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analytic functions on D. Define the composition operator Cy: Cyf = fo ¢, for all f € X. In
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Keywords Composition operator; analytic function; B* space; K-Carleson measure; compact

K-Carleson measure.

Document code A
MR(2000) Subject Classification 47B33; 47B38; 30D45; 46E15
Chinese Library Classification 0177.2; O174.5

1. Introduction

First, we introduce some basic notations, which are used in this paper. The unit disk in
the finite complex plane C will be denoted by D. H(D) will denote the space of all analytic
functions on D, B(D) will denote the subset of H(D) consisting of these f € H(D) for which
|f(z)] < 1, dA will denote the Lebesgue measure on D, normalized so that A(D) = 1. For

l—-az
a—z

a € D, p,(z) = £=£ is the Mobius transformation of D to itself, g(z,a) = log | is the Green

1-az
function of D with singularity at a. Every analytic self-map ¢ of the unit disk D induces through
composition a linear composition operator Cyy: Cyf = f o ¢ from X to itself. Nt is the natural

numbers set. We say the function f € B*, if f € H(D) and

[flla = 1O+ [ Fllpe < oo,

where

£ llpe = sup(1 = [2[*)*]f'(2)].

z€D

We say the function f € B, if f € H(D) and

lim (1= |2*)*|f'(z)] = 0.

|z|—1
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The space B® is a Banach space under the norm || - ||o, B§ is the closed subset of B* When
a = 1, we get the Bloch space and the little Bloch space. In recent years a special class of
Mébius invariant function spaces, the so-called Qi (p, q) spaces, has attracted a lot of attention.
One important property of Qk (p, ¢) spaces is the inclusionship with «a-Bloch spaces B. It was
shown in [1] that Qk (p,q) C B, Furthermore, Qk (p,q) = B'%" if and only if

1
/ (1- r2)*2(1og1)rdr < 0.
0 T

We recall some facts about Qx (p, q) spaces. We let K : [0,00) — [0,00) be a right-continuous
and nondecreasing function. For 0 < p < 0o, —2 < ¢ < 00, we say that a function f analytic in

D belongs to the space Qg (p, ¢)1, if
11epa = 500 [ PGP~ 4K (0(2.0)) dA() < o0

Let |fll = [fO)] + || fllk,p,q- @i (p,q) is a Banach space under the norm | - || when p > 1. If
f € H(D) and

liml/D [ (2)P(1 = [2*)K (g(z, ) dA(2) =

la|—
then we say f € Qko(p,q). If p = q + 2, the space Qi (p,q) is a Mdbius-invariant, i.e., ||f o
Vallkpg = |fllkpq for all @ € D. Qg o(p,q) is a closed subset of Qx(p,q). Three special
cases are worth mentioning. When p = 2, ¢ = 0, Qx(p,q) = [12(]7[4]; When K(t) = t°,
Qx(p,q) = F(p,q,s), Qk.0(p.q) = Fo(p, q,5); When p =2, ¢ =0, K(t) = t*, Qx(p,q) = Qas
Qx,0(p,q) = Q[o?,]o- The space Qi (p, q) is trivial, if Q@ (p, q) contains only constant functions. If
the integral

1
/ (1- r2)qK(log 1)r dr
0 T

is divergent, then Qg (p,q) is trivial'). Tt is clear that the function-theoretic properties of
@k (p,q) depend on the structure of K. So, as in [7], from now on we take it for granted
that the above weight function K always satisfies the following conditions:
(a) K :[0,00) — [0,00) is nondecreasing;
b) K is two times differentiable on (0, 1);
¢) The above integral is convergent;
d) K(t)=K(1)>0,t>1;
e) K(2t)~ K (t);
f) fol @K (5)<2 < oo, where pg(s) = supy<,<; I;((t)) (0 < s < 0);
) T =subuc fp CHELE K g ) 4AG) < o
It is a well-known consequence of Littlewood’s subordination principle!®) that the formula

(
(
(
(
(
(

Cyf = f o ¢ defines a bounded linear operator on the classical Hardy and Bergman spaces.
That is, Cy : H? — HP? and Cy : AP — AP are bounded operators. There has been done
much research on the relations between the function theoretic properties of ¢ and the topological
properties of the operator Cy in different circumstances. Lou!® discussed the boundedness and

the compactness of the composition operators from B to B” when 0 < a < 00,0 < 3 < o0;
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Zhang'% discussed the boundedness and the compactness of the composition operators and the
weighted composition operators from BP to B? when p,q > 0; Zhang and Xiaol'! gave the
boundedness and the compactness of the composition operators from p-Bloch to v-Bloch on the
unit ball when p and v are the normal functions on [0, 1);

Recently, Wulan and Zhou!!! gave many results on Qg (p,q) spaces; Wulan and Wul*'2
discussed the boundedness and compactness of the composition operators from the Bloch space
to Q; Li and Wulan!*?! characterized compact composition operators from Q, into Qx., spaces;
Kotilainen™! discussed the boundedness and compactness of the composition operators from B*
to Qk(p,q); Yu and Liul'®! discussed the boundedness of the composition operators from B* to
Qxk(p,q) and composition operators from hyperbolic a-Bloch spaces into hyperbolic Qx type
spaces. We want to characterize here by means of K-Carleson measures and compact K-Carleson
measures the boundedness and compactness of Cy from B* spaces into Qx (p, ¢) and Qxk,o(p, q)
spaces. Throughout this paper, given a subarc I C 9D, the boundary of D, we denote by S(I)

the Carleson box based on [
SI)y={r¢eD:1—|I|<r<1,Cel}.

If |I] > 1, then we set S(I) = D. For 0 < p < 0o, we say that a positive measure g on D is a
p-Carleson measure if

S(I
Il = sup 50 < c,
where the supremum is taken over all subarcs I of dD. If the right hand fractions tend to zero as
|I| — 0, then g is said to be a compact p-Carleson measure. Note that the 1-Carleson measures
are the classical Carleson measures. In a similar way, a positive measure p on D is said to be a
K-Carleson measure if

[ulle = sup pr(S(I)) < oo,
ICoD
where the supremum is taken over all subarcs I of 0D, and

(s = [ K |_I||Z|)du(2)-

Also, y is said to be a compact K-Carleson measure if ||| x < oo and
Hm px(S(I)) = 0.
Clearly, if K(t) = t?, then p is a K-Carleson measure if and only if the measure (1 — |2]?)? du(z)
is a p-Carleson measure.
We use the notation a ~ b to denote the comparability of the quantities a and b; i.e., the
existence of two positive constants C; and C; satisfying Cia < b < Csa. For convenience, we
will always use the letter C' to denote a positive constant, which may change from one equation

to the next. The constants usually depend on a and other fixed parameters.
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2. Preliminaries

The following result (part (i) proved in [7]) characterizes K-Carleson measures in conformally

invariant terms.

Lemma 17617 Suppose K satisfies (f). Then

(i) p is a K-Carleson measure if and only if

SW/MFMWMWKw; (2.1)
a€D JD

(ii) p is a compact K-Carleson measure if and only if (2.1) holds and

lim [ K(1—|pa(2)[*) dpu(z) =0.
D

la]—1
Lemma 28] Let K satisfy (f), (g), 0 < p < oo and —1 < q < co. Suppose n is a positive
integer. Then [ € Qk(p,q) if and only if
[ @)P(L = 2137779 dA(2)

is a K-Carleson measure.

Remark When n = 1, the result holds for —2 < ¢ < oolll,

By Lemmas 1 and 2, we have the following

Lemma 3 Suppose p > 0, —2 < g < co. Then the following statements are equivalent:

(1) f€Qx(p.a);
(2) supaep [p If'(2)P(1 = |2*)TK (1 — [@a(2)[*) dA(2) < oo
(3) 1f'(2)|P(1 — |2|2)9dA(z) is a K-Carleson measure.

The following lemma is a generalization of the result in [5].

Lemma 4 Suppose p > 0, —2 < g < oo and p is a K-Carleson measure. Then the following

statements are equivalent:

(1) f € Qro(p,q);
(2) limg—1 [p [F(2)P(L = |2*)1K (1 = |pa(2)[*) dA(z) = 0;
(3) |f'(2)[P(1 —|2]?)?dA(z) is a compact K-Carleson measure.

Proof The (ii) of Lemma 1 implies that the equivalence of (2) and (3). (1) = (2) follows from

the following inequalities
[ @Pa - RKQ - )P dAe) £ € [ 1FEPL - R)E g(z0) dA).
D D

To prove (2) = (1), we set A(a, 1) = {z € D : |pa(2)] < 1} and Dy =D - A(a, 1),
respectively. Since
1
9(z,0) <8(1 = lpa(2)]*); lpa(2)l 2 7,

we obtain that

[ repa - K o) dae)
D-A(a})
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< C/ [F'(2)P(1 = [2)TK (1 = [pa(2)]?) dA(2)
D-A(a,})
<C i F' )P = [2)TK (1 = [¢a(2)]?) dA(2). (2:2)

The Mobius-invariance of measure (1 — |z|?)~2 dA(z) implies that
| I EPa - P (e 0) dAc)
A(a,i)
< sup {|f ()P~ [ q+2}/ = 2) 2K (g(z, a)) dA(2)

zEA(a,%

< sw (7P R / [ (= ) 2K (2,0 44()

zEA(a,%

< sw (P01 q“}/ (1 —1%) 2K (log 1) dr

zEA(a,%

< C/D [F (2P = [2P)TK (1 = |pa(2)]?) dA(2).

/D [F' ()P (L= 21K (g(2,0)) dA(2) < C/D [F )P = 2K (1~ |pa(2)[?) dA(2).  (2:3)
We get the desired condition, which completes the proof of Lemma 4.
Lemma 5% Suppose 0 < o < 0o. Then there exist f,g € B, such that

! A 1 1
L) +19'(2)] > 1= |z)= z 11— |22

for all z € D.

Lemma 601415 Suppose 0 < p, a < 00, =2 < ¢ < 00, ¢ € B(D). Then the following statements
are equivalent:
(1) Cy: B* — Qk(p,q) is bounded;
(2) Cy: By — Qk(p,q) is bounded;
’ z P
(3) SWaep [p itz (1 - 2)1K (g(2,0)) dA(2) < oo

Lemma 7' Suppose 0 < a@ < 00, p > 1, =2 < q¢ < o0, ¢ € B(D). Then the following
statements are equivalent:

(1) Cy: B> — Qk(p,q) is compact;

(2) Cy: By — Qk(p,q) is compact;

(3) 6 € Qu(p,q) and

EEP vkt oAl
i [ G GG ) 4t
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3. Composition operators from the a-Bloch spaces into Qx(p,q) and

QK,O(I% q)

In this section we are ready to prove the following results.

Theorem 1 Suppose 0 < p, a < 00, =2 < ¢ < 00, ¢ € B(D). Then Cy : B* — Qx(p,q) is

bounded if and only if (1_%%(1 —|2/%)7dA(z) is a K-Carlesom measure.

Proof Necessity. Using Lemma 6, we have
¢' ()" 2
sup/ (1 — |2|9)?K(g(2,a)) dA(2) < co.
a€D D(1—|¢(Z)|2)”"‘( 7)ol 0)) dA(2)
By Lemma 1, it suffices to prove that
¢’ (2)[” 2 2
sup/—l—z TIK(1— |pa(2)]?) dA(z) < .
swp | e (L U (  eu(2)) dAG)

Since K is nondecreasing and (1 — t?) < 2log+, for 0 < t < 1, we have (1 — |pq(2)[?) <
2 log m = 2¢g(z,a), for z,a € D. Therefore,

¢’ (=) _[5]2)e _ 2)[2 5
sup [ (1= YK (1 = u(2)) 4A(2)

O PR (200 dA(
<sup [ T (1= ) K (20(.) 4A(2)
|P

()
= CEEE/D - lo(z)P)m

< 00.

(1= 127K (9(2,a)) dA(2)

Sufficiency. Assume that (1—‘\%1:((%(1 —|2/%)2dA(z) is a K-Carlesom measure. Then
¢’ (2) [P 2 2
sup | ———————(1 — [2|*)IK(1 — |p.(2)]7) dA(2) < .
sup [ A (1= P (1 = o)) 44 (2)
We obtain that for all f € B,
sup [ (o) ()7 (1= 12K (1= u (2)) 4A(2)

a€D

= sgg/D [ (@)D" ()P (1 = [2])7K (1 = |a(2)[?) dA(2)

<l sop [ AT PR o)) 44G)

< oo.
By Lemma 3, Csf € Qi (p,q). Thus Cy : B* — Qk(p,q) is bounded. The proof is completed.O

Theorem 2 Suppose 0 < p,a < 00, —2 < ¢ < 00, ¢ € B(D). Then the following statements
are equivalent:
(1) Cy:B§ — Qk.o(p,q) is bounded;
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(2) ¢ € Qko(p,q) and for all r € (0,1)

M — |2[*) zZ,a z) < 00
Sup/<z>>r A= o A K (9(z,0) dAG) <

a€D

Proof (1) = (2). Suppose Cy : Bf — Qx,0(p,q) is bounded. We get Cy : B — Qx(p,q) is
bounded. By Lemma 6, we get for all r € (0, 1),

Bk tas. ol dA(s
333/|¢<z>|>T (= o)y gz @) dAG)

) K ol a1 AL
SEZE/DW“"Z' VK (g(2, 0)) dA(2)
< Q.

Take f(z) =z € By. Since Cyp : By — Qx,0(p,¢) is bounded, Cyp f = ¢ € Qk,0(p, q).

(2) = (1). To prove that Cy : B — QK ,0(p,q) is bounded, by the closed graph theorem we
only need to show that for all f € B, then Cyf € Qk.0(p,q). For all € > 0, since f € B, there
exists 7 € (0,1), such that |f/(w)[P(1 — |w|?)P* < ¢, for all |w| > r. For z € {2 : |¢(2)| > r}, then
|f(6(2))|P(1 — |#(2)]?)P™ < . For the above r, by the condition, there exists C > 0, such that
for all a € D

/¢< > [(f o @) (2)[P(1 = |2*)T K (9(2, a)) dA(2)
= [ P IR T (0 - ) K o) A
‘¢(Z)‘>’I"

G

GO 1 k(e dAG
<esmp [ G K @) 446)
< Ce.

Also, ¢ € Qk 0(p,q) implies that

lim (fod) ()P(1 = [2[)7K (9(2,a)) dA(2)

lel=1 Jig(2)1<r

= lim "(Pp()NIP(1 — |p(z 2PO¢M

=t [ PR~ o G
il L o Koo a1 A

< o i [ Kt ) aAc)

sl K e
Wles i [ 0GP0 1PK (o(e.0) AC)

(1= 127K (9(2,a)) dA(2)

I /\

(1—r2)pa
0.

Combining all the above, we get

hm / I(f o) (2)|P(1—|2]*)1K(g(z,a)) dA(2)
= lim o /zpl—z2qK z.a dA(z
([t ] L ooy @ra K. a)aa)

|a]—1

=0.
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Therefore Cy f € Qk0(p,q), i-e., Cg : B — Qk,0(p,q) is bounded. The proof is completed. O

Theorem 3 Suppose 0 < a < 00, p > 1, =2 < ¢ < 00, ¢ € B(D). Then the following
statements are equivalent:

(1) Cy: B* — Qi o(p,q) is bounded;

(2) Cy:B* — QK o(p,q) is compact;

(3) lim 1 [ rrf e (1= [212)K (9=, @) dA(z) = 0:

(4) (1_‘@:((%(1 — |2]?)9dA(2) is a compact K-Carlesom measure;

(5) Cy:BY — Qk.o(p,q) is compact;

(6) ¢ € Qko(p,q) and

im su M —12]2)e sa 2) =
}ﬂ1aeg/¢(z)>r 1- |¢(Z)|2)pa(1 2[7)1K (g(2,a)) dA(z) = 0. (3.1)

Proof (2) = (1). This implication is obvious.
(1) = (3). Suppose (1) is satisfied. By Lemma 5, there exist fi, fo € B*, such that

/Z /Z 1 1
|f1(2)] + | f2(2)| > d— 2" 2 11— 2P)

for all z € D. Since Cy : B* — QK 0(p,q) is bounded, we get Cyf1 € Qr,0(p,q) and Cyfa €
Qr,0(p,q). Thus

| 9 ()P 20K (g(s,0)) dA(s
tim [ e (1 K (gl ) 44C)

=C tm / (1(f108) ()P + [(f20 ) (2)[")(1 = |2*)1K (9(z, ) dA(2)
al—1 D
p— O'

(3) = (4). Assume (3) holds. Then we have that

/ %(1 — 21K (1 = |pa(2)[*) dA(2)
D

1—|g(2)[*)p>
el e
SO/D A= ol L~ P K g(z,a) dAG),

—0 as |a| — 1.
By Lemma 1, (1*%%(1 —|2]%)2dA(z) is a compact K-Carlesom measure.

(4) = (1). (4) gives that

o [P e
i, [ G e O - ) ) =0 o

For all f € B, we have that
/D (CofY ()P = 2K~ [pa(=)?) dA(2)
)

p ¢’ (2)[P _4|2)4 _ 2)[2 5
<Cllt [ oD = K = leu() ) dAG),

— 0 as |a| — 1.
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By Lemma 4, Cs f € Qk,0(p,q), s0 Cy : B* — Qk.0(p,q) is bounded.
(4) = (2). Let {fn} C B%, ||folla < 1 and {fn} converge on compact subsets of D to 0

uniformly. Next, we will prove

ICsfnll = 0 as n — oo.

Firstly , f.(¢#(0)) — 0 as n — oo. Also, by (2.3) and (3.2), for all € > 0, there exists 6 : 0 < § < 1
such that if |a| > 4, then for all n € Nt

sup/ [fa(@()IPI¢ ()P (1 = |2[*) 7K (g(2, a)) dA(2)

la|>8

< Csup / PGPS (P = 2K (1~ [pa(2)?) dA(2)

la|>8

P oy M — |2]2)e _ 2)I2 Py
< ClAlE s /D T (1= K (L= oo (2)) dAC)

< fallee < e

Since {f!} converges on a compact subset rD = {z : |z| < r} of D to 0 uniformly, for 0 < r < 1,
there exists N > 0, such that if n > N, then |f} (¢(2))|P < ¢, for all z € rD. We then get

/D [ fa(@)IPle (2)[P(1 = |2*) 1K (1 — [pa(2)[*) dA(2)
< 6/ [0/ ()P (1 = [2])7K (1 = pa(2)[?) dA(2).
rD
Thus
sup / [fa(@(2)P10 ()P (1 = [2[*)TK (1 = |a(2)[*) dA(2)
la|<éJrD
<elldllo,,,, ¥re(0,1), n>N.
Since (4)=(1), we have f, 0 ¢ € Qk.0(p,q) C Qk(p,q). For all a, |a] <4, we have
/ |(fn 0 @) (2)IP(1 = |2[)TK (g(2,0)) dA(2) < C < <.

For 0 < ¢t < 1, set Li(a) = fD o (fn 0 O) (2)P(1 — |22)7K (¢(z,a)) dA(z). We can choose
t(a) € (0,1), such that

fate) = /M I o) G~ ) K g, a) AAC) <

Since I;(a) is a continuous function of a['®, there is a neighborhood U(a) of a, for all b € U(a),
such that

L ® = [ o) (P~ K ) AAC) <

Thus, using the compactness of {a : |a| < §}, there exist a; € D, i = 1,2,..., Ny, such that
{a:|a] <38} c UM, U(a;). We take tg = max;<;<n, t(a;), then for all a, |a| <4,

/ |(fn00) ()P(1 = |27 K (9(z,a) dA(2) <
D—toD
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Thus, using (3.3), we have

sup / LGP (2)P(L = 2K (g2, a)) dA(2)

la|<é

— sup| / LGP ()P (1 — [2P)IK (g(z, a)) dA(=)+
la|<8 JD—toD
/t U1 P (L = |2 (o2, ) dAC)

< sup / ((fa 0 8)' (2)P(1 — 229K (g(z, 0)) dA(2)+
la|<s JD—toD

sup / [Fa(@() P16 ()P (L — |2*) 1K (g(2, a)) dA(2)
la|<é Jto D
<@+l e

Combining all the above, we get that for all ¢ > 0, there exists N > 0, for n > N

sup / PGPS (2)P(1 = 2K (g2, a)) dA(2)
(2+ ||¢||p )5 < Ce.

Thus [|Cy full = | fn(P(0))] + ||C’¢fn||K7p7q — 0asn— oo, ie, Cy: B*— Qko(p,q) is compact.

(6)=-(1). Suppose (6) is satisfied. For all € > 0, there exists § : 0 < § < 1, such that if
0 <r <1, then for a € D

S LAG) L 2|?)1 z,a z

/¢<z)>r (1- |¢(z)|2)pa(1 12?)1K (9(z,a)) dA(z)
ve G z|?)4 z,a z
<a€g/|¢<z>|>r (1—|o(= )|2)pa(1 12[2)91K (g(2,a)) dA(2)

< E.

Therefore,

/¢( " I(fod) (2)P(1— |2[*)7K (g(z,a)) dA(2)

/ 7(1—le(2)f N LAC) . z|?)4 z,a z
_/¢(z)>7“|f @D =19)I) 1- |¢(2)|2)pa(1 |2|*)7K (9(2,a)) dA(2)

P g M — |2|%)¢ 2 a Py
ity [ AT~ K (e ) aA()

< Ce.

On the other hand,
/¢< o, [ o @N I =1l K gz, ) AA(2)
_ ] / NIP(1 — - 2 paM s 2 a ;
_/¢(Z)Sr|f (@)1 o)) (1= [4(2)[2)re (I —2[)K (g9(z,a)) dA(2)
m/¢( i< 18/ (2)P(1 — |22)7K (g(z, a)) dA(z)
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< e [ EPa - K 0) 44G)

—>O as la] — 1.

Combining all the above, we get

tim [ (o0 (P (1 =~ 2P K (o(z.0) dA(2)

= lim o) (2)|P(1 — |2]?)¢ z,a z
—éw( Lot e @ra =Py Rt ) ade)
=0.

Therefore Cy f € Qk0(p,q), i-e., Cy : B* = Qk,0(p, q) is bounded.

(2)=(5). It is easy.

(5)=(6). Since the identical mapping belongs to Bf, ¢ € Qk.o(p,q). Since Cy : By —
Qr,0(p,q) is compact, Cy : B — Qi (p, q) is compact. By Lemma 7, it is easy to see that (3.1)
holds, and the proof is completed.

Corollary 4[]

Let 0 < p < oo, and ¢ be an analytic selfmap of D. Then the following
statements are equivalent:

(1) Cy : B — Q, is bounded;

2) =eoreE ¢ (z) = (11— |z]?)P dA(z) is a bounded p-Carlesom measure.

[20]

Corollary 5 Let 0 < p < o0, and ¢ be an analytic self-map of D. Then the following

statements are equivalent:
(1) Cy : B — Qpo is bounded;
(2) Cy: B — Qpo is compact;
(3) limjg— [ it2rrg?(2,0) dA(2) =
(4) (EReRE |¢ z) (1 —|2|*)P dA(z) is a compact p-Carlesom measure.

Corollary 6[21] Let 0 < p,s < 00, =2 < q < 00, and ¢ be an analytic self-map of D. Then the
following statements are equivalent:

(1) C¢ : BO‘ — F(p,q,s) is bounded;

(2) (1 ) = (1 —12]?)97¢ dA(z) is a bounded s-Carlesom measure.

Corollary 7! Let 0 < s <00, p>1, =2 < ¢ < 00, and ¢ be an analytic self-map of D. Then
the following statements are equivalent:

(1) Cy: B* — Fy(p,q,s) is bounded;

(2) Cy: B> — Fy(p,q,s) is compact;

(3) i I i (1= 27" (2, ) dA () =

(4) (1 ) = (1 —]2]?)97¢ dA(z) is a compact s-Carlesom measure.
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