SZ-Derivations, PZ-Derivations and S-Derivations of a Matrix Algebra over Commutative Rings

WANG Xian ${ }^{1,2}$, WANG Deng Yin ${ }^{1}$
(1. Department of Mathematics, China University of Mining and Technology, Jiangsu 221008, China;
2. Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan)
(E-mail: wdengyin@126.com)

Abstract

Let R be a commutative ring with identity, $N_{n}(R)$ the matrix algebra consisting of all $n \times n$ strictly upper triangular matrices over R with the usual product operation. An R-linear map $\phi: N_{n}(R) \rightarrow N_{n}(R)$ is said to be an SZ-derivation of $N_{n}(R)$ if $x^{2}=0$ implies that $\phi(x) x+x \phi(x)=0$. It is said to be an S-derivation of $N_{n}(R)$ if $\phi\left(x^{2}\right)=\phi(x) x+x \phi(x)$ for any $x \in$ $N_{n}(R)$. It is said to be a PZ-derivation of $N_{n}(R)$ if $x y=0$ implies that $\phi(x) y+x \phi(y)=0$. In this paper, by constructing several types of standard SZ-derivations of $N_{n}(R)$, we first characterize all SZ-derivations of $N_{n}(R)$. Then, as its application, we determine all S-derivations and PZderivations of $N_{n}(R)$, respectively.

Keywords SZ-derivations; S-derivations; PZ-derivations.
Document code A
MR(2000) Subject Classification 15A04; 15A27; 16S50; 17B20
Chinese Library Classification O152.2

1. Introduction

Let R be a commutative ring with identity. By an R-algebra (not necessarily associative) we simply mean an R-module \mathcal{U} over R endowed with a bilinear operation $\mathcal{U} \times \mathcal{U} \rightarrow \mathcal{U}$, usually denoted by juxtaposition (unless \mathcal{U} is a Lie algebra, in which case we always use the bracket). Recall that a linear map $\delta: \mathcal{U} \rightarrow \mathcal{U}$ is called a derivation of \mathcal{U} if it satisfies the familiar product rule $\delta(x y)=x \delta(y)+\delta(x) y$. The problem of characterizing the derivations of matrix algebras and matrix Lie algebras has attracted the attention of some authors. For instance, J ϕ ndrup ${ }^{[1]}$ characterized all derivations of the matrix ring $T_{n}(R)$, consisting of all upper triangular matrices over R. Wang ${ }^{[2]}$ described all derivations of every parabolic Lie subalgebras of the general linear Lie algebra $\mathrm{gl}_{n}(R)$. Wang ${ }^{[3]}$ determined all derivations of any intermediate Lie algebra between the Lie algebra of diagonal matrices and the Lie algebra $T_{n}(R)$ (with the usual bracket operation). $\mathrm{Ou}^{[4]}$ characterized all derivations of the Lie algebra $N_{n}(R)$ (with the usual bracket operation). Benkovic ${ }^{[5]}$ considered the Jordan derivations and anti-derivations on the R-algebra $T_{n}(R)$ (with the usual product operation). In the present article we intend to generalize the notion derivations

Received date: 2008-03-18; Accepted date: 2008-07-07
Foundation item: Fond of China University of Mining and Technology.
to other more general cases.
Definition 1.1 Let \mathcal{A} be an associative R-algebra. A linear map $\phi: \mathcal{A} \rightarrow \mathcal{A}$ is said to be an SZ-derivation of \mathcal{A} if $x^{2}=0$ implies that $\phi(x) x+x \phi(x)=0$. It is said to be an S-derivation of \mathcal{A} if $\phi\left(x^{2}\right)=\phi(x) x+x \phi(x)$ for any $x \in \mathcal{A}$. It is said to be a PZ-derivation of \mathcal{A} if $x y=0$ implies that $\phi(x) y+x \phi(y)=0$.

Remark 1.1 It should be pointed out that the notion of an S -derivation of \mathcal{A} is commonly known as a Jordan derivation.

Remark 1.2 To determine all derivations of a given R-algebra \mathcal{A} is an important task, since it is useful for us to learn more about the relationships between elements in \mathcal{A} as well as the algebraic structure of \mathcal{A}. However, one easily sees that the condition for an R-linear map on \mathcal{A} to be a derivation is much strong, so we try to relax such condition and define the so-called SZ-derivation of \mathcal{A}. Indeed, when one has determined all SZ-derivations on \mathcal{A}, then one can easily obtain all derivations of it. So the study of determining all SZ-derivations on R-algebras has significant applications.

It is easy to see that

$$
\begin{aligned}
& \text { derivations of } \mathcal{A} \Rightarrow \text { PZ-derivations of } \mathcal{A} \Rightarrow \text { SZ-derivations of } \mathcal{A} ; \\
& \text { derivations of } \mathcal{A} \Rightarrow \text { S-derivations of } \mathcal{A} \Rightarrow \text { SZ-derivations of } \mathcal{A} \text {. }
\end{aligned}
$$

Now one might wonder:

1) Whether an SZ-derivation of \mathcal{A} is a PZ-derivation of \mathcal{A};
2) Whether an SZ-derivation of \mathcal{A} is an S-derivation of \mathcal{A};
3) Whether a PZ-derivation of \mathcal{A} is a derivation of \mathcal{A};
4) Whether an S-derivation of \mathcal{A} is a derivation of \mathcal{A}.

The following two examples give negative answers.
Example 1.2 Let $E_{i j}$ be the standard matrix units, $n \geq 4, a \in R$. We define $\phi: N_{n}(R) \rightarrow$ $N_{n}(R)$, by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto a a_{13} E_{2 n}-a a_{12} E_{3 n}+b a_{n-2, n} E_{1, n-1}-b a_{n-1, n} E_{1, n-2}
$$

Then it is not difficult to verify that ϕ is an SZ-derivation of $N_{n}(R)$; it is a PZ-derivation if and only if $a=b=0$ and it is an S-derivation if and only if $2 a=2 b=0$.

Example 1.3 Let $n \geq 4, a \in R$. We define $\phi: N_{n}(R) \rightarrow N_{n}(R)$ by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto \sum_{k=1}^{n-1} a(k-1) \sum_{j-i=k} a_{i j} E_{i j}
$$

Then it is verified that ϕ is a PZ-derivation of $N_{n}(R)$ but fails to be a derivation when $a \neq 0$.
Above two examples show that it is somewhat interesting to characterize all SZ-derivations, all S-derivations and PZ-derivations on certain R-algebras. As a maximal nilpotent subalgebra of the full matrix algebra, $N_{n}(R)$ is an interesting object of study.

2. Construction of standard SZ-derivations of $N_{n}(R)$

Let R be a commutative ring, R^{*} the set of all nonzero elements in R. Let n be a positive integer. We denote by $M_{n}(R)$ (resp., $N_{n}(R)$; resp., $D_{n}(R)$) the set of all $n \times n$ matrices (resp., strictly upper triangular matrices; resp., diagonal matrices) over R. We denote by $E_{i j}$ the standard matrix unit whose (i, j)-entry is 1 and all other entries are $0 . N_{n}(R)$ has a basis $\left\{E_{i j} \mid 1 \leq i<j \leq n\right\}$, which consists of square-zero matrices. Let Der $N_{n}(R)$ denote the derivation algebra of $N_{n}(R)$ and let Dsz $N_{n}(R)$ (resp., Ds $N_{n}(R)$, resp., Dpz $N_{n}(R)$) denote the set consisting of all SZ-derivations (resp., S-derivations, resp., PZ-derivations) of $N_{n}(R)$. It is obvious that Dsz $N_{n}(R)$, Ds $N_{n}(R)$ and $\mathrm{Dpz} N_{n}(R)$ all form additive groups and

$$
\begin{gathered}
\operatorname{Der} N_{n}(R) \subseteq \operatorname{Dpz} N_{n}(R) \subseteq \operatorname{Dsz} N_{n}(R) \\
\operatorname{Der} N_{n}(R) \subseteq \operatorname{Ds} N_{n}(R) \subseteq \operatorname{Dsz} N_{n}(R)
\end{gathered}
$$

We now construct several types of standard SZ-derivations of $N_{n}(R)$.
(1) Inner derivations

If $X \in N_{n}(R)$, then the map $\operatorname{ad}_{X}: N_{n}(R) \rightarrow N_{n}(R), Y \mapsto[X, Y]=X Y-Y X$, is a derivation of $N_{n}(R)$, called the inner derivation of $N_{n}(R)$ induced by X.
(2) Diagonal derivations

If $H \in D_{n}(R)$, then the $\operatorname{map} \operatorname{Dig}_{H}: N_{n}(R) \rightarrow N_{n}(R), Y \mapsto[H, Y]=H Y-Y H$, is a derivation of $N_{n}(R)$, called the diagonal derivation of $N_{n}(R)$ induced by H.
(3) Central SZ-derivations

Let $n \geq 3, Y=\sum_{1 \leq i<j \leq n} y_{i j} E_{i j} \in N_{n}(R)$. We define $\eta_{Y}: N_{n}(R) \rightarrow N_{n}(R)$ by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto\left(\sum_{1 \leq i<j \leq n} a_{i j} y_{i j}\right) E_{1 n} .
$$

Then it is easy to check that $\eta_{Y} \in D s z N_{n}(R)$, but generally η_{Y} fails to be a derivation of $N_{n}(R)$. η_{Y} is said to be a central SZ-derivation of $N_{n}(R)$.
(4) Extremal SZ-derivations

Suppose $n \geq 4$ and $e_{1}, e_{2} \in R$, define $\chi_{e_{1}}^{c}: N_{n}(R) \rightarrow N_{n}(R)$ by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto e_{1} a_{13} E_{2 n}-e_{1} a_{12} E_{3 n}
$$

and define $\chi_{e_{2}}^{r}: N_{n}(R) \rightarrow N_{n}(R)$ by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto e_{2} a_{n-2, n} E_{1, n-1}-e_{2} a_{n-1, n} E_{1, n-2} .
$$

Then it is not difficult to check that $\chi_{e_{1}}^{c}$ and $\chi_{e_{2}}^{r}$ both are SZ-derivations of $N_{n}(R)$, called extremal SZ-derivations of $N_{n}(R)$.
(5) Extensible SZ-derivations

Suppose $n \geq 4$ and $f \in R$, define $\lambda_{f}: N_{n}(R) \rightarrow N_{n}(R)$ by

$$
\sum_{1 \leq i<j \leq n} a_{i j} E_{i j} \mapsto \sum_{k=1}^{n-1} f(k-1)\left(\sum_{j-i=k} a_{i j} E_{i j}\right) .
$$

Then it is easy to check that λ_{f} is an SZ-derivation of $N_{n}(R)$, called an extensible SZ-derivation of $N_{n}(R)$.

With above standard SZ-derivations in hands, we can now describe all SZ-derivations, Sderivations and PZ-derivations of $N_{n}(R)$.

Theorem 2.1ϕ is an SZ-derivation of $N_{n}(R)$ if and only if

1) $\phi=\operatorname{Dig}_{H}$, when $n=2$;
2) $\phi=\operatorname{Dig}_{H}+\eta_{Y}$, when $n=3$;
3) $\phi=\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}+\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y}$, when $n \geq 4$,
where $\operatorname{ad}_{X}, \operatorname{Dig}_{H}, \chi_{e_{1}}^{c}, \chi_{e_{2}}^{r}, \lambda_{f}$, and η_{Y} are the inner derivation, diagonal derivation, extremal SZ-derivation, extensible SZ-derivation and central SZ-derivation of $N_{n}(R)$, respectively.

Theorem 2.2ϕ is a PZ-derivation of $N_{n}(R)$ if and only if

1) $\phi=\operatorname{Dig}_{H}$, when $n=2$;
2) $\phi=\operatorname{Dig}_{H}+\eta_{Y}$, when $n=3$;
3) $\phi=\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y}$, when $n \geq 4$,
where $\operatorname{ad}_{X}, \operatorname{Dig}_{H}, \lambda_{f}, \eta_{Y}$ are the inner derivation, diagonal derivation, extensible SZ-derivation and central SZ-derivation of $N_{n}(R)$, respectively.

Theorem 2.3ϕ is an S-derivation of $N_{n}(R)$ if and only if

1) When $n=2, \phi=\operatorname{Dig}_{H}$;
2) When $n=3, \phi=\operatorname{Dig}_{H}+\eta_{Y}$;
3) When $n \geq 4$, $\phi=\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}+\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\eta_{Y}$,
where $\operatorname{ad}_{X}, \operatorname{Dig}_{H}, \chi_{e_{1}}^{c}, \chi_{e_{2}}^{r}$, and η_{Y} are the inner derivation, diagonal derivation, extremal SZderivation and central SZ-derivation of $N_{n}(R)$, respectively, $Y \in \sum_{i=1}^{n-1} R E_{i, i+1}$ and $2 e_{1}=2 e_{2}=$ 0 .

Corollary 2.4ϕ is a derivation of $N_{n}(R)$ if and only if $\phi=\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\eta_{Y}$, where ad_{X}, Dig_{H} and η_{Y} are the inner derivation, diagonal derivation and central SZ-derivation of $N_{n}(R)$, respectively, and $Y \in \sum_{i=1}^{n-1} R E_{i, i+1}$.

3. Lemmas and proof of the main theorem

For $X, Y \in N_{n}(R)$ we denote $X Y+Y X$ by $X \circ Y$ for brevity. Let ϕ be a given SZ-derivation of $N_{n}(R)$, it is now necessary to study the invariant ideals of $N_{n}(R)$ under ϕ.

Lemma 3.1 Let ϕ be an SZ-derivation of $N_{n}(R)$. If X, Y and $X+Y$ all are square-zero elements in $N_{n}(R)$, then $\phi(X) \circ Y+X \circ \phi(Y)=0$.

Proof An easy verification leads to the result.
Let S be a subalgebra of $N_{n}(R)$, and denote by $C(S)$ the centralizer of S in $N_{n}(R)$:

$$
C(S)=\left\{A \in N_{n}(R) \mid A X=X A=0, \forall X \in S\right\}
$$

Lemma 3.2 Let S be a subalgebra of $N_{n}(R), \phi \in \operatorname{Dsz} N_{n}(R)$. If S and $C(S)$ both are spanned by standard matrix units and $\phi(S) \subseteq S$, then $\phi(C(S)) \subseteq C(S)$.

Proof If $\phi(C(S)) \nsubseteq C(S)$, choose a square-zero element $X \in C(S)$ such that $\phi(X) \notin C(S)$ (recall that $C(S)$ is spanned by square-zero elements). Then there exists a matrix unit $E_{i j} \in S$ with $i<j$ such that $\phi(X) E_{i j} \neq 0$ or there exists a matrix unit $E_{k l} \in S$ with $k<l$ such that $E_{k l} \phi(X) \neq 0$. When the first case happens, it is shown that

$$
\phi(X) \circ E_{i j} \neq 0
$$

Otherwise, if $\phi(X) \circ E_{i j}=0$, assume that $\phi(X)=\sum_{1 \leq p, q \leq n} x_{p q} E_{p q} \in N_{n}(R)$, where $x_{p q}=0$ when $p \geq q$. Then by

$$
E_{i j} \phi(X)=-\phi(X) E_{i j} \neq 0
$$

we obtain

$$
x_{j j} E_{i j}=-x_{i i} E_{i j} \neq 0
$$

absurd. So

$$
\phi(X) \circ E_{i j} \neq 0
$$

By assumption we know

$$
\phi\left(E_{i j}\right) \circ X=0 .
$$

Thus we have

$$
\phi(X) \circ E_{i j}+\phi\left(E_{i j}\right) \circ X \neq 0 .
$$

This is in contradiction with Lemma 3.1 (note that $E_{i j}, X$ and $X+E_{i j}$ all are square zero). Similarly, the later case does not happen. So $\phi(C(S)) \subseteq C(S)$.

The center of $N_{n}(R)$, denoted by M_{n}, is $R E_{1 n}$. The center of $N_{n}(R) / M_{n}$ obviously is M_{n-1} / M_{n}, where $M_{n-1}=\sum_{j-i \geq n-2} R E_{i j}$. Go on considering the center of $N_{n}(R) / M_{n-1}$, it is M_{n-2} / M_{n-1}, where $M_{n-2}=\sum_{j-i \geq n-3} R E_{i j}$. Generally, for $3 \leq k \leq n$, the center of $N_{n}(R) / M_{k}$ is M_{k-1} / M_{k}, where $M_{k-1}=\sum_{j-i \geq k-2} R E_{i j}$. Thus we get the upper central series of $N_{n}(R)$:

$$
0 \subset M_{n}=R E_{1 n} \subset M_{n-1} \subset \cdots M_{k} \subset \cdots \subset M_{3} \subset M_{2}=N_{n}(R), \text { where } M_{k}=\sum_{j-i \geq k-1} R E_{i j}
$$

Lemma 3.3 Let ϕ be an SZ-derivation of $N_{n}(R)$. Then $\phi\left(M_{n}\right) \subseteq M_{n}$.
Proof M_{n}, as the centralizer of $N_{n}(R)$ in $N_{n}(R)$, naturally is invariant under ϕ (by Lemma 3.2).

Set $I_{k}=\sum_{i=k}^{n} R E_{1 i}, k=2,3, \ldots, n$ and set $\alpha_{k}=\sum_{i=k+1}^{n} R E_{k i}, k=1,3, \ldots, n-1$. Obviously, α_{1} exactly is I_{2}.

Lemma 3.4 If ϕ is an SZ-derivation of $N_{n}(R)$, then $\phi\left(E_{1 j}\right) \in \alpha_{1}+R E_{2 n}+R E_{j+1, n}, j=$ $2,3, \ldots, n-1$.

Proof Fix $j(2 \leq j \leq n-1)$. If $1<i<n$ and $i \neq j$, then $E_{1 j}, E_{i, i+1}$ and $E_{1 j}+E_{i, i+1}$ all are
square-zero matrices. By Lemma 3.1, we have

$$
\begin{equation*}
\phi\left(E_{1 j}\right) \circ E_{i, i+1}+E_{1 j} \circ \phi\left(E_{i, i+1}\right)=0 \tag{3.1}
\end{equation*}
$$

By multiplying $E_{1 i}$ from the left side to the above equation we have that

$$
E_{1 i} \phi\left(E_{1 j}\right) E_{i, i+1}+E_{1, i+1} \phi\left(E_{1 j}\right)=0
$$

It is obvious that $E_{1 i} \phi\left(E_{1 j}\right) E_{i, i+1}=0$. So $E_{1, i+1} \phi\left(E_{1 j}\right)=0$. This shows that the $(i+1)$-th row of $\phi\left(E_{1 j}\right)$ is zero for every i satisfying $1<i<n$ and $i \neq j$. So $\phi\left(E_{1 j}\right) \in \alpha_{1}+\alpha_{2}+\alpha_{j+1}$. We have known, for any fixed i satisfying $1<i<n, i \neq j$, that $E_{i, i+1} \phi\left(E_{1 j}\right)=0$. So by Equation 3.1 we get

$$
\phi\left(E_{1 j}\right) E_{i, i+1}+E_{1 j} \phi\left(E_{i, i+1}\right)=0
$$

This shows that all positions of the i-th column of $\phi\left(E_{1 j}\right)$ are zero, except for the $(1, i)$-position. Then we see that

$$
\phi\left(E_{1 j}\right) \in \alpha_{1}+R E_{2 j}+R E_{2 n}+R E_{j+1, n}
$$

It follows from $\left(E_{12}+E_{1 j}\right)^{2}=0$ that

$$
E_{1 j} \phi\left(E_{12}\right)+E_{12} \phi\left(E_{1 j}\right)=0
$$

which follows that the $(2, j)$-entry of $\phi\left(E_{1 j}\right)$ is zero. So $\phi\left(E_{1 j}\right) \in \alpha_{1}+R E_{2 n}+R E_{j+1, n}$.

Proof of Theorem 2.1

Case $1 n=2$.
When $n=2$, there is nothing to prove.
Case $2 n=3$.
Suppose that

$$
\phi\left(E_{12}\right) \equiv t E_{12}+s E_{23}\left(\bmod R E_{13}\right) ; \quad \phi\left(E_{23}\right) \equiv u E_{23}+v E_{12}\left(\bmod R E_{13}\right)
$$

It follows from $\left(E_{12}\right)^{2}=0$ that $\phi\left(E_{12}\right) E_{12}+E_{12} \phi\left(E_{12}\right)=0$, which shows that $s=0$. Similarly, $v=0$. Let $H=\operatorname{diag}\{0, t, t+u\} \in D_{3}(R)$. Then

$$
\left(\operatorname{Dig}_{H}+\phi\right)\left(E_{12}\right)=x E_{13} ; \quad\left(\operatorname{Dig}_{H}+\phi\right)\left(E_{23}\right)=y E_{13}
$$

for certain $x, y \in R$. Assume that $\left(\operatorname{Dig}_{H}+\phi\right)\left(E_{13}\right)=z E_{13}$. Let $Y=-x E_{12}-y E_{23}-z E_{13}$. Then $\eta_{Y}+\operatorname{Dig}_{H}+\phi$ sends E_{12}, E_{23} and E_{13} to zero, respectively. So $\eta_{Y}+\operatorname{Dig}_{H}+\phi=0$. By this one can get the desired expression of ϕ.

Case $3 n \geq 4$
We give the proof of this case by steps.
Step 1. There exists an extremal SZ-derivation $\chi_{e_{1}}^{c}$ such that $\left(\chi_{e_{1}}^{c}+\phi\right)\left(E_{12}\right) \in \alpha_{1}$.
By Lemma 3.4, we may assume that $\phi\left(E_{12}\right) \equiv x E_{2 n}+y E_{3 n}\left(\bmod \alpha_{1}\right)$. It follows from $\left(E_{12}\right)^{2}=0$ that $\phi\left(E_{12}\right) E_{12}+E_{12} \phi\left(E_{12}\right)=0$. It follows that $x=0$. Choose $e_{1}=y$, then one may verify that $\left(\chi_{e_{1}}^{c}+\phi\right)\left(E_{12}\right) \in \alpha_{1}$, as desired. Now we replace $\chi_{e_{1}}^{c}+\phi$ with ϕ.

Step 2. $\phi\left(E_{1 j}\right) \in I_{j}$ for $j=2,3, \ldots, n$.
The case when $j=2$ has been proved in Step 1 . The case when $j=n$ is obvious by Lemma 3.3. Now we consider the case when $3 \leq j \leq n-1$. Since $E_{12}, E_{1 j}$ and $E_{12}+E_{1 j}$ all are square zero, we see, by Lemma 3.1, that $E_{12} \phi\left(E_{1 j}\right)+E_{1 j} \phi\left(E_{12}\right)=0$. This shows that the $(2, n)$-entry of $\phi\left(E_{1 j}\right)$ is zero. So

$$
\phi\left(E_{1 j}\right) \in R E_{j+1, n}+\alpha_{1}, \quad j=3, \ldots, n-1
$$

Now by square zero of $E_{1 j}+E_{1, j+1}$, we have that $E_{1 j} \phi\left(E_{1, j+1}\right)+E_{1, j+1} \phi\left(E_{1 j}\right)=0$, which implies that the $(j+1, n)$-entry of $\phi\left(E_{1 j}\right)$ is zero. So $\phi\left(E_{1 j}\right) \in \alpha_{1}$ for $j=3,4, \ldots, n-1$. For any fixed k satisfying $2 \leq k \leq j-1$, it follows from $\left(E_{1 j}+E_{k j}\right)^{2}=0$ that

$$
E_{1 j} \phi\left(E_{k j}\right)+\phi\left(E_{1 j}\right) E_{k j}+E_{k j} \phi\left(E_{1 j}\right)=0
$$

By considering the $(1, j)$-entry of the left side we see that the $(1, k)$-entry of $\phi\left(E_{1 j}\right)$ is zero. So $\phi\left(E_{1 j}\right) \in I_{j}$ for all j satisfying $3 \leq j \leq n-1$. Combining this with $\phi\left(E_{12}\right) \in I_{2}$ and $\phi\left(E_{1 n}\right) \in I_{n}$, we finally get $\phi\left(E_{1 j}\right) \in I_{j}$ for $j=2,3, \ldots, n$.

Step 3. Let $K_{i}=\sum_{k=1}^{i} R E_{k n}, i=1,2, \ldots, n-1$. There exists an extremal SZ-derivation $\chi_{e_{2}}^{r}$ such that $\left(\chi_{e_{2}}^{r}+\phi\right)\left(E_{\text {in }}\right) \in K_{i}, i=1,2, \ldots, n-1$.

The proof being analogous to that of Steps 1 and 2, is omitted. Replace $\chi_{e_{2}}^{r}+\phi$ with ϕ.
Step 4. There exists $X_{1} \in N_{n}(R)$ such that $\left(\operatorname{ad}_{X_{1}}+\phi\right)\left(E_{1 j}\right) \in R E_{1 j}+R E_{1 n}, j=2,3, \ldots, n$.
By Step 2 we may assume that

$$
\phi\left(E_{1 j}\right)=\sum_{k=j}^{n} c_{j k} E_{1, k}, \quad j=2,3, \ldots, n
$$

Let

$$
X_{1}=\sum_{l=2}^{n-1} \sum_{k=l+1}^{n} c_{l k} E_{l k}
$$

Then

$$
\left(\operatorname{ad}_{X_{1}}+\phi\right)\left(E_{1 j}\right) \equiv c_{j j} E_{1 j}\left(\bmod R E_{1 n}\right), \quad j=2,3, \ldots, n
$$

As required. Now replace $\operatorname{ad}_{X_{1}}+\phi$ again with ϕ.
Step 5. There exists $X_{2} \in N_{n}(R)$ such that $\left(\operatorname{ad}_{X_{2}}+\phi\right)\left(E_{i j}\right) \in R E_{i j}+R E_{1 n}$ for all $1 \leq i<j \leq n$.
Firstly, we prove that $\phi\left(\alpha_{i}\right) \subseteq \alpha_{i}+\alpha_{1}$ for $i=1,2, \ldots, n-1$. By Step 4 , we have known that $\phi\left(\alpha_{1}\right) \subseteq \alpha_{1}$. When $2 \leq i \leq n-1$, for any $x \in \alpha_{i}$, suppose that $\phi(x)=\sum_{1 \leq k<l \leq n} x_{k l} E_{k l}$. When $p \neq 1$ and $p \neq i$, by square zero of $E_{1 p}+x$, we have

$$
\phi\left(E_{1 p}\right) \circ x+\phi(x) \circ E_{1 p}=0 .
$$

Obviously, $\phi(x) E_{1 p}=x \phi\left(E_{1 p}\right)=\phi\left(E_{1 p}\right) x=0$. So $E_{1 p} \phi(x)=0$. This shows that the p-th row of $\phi(x)$ is zero, which implies that $\phi(x) \in \alpha_{i}+\alpha_{1}$. Furthermore,

$$
\phi\left(\alpha_{i}\right) \subseteq \alpha_{i}+\alpha_{1}, \quad i=1,2, \ldots, n-1
$$

Combining this with Step 3, we know that

$$
\phi\left(E_{i n}\right) \in R E_{i n}+R E_{1 n}, \quad i=1,2, \ldots, n-1
$$

Let $\beta_{j}=\sum_{i=1}^{j-1} R E_{i j}, j=2,3, \ldots, n$. Obviously, $\beta_{n}=K_{n-1}$. Next we intend to prove that

$$
\phi\left(\beta_{j}\right) \subseteq \beta_{j}+\beta_{n}, \quad j=2,3, \ldots, n
$$

When $j=n$ there is nothing to prove. For $2 \leq j \leq n-1$, let $y \in \beta_{j}$, and suppose that $\phi(y)=\sum_{1 \leq k<l \leq n} y_{k l} E_{k l}$. When $q \neq n$ and $q \neq j$, by square zero of $E_{q n}+y$, we have

$$
\phi\left(E_{q n}\right) \circ y+\phi(y) \circ E_{q n}=0 .
$$

This shows that the q-th column of $\phi(y)$ is zero (recall that $\phi\left(E_{i n}\right) \in R E_{i n}+R E_{1 n}, i=$ $1,2, \ldots, n-1)$, which implies that $\phi(y) \in \beta_{j}+\beta_{n}$. Furthermore,

$$
\phi\left(\beta_{j}\right) \subseteq \beta_{j}+\beta_{n}, \quad j=2,3, \ldots, n
$$

Since $E_{i j} \in \alpha_{i} \cap \beta_{j}$, we see that

$$
\phi\left(E_{i j}\right) \in R E_{i j}+R E_{1 j}+R E_{i n}+R E_{1 n}, \text { for all pair } i, j \text { satisfying } 1 \leq i \leq j \leq n
$$

Now assume that

$$
\phi\left(E_{i, i+1}\right) \equiv s_{i, i+1} E_{i, i+1}+s_{1, i+1} E_{1, i+1}+s_{i n} E_{i n}\left(\bmod R E_{1 n}\right), \quad i=2,3, \ldots, n-2
$$

Let

$$
X_{2}=\sum_{l=2}^{n-2} s_{l n} E_{l+1, n}-\sum_{k=2}^{n-2} s_{1, k+1} E_{1 k}
$$

Then

$$
\left(\operatorname{ad}_{X_{2}}+\phi\right)\left(E_{i, i+1}\right) \equiv s_{i, i+1} E_{i, i+1}\left(\bmod R E_{1 n}\right), \quad i=2,3, \ldots, n-2
$$

Simultaneously,

$$
\begin{gathered}
\left(\operatorname{ad}_{X_{2}}+\phi\right)\left(E_{1 j}\right) \in R E_{1 j}+R E_{1 n}, \quad j=2,3, \ldots, n \\
\left(\operatorname{ad}_{X_{2}}+\phi\right)\left(E_{i n}\right) \in R E_{i n}+R E_{1 n}, \quad i=1,2, \ldots, n-1
\end{gathered}
$$

Replace $\operatorname{ad}_{X_{2}}+\phi$ again with ϕ. Now consider $\phi\left(E_{i j}\right)$ for any pair i, j satisfying $2 \leq i \leq$ $n-3, i+2 \leq j \leq n-1$. By square zero of $E_{i, i+1}-E_{i j}+E_{i+1, n}+E_{j n}$ we know that

$$
\left(E_{i, i+1}-E_{i j}+E_{i+1, n}+E_{j n}\right) \circ \phi\left(E_{i, i+1}-E_{i, j}+E_{i+1, n}+E_{j n}\right)=0
$$

By this we see that the $(1, j)$-entry of $\phi\left(E_{i j}\right)$ is zero. Similarly, by square zero of $E_{i j}-E_{j-1, j}+$ $E_{1 i}+E_{1, j-1}$ we know that the (i, n)-entry of $\phi\left(E_{i j}\right)$ is zero. Thus we have

$$
\phi\left(E_{i j}\right) \in R E_{i j}+R E_{1 n}
$$

for all pair i, j satisfying $2 \leq i \leq n-3$ and $i+2 \leq j \leq n-1$. Combining this with those we have obtained, we finally get $\phi\left(E_{k l}\right) \in R E_{k l}+R E_{1 n}$ for all k, l satisfying $1 \leq k<l \leq n$.

Step 6. There exists $H \in D_{n}(R), t \in R, Y \in N_{n}(R)$ such that $\eta_{Y}+\lambda_{t}+\operatorname{Dig}_{H}+\phi=0$.

By Step 5, we may assume that

$$
\phi\left(E_{i, i+1}\right) \equiv s_{i, i+1} E_{i, i+1}\left(\bmod R E_{1 n}\right), \quad i=1,2, \ldots, n-1
$$

Let

$$
H=\operatorname{diag}\left\{1, s_{12}, \sum_{i=1}^{2} s_{i, i+1}, \ldots, \sum_{i=1}^{n-1} s_{i, i+1}\right\}
$$

Then we see that $\operatorname{Dig}_{H}+\phi$ sends each one of $\left\{E_{12}, E_{23}, \ldots, E_{n-1, n}\right\}$ to zero. Now we may assume that

$$
\left(\operatorname{Dig}_{H}+\phi\right)\left(E_{i j}\right) \equiv t_{i j} E_{i j}\left(\bmod R E_{1 n}\right)
$$

for all i, j satisfying $1 \leq i<j \leq n$, where $t_{i, i+1}=0$ for $i=1,2, \ldots, n-1$. Now by square zero of $E_{i, i+2}+E_{i+2, i+3}+E_{i, i+1}-E_{i+1, i+3}$, we know that

$$
\left(E_{i, i+2}+E_{i+2, i+3}+E_{i, i+1}-E_{i+1, i+3}\right) \circ \phi\left(E_{i, i+2}+E_{i+2, i+3}+E_{i, i+1}-E_{i+1, i+3}\right)=0 .
$$

This shows that $t_{i, i+2}=t_{i+1, i+3}$ for $i=1,2, \ldots, n-3$. Denote t_{13} by t. Similarly, by square zero of $E_{i, i+3}+E_{i, i+1}+E_{i+3, i+4}-E_{i+1, i+4}$, we have that

$$
\left(E_{i, i+3}+E_{i, i+1}+E_{i+3, i+4}-E_{i+1, i+4}\right) \circ \phi\left(E_{i, i+3}+E_{i, i+1}+E_{i+3, i+4}-E_{i+1, i+4}\right)=0,
$$

which yields that $t_{i, i+3}=t_{i+1, i+4}$ for $i=1,2, \ldots, n-4$. Then by

$$
\left(E_{i, i+3}+E_{i+3, i+4}+E_{i, i+2}-E_{i+2, i+4}\right) \circ \phi\left(E_{i, i+3}+E_{i+3, i+4}+E_{i, i+2}-E_{i+2, i+4}\right)=0,
$$

we have that

$$
t_{i, i+3}=2 t, \quad i=1,2, \ldots, n-3
$$

By similar discussions, we further obtain that

$$
\begin{gathered}
t_{i, i+4}=3 t, \quad i=1,2, \ldots, n-4 ; \\
t_{i, i+5}=4 t, \quad i=1,2, \ldots, n-5 ; \\
\ldots \ldots \ldots \\
t_{1, n-1}=t_{2 n}=(n-3) t .
\end{gathered}
$$

Using $t \in R$, we construct the extensible SZ-derivation λ_{-t}. Then we have that

$$
\left(\lambda_{-t}+\operatorname{Dig}_{H}+\phi\right)\left(E_{i j}\right) \in R E_{1 n}, \text { for all } i, j \text { satisfying } 1 \leq i<j \leq n
$$

Assume that

$$
\left(\lambda_{-t}+\operatorname{Dig}_{H}+\phi\right)\left(E_{i j}\right)=y_{i j} E_{1 n} \text { for all } i, j \text { satisfying } 1 \leq i<j \leq n
$$

Let $Y=-\left(\sum_{1 \leq i<j \leq n} y_{i j} E_{i j}\right)$. Then we see that $\eta_{Y}+\lambda_{-t}+\operatorname{Dig}_{H}+\phi$ sends all $E_{i j}$ to zero. So

$$
\eta_{Y}+\lambda_{-t}+\operatorname{Dig}_{H}+\phi=0
$$

Now we have that

$$
\eta_{Y}+\lambda_{-t}+\operatorname{Dig}_{H}+\operatorname{ad}_{X_{2}}+\operatorname{ad}_{X_{1}}+\chi_{e_{2}}^{r}+\chi_{e_{1}}^{c}+\phi=0
$$

By this we can easily get the desired expression of ϕ.
Proof of Theorem 2.2 Firstly, one can easily see that $\operatorname{Dpz} N_{n}(R)$ forms an additive subgroup of $\operatorname{Dsz} N_{n}(R)$. It is trivial to verify that $\operatorname{ad}_{X}, \operatorname{Dig}_{H}, \lambda_{f}$ and η_{Y} all belong to $\operatorname{Dpz} N_{n}(R)$, so the sufficient condition obviously holds. Now consider another direction. When $n=2$ or $n=3$, there is nothing to say.

When $n \geq 4$, if $\phi \in \operatorname{Dpz} N_{n}(R)$, naturally $\phi \in \operatorname{Dsz} N_{n}(R)$. Then by Theorem 2.1, ϕ takes the form

$$
\phi=\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}+\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y}
$$

Since

$$
\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y} \in \operatorname{Dpz} N_{n}(R)
$$

we know that

$$
\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r} \in \operatorname{Dpz} N_{n}(R)
$$

To achieve the aim, it suffices to show that $e_{1}=e_{2}=0$. By $E_{23} E_{12}=0$, we have that

$$
\left[\left(\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}\right)\left(E_{23}\right)\right] \cdot E_{12}+E_{23} \cdot\left[\left(\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}\right)\left(E_{12}\right)\right]=-e_{1} E_{2, n}=0
$$

which leads to $e_{1}=0$. Then $\chi_{e_{2}}^{r} \in \operatorname{Dpz} N_{n}(R)$. Similarly, by $E_{n-1, n} E_{n-2, n-1}=0$, we have that

$$
\left[\chi_{e_{2}}^{r}\left(E_{n-1, n}\right)\right] \cdot E_{n-2, n-1}+E_{n-1, n} \cdot \chi_{e_{2}}^{r}\left(E_{n-2, n-1}\right)=-e_{2} E_{1, n-1}=0
$$

which leads to $e_{2}=0$. So $\phi=\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y}$, as desired.
Proof of Theorem 2.3 We only prove the case when $n \geq 4$. Firstly, one can easily see that Ds $N_{n}(R)$ forms an additive subgroup of $\operatorname{Dsz} N_{n}(R) . \operatorname{ad}_{X}$ and Dig_{H}, being derivations of $N_{n}(R)$, naturally are S-derivations of $N_{n}(R)$. It is easy to verify that $\eta_{Y} \in \operatorname{Ds} N_{n}(R)$ if $Y \in M_{3}$. It is not difficult to verify that $\chi_{e_{1}}^{c} \in \operatorname{Ds} N_{n}(R)$ if $2 e_{1}=0$ and $\chi_{e_{2}}^{r} \in \operatorname{Ds} N_{n}(R)$ if $2 e_{2}=0$. So the sufficient condition holds. Now consider the contrary direction. If $\phi \in \operatorname{Ds} N_{n}(R)$, naturally $\phi \in \operatorname{Dsz} N_{n}(R)$. Then by Theorem 2.1, ϕ takes the form

$$
\phi=\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}+\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\lambda_{f}+\eta_{Y}
$$

Since

$$
\operatorname{ad}_{X}+\operatorname{Dig}_{H} \in \operatorname{Ds} N_{n}(R)
$$

we know that $\chi_{e_{1}}^{c}+\chi_{e_{2}}^{r}+\lambda_{f}+\eta_{Y}$ is an S-derivation of $N_{n}(R)$. We denote it by ϕ_{1}. By applying ϕ_{1} to $\left(E_{12}+E_{23}\right)^{2}=E_{13}$, we get

$$
\left(E_{12}+E_{23}\right) \circ \phi\left(E_{12}+E_{23}\right)=\phi\left(E_{13}\right),
$$

which yields

$$
-e_{1} E_{3 n}\left(E_{12}+E_{23}\right)-e_{1}\left(E_{12}+E_{23}\right) E_{3 n} \equiv f E_{13}+e_{1} E_{2 n}\left(\bmod R E_{1 n}\right)
$$

This leads to $2 e_{1}=f=0$. By a similar discussion, one can get $2 e_{2}=0$. Note that if $2 e_{1}=$ $2 e_{2}=0$, then $\chi_{e_{1}}^{c}$ and $\chi_{e_{2}}^{r}$ both are S-derivations of $N_{n}(R)$. Then we further get $\eta_{Y} \in \operatorname{Ds} N_{n}(R)$.

Write $Y=\sum_{1 \leq i<j \leq n} y_{i j} E_{i j} \in N_{n}(R)$. If $j-i \geq 2$, we can choose k such that $i<k<j$. Then by applying η_{Y} to $\left(E_{i k}+E_{k j}\right)^{2}=E_{i j}$, we have that

$$
\left(E_{i k}+E_{k j}\right) \circ \phi\left(E_{i k}+E_{k j}\right)=\phi\left(E_{i j}\right),
$$

which results in $y_{i j}=0$. So $Y \in \sum_{i=1}^{n-1} R E_{i, i+1}$, as desired. This completes the proof.
Proof of Corollary 2.4 If $Y \in \sum_{i=1}^{n-1} R E_{i, i+1}$, then $\eta_{Y} \in \operatorname{Der} N_{n}(R)$. So the sufficient condition holds. On the contrary, if ϕ is a derivation of $N_{n}(R)$, then $\phi \in \operatorname{Ds} N_{n}(R) \cap \operatorname{Dpz} N_{n}(R)$. Then by using Theorems 2.2 and 2.3 , one easily obtains that $\phi=\operatorname{ad}_{X}+\operatorname{Dig}_{H}+\eta_{Y}$, where $Y \in \sum_{i=1}^{n-1} R E_{i, i+1}$.

References

[1] J ϕ NDRUP S. Automorphisms and derivations of upper triangular matrix rings [J]. Linear Algebra Appl., 1995, 221: 205-218.
[2] WANG Dengyin, YU Qiu. Derivations of the parabolic subalgebras of the general linear Lie algebra over a commutative ring [J]. Linear Algebra Appl., 2006, 418(2-3): 763-774.
[3] WANG Dengyin, OU Shikun, YU Qiu. Derivations of the intermediate Lie algebras between the Lie algebra of diagonal matrices and that of upper triangular matrices over a commutative ring [J]. Linear Multilinear Algebra, 2006, 54(5): 369-377.
[4] OU Shikun, WANG Dengyin, YAO Ruiping. Derivations of the Lie algebra of strictly upper triangular matrices over a commutative ring [J]. Linear Algebra Appl., 2007, 424(2-3): 378-383.
[5] BENKOVIČ D. Jordan derivations and antiderivations on triangular matrices [J]. Linear Algebra Appl., 2005, 397: 235-244.

