i+3, we know that

(Ei,i+2 + Ei+2,i+3 + Ei,i+1 − Ei+1,i+3) ◦ φ(Ei,i+2 + Ei+2,i+3 + Ei,i+1 − Ei+1,i+3) = 0.

This shows that ti,i+2 = ti+1,i+3 for i = 1, 2, . . . , n − 3. Denote t13 by t. Similarly, by square

zero of Ei,i+3 + Ei,i+1 + Ei+3,i+4 − Ei+1,i+4, we have that

(Ei,i+3 + Ei,i+1 + Ei+3,i+4 − Ei+1,i+4) ◦ φ(Ei,i+3 + Ei,i+1 + Ei+3,i+4 − Ei+1,i+4) = 0,

which yields that ti,i+3 = ti+1,i+4 for i = 1, 2, . . . , n − 4. Then by

(Ei,i+3 + Ei+3,i+4 + Ei,i+2 − Ei+2,i+4) ◦ φ(Ei,i+3 + Ei+3,i+4 + Ei,i+2 − Ei+2,i+4) = 0,

we have that

ti,i+3 = 2t, i = 1, 2, . . . , n − 3.

By similar discussions, we further obtain that

ti,i+4 = 3t, i = 1, 2, . . . , n − 4;

ti,i+5 = 4t, i = 1, 2, . . . , n − 5;

· · · · · · · · ·

t1,n−1 = t2n = (n − 3)t.

Using t ∈ R, we construct the extensible SZ-derivation λ−t. Then we have that

(λ−t + DigH + φ)(Eij) ∈ RE1n, for all i, j satisfying 1 ≤ i < j ≤ n.

Assume that

(λ−t + DigH + φ)(Eij) = yijE1n for all i, j satisfying 1 ≤ i < j ≤ n.

Let Y = −(
∑

1≤i<j≤n yijEij). Then we see that ηY + λ−t + DigH + φ sends all Eij to zero. So

ηY + λ−t + DigH + φ = 0.

Now we have that

ηY + λ−t + DigH + adX2
+ adX1

+ χr
e2

+ χc
e1

+ φ = 0.
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By this we can easily get the desired expression of φ. 2

Proof of Theorem 2.2 Firstly, one can easily see that Dpz Nn(R) forms an additive subgroup

of Dsz Nn(R). It is trivial to verify that adX , DigH , λf and ηY all belong to Dpz Nn(R), so the

sufficient condition obviously holds. Now consider another direction. When n = 2 or n = 3,

there is nothing to say.

When n ≥ 4, if φ ∈ Dpz Nn(R), naturally φ ∈ Dsz Nn(R). Then by Theorem 2.1, φ takes the

form

φ = χc
e1

+ χr
e2

+ adX + DigH + λf + ηY .

Since

adX + DigH + λf + ηY ∈ Dpz Nn(R),

we know that

χc
e1

+ χr
e2

∈ Dpz Nn(R).

To achieve the aim, it suffices to show that e1 = e2 = 0. By E23E12 = 0, we have that

[(χc
e1

+ χr
e2

)(E23)] · E12 + E23 · [(χ
c
e1

+ χr
e2

)(E12)] = −e1E2,n = 0,

which leads to e1 = 0. Then χr
e2

∈ Dpz Nn(R). Similarly, by En−1,nEn−2,n−1 = 0, we have that

[χr
e2

(En−1,n)] · En−2,n−1 + En−1,n · χr
e2

(En−2,n−1) = −e2E1,n−1 = 0,

which leads to e2 = 0. So φ = adX + DigH + λf + ηY , as desired. 2

Proof of Theorem 2.3 We only prove the case when n ≥ 4. Firstly, one can easily see that

Ds Nn(R) forms an additive subgroup of Dsz Nn(R). adX and DigH , being derivations of Nn(R),

naturally are S-derivations of Nn(R). It is easy to verify that ηY ∈ Ds Nn(R) if Y ∈ M3. It

is not difficult to verify that χc
e1

∈ Ds Nn(R) if 2e1 = 0 and χr
e2

∈ Ds Nn(R) if 2e2 = 0. So

the sufficient condition holds. Now consider the contrary direction. If φ ∈ Ds Nn(R), naturally

φ ∈ Dsz Nn(R). Then by Theorem 2.1, φ takes the form

φ = χc
e1

+ χr
e2

+ adX + DigH + λf + ηY .

Since

adX + DigH ∈ Ds Nn(R),

we know that χc
e1

+ χr
e2

+ λf + ηY is an S-derivation of Nn(R). We denote it by φ1. By applying

φ1 to (E12 + E23)
2 = E13, we get

(E12 + E23) ◦ φ(E12 + E23) = φ(E13),

which yields

−e1E3n(E12 + E23) − e1(E12 + E23)E3n ≡ fE13 + e1E2n (mod RE1n).

This leads to 2e1 = f = 0. By a similar discussion, one can get 2e2 = 0. Note that if 2e1 =

2e2 = 0, then χc
e1

and χr
e2

both are S-derivations of Nn(R). Then we further get ηY ∈ Ds Nn(R).
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Write Y =
∑

1≤i<j≤n yijEij ∈ Nn(R). If j − i ≥ 2, we can choose k such that i < k < j. Then

by applying ηY to (Eik + Ekj)
2 = Eij , we have that

(Eik + Ekj) ◦ φ(Eik + Ekj) = φ(Eij),

which results in yij = 0. So Y ∈
∑n−1

i=1 REi,i+1, as desired. This completes the proof. 2

Proof of Corollary 2.4 If Y ∈
∑n−1

i=1 REi,i+1, then ηY ∈ Der Nn(R). So the sufficient

condition holds. On the contrary, if φ is a derivation of Nn(R), then φ ∈ Ds Nn(R)∩Dpz Nn(R).

Then by using Theorems 2.2 and 2.3, one easily obtains that φ = adX + DigH + ηY , where

Y ∈
∑n−1

i=1 REi,i+1. 2
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