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Abstract This paper analyzes the problem of testing for parameters change in ARCH errors

models with deterministic trend based on residual cusum test. It is shown that the asymptotically

limiting distribution of the residual cusum test statistic is still the sup of a standard Brownian

bridge under null hypothesis. In order to check this, we carry out a Monte Carlo simulation

and examine the return of IBM data. The results from both simulation and real data analysis

support our claim. We also can explain this phenomenon from a theoretical viewpoint that the

variance in ARCH model in mainly determined by its parameters.
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1. Introduction

Testing for structural breaks is an often important step in an anlysis of a stationary time

series because a myriad of political and economic factors can cause the relationships among

economic variables to change over time. Since the early work of Chow[1] and Quant[2], numerous

studies have been undertaken with an upsurge of interest in various models with an unknown

change point. With respect to the problem of testing for structural breaks, recent contributions

include Krishnaiah and Miao[3], Bhattcharya[4], Andrews[5,6] as well as the monograph by Csorgo

and Horvath[7]. Issues about the distributional properties of the estimates, in particular those

of break date, have also been considered by Bai[8]. These test and inference issues have been

addressed in the context of multiple structural breaks by Bai and Perron[9,10].

Most of the work in statistic and econometric literatures are concentrated on the case where

the regressors and the errors are stationary. Debates related to structural breaks are also im-

portant in context of deterministic trend regression models following the work of Perron[11]. In

this paper, we draw our attention to test for ARCH errors models with deterministic trend.
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The ARCH processes have long been popular in financial time series analysis. The literature

on the subject is so vast that we have to refer the reader to the fairly comprehensive work of

Engle[12], Kokoszka[13] and Hall[14]. The main feature of ARCH processes is that the sequences

are uncorrelated, but the square of the sequences has a rich dependence structure.

Despite the importance of testing for structural changes, the problem of detecting parameter

changes has not received as much attention as the context of ARCH models as in the setting of

linear time series models. Kim, Cho and Lee[15] applied the cusum test to ARCH models taking

account of the fact that the variance is functional of ARCH parameters, and their change can be

detected by examining the existence of the variance change. Although this reasoning was correct,

it turned out that the cusum test generates spurious rejection of the null hypothesis and produces

low power. Hence, in order to overcome such drawbacks, Lee, Tokutsu and Meakawa[16] proposed

to use the cusum test based on the residuals, given as the squares of observations divided by

estimated conditional variances. Since the residual based test conventionally discards correlation

effects and enhances the performance of the test, their models do not contain the case of the

deterministic trend regressors taking place at a change point. The aim of this paper is to fill

this gap by analyzing the limiting distribution of the residual cusum test in models where the

deterministic trend regressors exhibit a slope change at some unknown date.

These and other issues will be addressed in this paper whose structure is as follows. Section 2

first describes the models considered, the assumptions made on the various components and how

the residual cusum test is obtained. Section 3 presents the empirical results for a Monte Carlo

simulation and the return of IBM data. Finally, Section 4 presents brief concluding remarks.

2. The models and residual cusum test

We consider the following model

yt = µ + βt + ηt,

ηt = htεt,

h2
t = a +

∞
∑

j=1

pjη
2
t−j , (1)

where a ≥ 0, pj ≥ 0,
∑∞

j=1 pj < ∞ and εt are independent identical distribution random variables

with zero mean and unit variance. We assume that ys, s < t are independent of εu, u ≥ t and

{(ηt, ht)} is strong mixing. The objective here is to test the following hypothesis,

(H0) θ = (µ, β, a, p1, p2, . . .) remains the same for the whole series,

(H1) Not (H0).

We state the assumptions which we need to prove asymptotic validity of our approach:

(A1) E|ηt|4+δ < ∞ and E|εt|4+δ < ∞, for some δ > 0,

(A2) There exists a sequence of positive integers with q → ∞, q/
√

T → 0, and
∑∞

j=q+1 pj →
0, as T → ∞,

(A3) {(ηt, ht)} is strong mixing.

Now we can construct the residual cusum test based on ε̂t. In analysis of h2
t and η2

t , we define
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that

ĥ2
t = â +

q
∑

j=1

p̂j η̂
2
t−j ,

η̂t = yt − µ̂ − β̂t,

ε̂t = η̂t/ĥt, (2)

where µ̂ − µ = Op(T
−1/2), â − a = Op(T

−1/2), p̂j − pj = Op(T
−1/2) and β̂ − β = Op(T

−3/2),

and have the following result.

Theorem 1 Assume that (A1)–(A3) hold. Let

R̂T =
1√
T τ̂

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε̂2
t −

k

T

T
∑

t=1

ε̂2
t

∣

∣

∣
,

where τ̂2 = 1
T

∑T
t=1 ε̂4

t − ( 1
T

∑T
t=1 ε̂2

t )
2. Then, under (H0),

R̂T
P−→ sup

0≤v≤1
|W 0(v)|, T→∞,

where v = k/T .

Remark Lee et al.[16] considered the regression models with GARCH(1,1) errors. However,

the proof in that paper should not all be copied directly to the deterministic trend regression

situation. In contract to [16], we have simplified the assumptions for (A2). In what follows

we will prove the asymptotical distribution of the residual cusum test is the sup of a standard

Brownian bridge.

Proof Split ε̂2
T into ε2

T +
∑7

i=1 Vi,t, where

ε̂2
t =

η̂2
t

ĥ2
t

=
(yt − µ̂ − β̂t)2

ĥ2
t

=
η2

t

ĥ2
t

+
1

ĥ2
t

[

2ηt(β̂ − β)t + 2ηt(µ̂ − µ) + 2(µ̂ − µ)(β̂ − β)t + (µ̂ − µ)2 + t2(β̂ − β)2
]

=
η2

t

ĥ2
t

+

7
∑

i=3

Vi,T ,

η2
t

ĥ2
t

=
η2

t

h2
t

+
(h2

t − ĥ2
t )ε

2
t

h2
t

+
(h2

t − ĥ2
t )

2ε2
t

h2
t ĥ

2
t

= ε2
t +

2
∑

i=1

Vi,T .

We want to claim that

Ri,T :=
1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

Vi,T − k

T

T
∑

t=1

Vi,T

∣

∣

∣
= op(1), i = 1, . . . , 7. (3)

First, we handle with V1,T . Note that

h2
t − ĥ2

t = (a − â) +
∞
∑

j=q+1

pjη
2
t−j +

q
∑

j=1

(pj − p̂j)η
2
t−j +

q
∑

j=1

p̂j(η
2
t−j − η̂2

t−j)
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=

4
∑

i=1

Wi,T .

Owing to (A3) and the invariance principle for strong mixing process (cf. Theorem 1.7 of

Peligrad[17]), we have

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t

h2
t

− k

T

T
∑

t=1

ε2
t

h2
t

∣

∣

∣
= Op(1),

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t η

2
t−j

h2
t

− k

T

T
∑

t=1

ε2
tη

2
t−j

h2
t

∣

∣

∣
= Op(1)

which implies

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t W1,T

h2
t

− k

T

T
∑

t=1

ε2
t W1,T

h2
t

∣

∣

∣

= |(a − â)| 1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t

h2
t

− k

T

T
∑

t=1

ε2
t

h2
t

∣

∣

∣

= Op(T
−1/2) · Op(1) = op(1), (4)

and

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t W2,T

h2
t

− k

T

T
∑

t=1

ε2
t W2,T

h2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣

∞
∑

j=q+1

pj

(

k
∑

t=1

ε2
t η

2
t−j

h2
t

− k

T

T
∑

t=1

ε2
t η

2
t−j

h2
t

)∣

∣

∣

= Op(1) · Op

(

∞
∑

j=q+1

pj

)

= op(1). (5)

In term of R1,T , W3,T and W4,T remain to be proved. Noting that pj − p̂j = Op(T
−1/2) and

(A2), we can get

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

W3,T ε2
t

h2
t

−
( k

T

)

T
∑

t=1

W3,T ε2
t

h2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

(pj − p̂j)
(

k
∑

t=1

ε2
t η

2
t−j

h2
t

− k

T

T
∑

t=1

ε2
t η

2
t−j

h2
t

)
∣

∣

∣

= Op

(

q
∑

j=1

(pj − p̂j)
)

= Op(q/
√

T ) = op(1). (6)

Now, we verify that

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

W4,T ε2
t

h2
t

− k

T

T
∑

t=1

W4,T ε2
t

h2
t

∣

∣

∣
= op(1). (7)

Note that

p̂j [η
2
t−j − η̂2

t−j ]
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= p̂j [2(µ̂ − µ)ηt−j + 2(β̂ − β)tηt−j − 2(µ̂ − µ)(β̂ − β)t − (µ̂ − µ)2 − (β̂ − β)2t2]

=

5
∑

i=1

Qi,T .

It suffices to prove that

1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

k
∑

t=1

Qi,T ε2
t

h2
t

− k

T

q
∑

j=1

T
∑

t=1

Qi,T ε2
t

h2
t

∣

∣

∣
= op(1), i = 1, . . . , 5. (8)

Since by (A3)

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ηt−jε
2
t

h2
t

− k

T

T
∑

t=1

ηt−jε
2
t

h2
t

∣

∣

∣
= Op(1),

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

tηt−jε
2
t

h2
t

− k

T

T
∑

t=1

tηt−jε
2
t

h2
t

∣

∣

∣
= Op(T ),

and β̂ − β = Op(T
−3/2) which implies

1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

k
∑

t=1

Q1,T ε2
t

h2
t

− k

T

q
∑

j=1

T
∑

t=1

Q1,T ε2
t

h2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

p̂j(µ̂ − µ)
(

k
∑

t=1

ηt−jε
2
t

h2
t

− k

T

T
∑

t=1

ηt−jε
2
t

h2
t

)
∣

∣

∣

= Op

(

T−1/2

q
∑

j=1

p̂j

)

= Op

(

T−1/2

q
∑

j=1

pj

)

+ op(1) = op(1), (9)

and

1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

k
∑

t=1

Q2,T ε2
t

h2
t

− k

T

q
∑

j=1

T
∑

t=1

Q2,T ε2
t

h2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣

q
∑

j=1

p̂j(β̂ − β)
(

k
∑

t=1

tηt−jε
2
t

h2
t

− k

T

T
∑

t=1

tηt−jε
2
t

h2
t

)∣

∣

∣

= Op

(

T−1/2

q
∑

j=1

p̂j

)

= Op

(

T−1/2

q
∑

j=1

pj

)

+ op(1) = op(1). (10)

The proofs of Q3,T , Q4,T , Q5,T are essentially the same as those of Q1,T and Q2,T , and are

omitted for brevity. Hence, we have proved that R1,T = op(1).

Now we deal with R2,T . Since h2
t − ĥ2

t =
∑4

i=1 Wi,T , ĥ2
t ≥ â and h2

t ≥ a, we want first to

prove W 2
2,T satisfies

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

W 2
2,T ε2

t

h2
t ĥ

2
t

− k

T

T
∑

t=1

W 2
2,T ε2

t

h2
t ĥ

2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣
(

T
∑

j=q+1

pj)
2
(

k
∑

t=1

ε2
t η

4
t−j

h2
t ĥ

2
t

− k

T

T
∑

t=1

ε2
t η

4
t−j

h2
t ĥ

2
t

)∣

∣

∣
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≤ 1√
T â

max
1≤k≤T

∣

∣

∣
(

T
∑

j=q+1

pj)
2 max

1≤t≤T
η2

t

(

k
∑

t=1

ε2
t η

2
t−j

h2
t

− k

T

T
∑

t=1

ε2
tη

2
t−j

h2
t

)∣

∣

∣
= op(1). (11)

It is obvious that

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

W 2
3,T ε2

t

h2
t ĥ

2
t

− k

T

T
∑

t=1

W 2
3,T ε2

t

h2
t ĥ

2
t

∣

∣

∣

=
1√
T

max
1≤k≤T

∣

∣

∣
(

q
∑

j=1

pj − p̂j)
2
(

k
∑

t=1

ε2
t η

4
t−j

h2
t ĥ

2
t

− k

T

T
∑

t=1

ε2
t η

4
t−j

h2
t ĥ

2
t

)
∣

∣

∣

≤ 1√
T â

max
1≤k≤T

∣

∣

∣
(

q
∑

j=1

pj − p̂j)
2 max

1≤t≤T
η2

t

(

k
∑

t=1

ε2
t η

2
t−j

h2
t

− k

T

T
∑

t=1

ε2
t η

2
t−j

h2
t

)
∣

∣

∣
= op(1). (12)

Since

1√
T

∣

∣

∣

k
∑

t=1

W 2
i,T ε2

t −
k

T

T
∑

t=1

W 2
i,T ε2

t

∣

∣

∣
≤ 2√

T

T
∑

t=1

W 2
i,T ε2

t ,

to show R2,T = op(1) is equivalent to showing

1√
T

T
∑

t=1

W 2
i,T ε2

t = op(1), i = 1, 4. (13)

Owing to a − â = Op(T
−1/2), it is easy to see that

1√
T

T
∑

t=1

W 2
1,T ε2

t =
1√
T

T
∑

t=1

(a − â)2ε2
t = op(1). (14)

We just only need to prove

1√
T

T
∑

t=1

W 2
4,tε

2
t =

1√
T

T
∑

t=1

(

q
∑

j=1

p̂j(η
2
t − η̂2

t )
)2

ε2
t = op(1). (15)

Because of p̂j(η
2
t−j − η̂2

t−j) =
∑5

i=1 Qi,T , it suffices to prove

1√
T

T
∑

t=1

(

q
∑

j=1

Qi,T

)2

ε2
t = op(1), i = 1, . . . , 5. (16)

To deal with Q1,T , we have

1√
T

T
∑

t=1

(

q
∑

j=1

Q1,T

)2

ε2
t =

1√
T

T
∑

t=1

(

q
∑

j=1

p̂jηt−j(µ̂ − µ)
)2

ε2
t

= Op

( 1√
T

T
∑

t=1

T−1(

q
∑

j=1

p̂j)
2
)

= Op

( 1√
T

(

q
∑

j=1

pj)
2
)

+ op(1) = op(1). (17)

By β − β̂ = OP (T−3/2), we can get the same result for Q2,T that

1√
T

T
∑

t=1

(

q
∑

j=1

Q2,T

)2

ε2
t =

1√
T

T
∑

t=1

(

q
∑

j=1

p̂jηt−j(β̂ − β)t
)2

ε2
t
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= Op

( 1√
T

T
∑

t=1

t2T−3(

q
∑

j=1

p̂j)
2
)

= Op

( 1√
T

(

q
∑

j=1

pj)
2
)

+ op(1) = op(1). (18)

The proofs of Q3,T , Q4,T , Q5,T are essentially the same as those of Q1,T and Q2,T , and are

omitted for brevity again. Hence, we have proved that R2,T = op(1). By the way, we also can

get the analogous results for W2,T and W3,T that

1

T

T
∑

t=1

W 2
i,T ε2

t = op(1), i = 2, 3. (19)

Together with (13) and (19), we can obtain

1

T

T
∑

t=1

(h2
t − ĥ2

t )
2ε2

t = op(1). (20)

Now it remains to show Ri,T = op(1), i = 3, . . . , 7. It is trivial to show that R6,T = op(1).

Also, one can verify the negligibility of Ri,T = op(1), i = 3, 4, 5, 7, in a similar fashion to prove

that of R1,T = op(1) and R2,T = op(1), respectively. Hence (3) is established, which directly

implies that

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε̂2
t −

k

T

T
∑

t=1

ε̂2
t

∣

∣

∣
=

1√
T

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t −

k

T

T
∑

t=1

ε2
t

∣

∣

∣
+ op(1). (21)

Since 1√
Tτ

∑k
t=1

(

ε2
t − Eε2

t

)

d−→ W (v), k
T · 1√

Tτ

∑T
t=1

(

ε2
t − Eε2

t

)

d−→ vW (1), by the CMT

(Continuous Mapping Theorem), we can prove

RT =
1√
Tτ

max
1≤k≤T

∣

∣

∣

k
∑

t=1

ε2
t −

k

T

T
∑

t=1

ε2
t

∣

∣

∣

=
1√
Tτ

max
1≤k≤T

∣

∣

∣

k
∑

t=1

(

ε2
t − Eε2

t

)

− k

T

T
∑

t=1

(

ε2
t − Eε2

t

)∣

∣

∣

d−→ sup
0≤v≤1

∣

∣

∣
W 0(v)

∣

∣

∣
. (22)

Finally, we show that τ̂2 P→ τ2 = V ar(ε2
1) = Eε4

1 − (Eε2
1)

2. Note that

ε̂2
t − ε2

t =
(h2

t − ĥ2
t )ε

2
t

ĥ2
t

+
η̂2

t − η2
t

ĥ2
t

. (23)

According to what has been proved above, we know
η̂2

t
−η2

t

ĥ2

t

satisfies

1

T

T
∑

t=1

η̂2
t − η2

t

ĥ2
t

= op(1) and
1

T

T
∑

t=1

( η̂2
t − η2

t

ĥ2
t

)2

= op(1). (24)

Thus in view of (23) and (24)

∣

∣

∣

1

T

T
∑

t=1

(ε̂2
t − ε2

t )
∣

∣

∣
≤

∣

∣

∣

1

T â

T
∑

t=1

(h2
t − ĥ2

t )ε
2
t

∣

∣

∣
+ op(1)
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≤ 1

â

( 1

T

T
∑

t=1

(h2
t − ĥ2

t )
2ε2

t

)1/2

·
( 1

T

T
∑

t=1

ε2
t

)1/2

, (25)

which is op(1) due to (20). Hence

1

T

T
∑

t=1

ε̂2
t

P−→ Eε2
1. (26)

Now by (24)

1

T

T
∑

t=1

(ε̂2
t − ε2

t )
2 =

1

T â2

T
∑

t=1

(ĥ2
t − h2

t )
2ε4

t + op(1)

≤ 1

â2

(

max
1≤t≤T

ε2
t

)

·
( 1

T

T
∑

t=1

(h2
t − ĥ2

t )
2ε2

t

)

+ op(1)

= op(1), (27)

and furthermore

1

T

T
∑

t=1

(ε̂2
t + ε2

t )
2 =

1

T

T
∑

t=1

(ε̂2
t − ε2

t )
2 +

4

T

T
∑

t=1

ε2
t ε̂

2
t

≤ 2

T

T
∑

t=1

(ε̂2
t − ε2

t )
2 +

8

T

T
∑

t=1

ε4
t = Op(1). (28)

Hence

∣

∣

∣

1

T

T
∑

t=1

ε̂4
t −

1

T

T
∑

t=1

ε4
t

∣

∣

∣
≤

( 1

T

T
∑

t=1

(ε̂2
t − ε2

t )
2
)1/2( 1

T

T
∑

t=1

(ε̂2
t + ε2

t )
2
)1/2

= op(1) · Op(1) = op(1). (29)

We can obtain

1

T

T
∑

t=1

ε̂4
t

P→ Eε4
1. (30)

This together with (26) yields τ̂2 P→ τ2. Therefore, in view of this, (21) and (22), we have

completed the proof of the theorem. 2

3. Simulation and a data example

In the section, we evaluate the performance of the test statistic R̂T through a simulation

study. In particular, the result is compared with Lee et al[16]. In this simulation, we use Monte

Carlo methods to investigate the finite sample size and power properties of the residual cusum

tests. Let εt be independent identically distributed standard normal random variables. The

tests require knowledge of the true breakpoint, and experiments are programmed using 1000

replications. All results refer to tests run at the 0.05 nominal asymptotic level, for samples of

size T = 500, 1000, 2000.

In order to check the performance of R̂T , we consider the models

yt = µ + βt + ηt,
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ηt = htεt,

h2
t = a + p1η

2
t−1 + p2η

2
t−2

and y0 can be assumed to be 0 without loss of generality. The application of our residuals

method also depends on a choice of the block size q; the problem is very similar to the choice of

the bandwidth in applying smoothing or kernel methods. For sample size used in our simulation

a simple practical recommendation for the test is to use the block size q approximately equal to

q = [log T ]2 (in bracket) and 10% of the sample size T (out bracket).

Now we consider the problem of test under the following hypothesis: the parameters change

from θ = (µ, β, a, p1, p2) to θ∗ = (µ∗, β∗, a∗, p∗1, p
∗
2) at T/2.

θ∗ n = 500 n = 1000 n = 2000

(0.02, 0.28, 0.4, 0.3, 0.3) 0.037(0.032) 0.041(0.035) 0.052(0.048)

(0.03, 0.38, 0.4, 0.3, 0.3) 0.381(0.334) 0.692(0.715) 0.857(0.864)

(0.04, 0.48, 0.4, 0.3, 0.3) 0.417(0.456) 0.733(0.704) 0.882(0.889)

Table 3.1 Experimental size and power, θ = (0.02, 0.28, 0.4, 0.3, 0.3)

θ∗ n = 500 n = 1000 n = 2000

(0.02, 0.28, 0.4, 0.3, 0.3) 0.033(0.038) 0.036(0.031) 0.043(0.047)

(0.02, 0.28, 0.5, 0.1, 0.4) 0.481(0.517) 0.742(0.764) 0.907(0.901)

(0.02, 0.28, 0.3, 0.5, 0.2) 0.557(0.588) 0.843(0.829) 0.942(0.938)

Table 3.2 Experimental size and power, θ = (0.02, 0.28, 0.4, 0.3, 0.3)

θ∗ n = 500 n = 1000 n = 2000

(0.02, 0.28, 0.4, 0.3, 0.3) 0.034(0.029) 0.038(0.032) 0.049(0.049)

(0.03, 0.38, 0.4, 0.1, 0.5) 0.494(0.534) 0.751(0.732) 0.917(0.920)

(0.04, 0.48, 0.4, 0.5, 0.1) 0.596(0.563) 0.859(0.874) 0.958(0.963)

Table 3.3 Experimental size and power, θ = (0.02, 0.28, 0.4, 0.3, 0.3)

θ∗ n = 500 n = 1000 n = 2000

(0.02, 0.28, 0.4, 0.3, 0.3) 0.039(0.035) 0.042(0.036) 0.060(0.057)

(0.03, 0.38, 0.3, 0.2, 0.5) 0.687(0.656) 0.892(0.876) 0.957(0.953)

(0.04, 0.48, 0.5, 0.4, 0.1) 0.657(0.625) 0.903(0.881) 0.982(0.977)

Table 3.4 Experimental size and power, θ = (0.02, 0.28, 0.4, 0.3, 0.3)

As would be expected, we can see that our tests have no size distortions, and the empirical size

and power properties summarized in Table 3.1-3.4 are improved as sample size is increased. The

sizes of all the tests are close to the asymptotic 0.05 level with impressive power properties. It is

interesting to note that the more the parameters a, p1 and p2 are changed , the higher is the power

and the greater the probability of the sample containing a change point. However, the power
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seems to be slightly less reliable in terms of other parameters, such as µ and β. This occurs maybe

because the observation variance is mainly determined by these ARCH parameters. Finally, a

choice of q may in actual practice affect the test, despite the affection would not be so serious for

fairly large samples. Overall, the simulation evidence is strongly in favor of using residual cusum

based tests to detect parameters change in ARCH errors models with deterministic trend.

For further study, we apply our method to the return of IBM data from 1961, May 1 to 1962,

July 2, which have been studied by Shephard[18] and Giraitis[19]. The original data are in Figure

(a). Figure (b) stands for first order difference of the data.

The change point estimator is computed by k̂ = min1≤k≤T {k : |Rk| = max1≤t≤T |Rt|}, and

we can obtain k̂ = 230. The rank of the fixed ARCH processes should be calculated by the BIC

criterion.

The original data prior to the estimated change point, from t = 1 to t = 230, appear to follow

the models:

yt = 0.07 + 0.23t + ηt,

ηt = htεt,

h2
t = 0.78 + 0.16η2

t−1 + 0.02η2
t−2,

while the orginal data posterior to the change point, from t = 231 to t = 280, follow the other

models:

yt = 0.46 − 0.76t + ηt,

ηt = htεt,

h2
t = 0.65 + 0.23η2

t−1 + 0.08η2
t−2.
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Figure (a) The original data
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Figure (b) The first order difference of data

4. Concluding remarks
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We propose a method for testing parameters change in ARCH errors models with deter-

ministic trend. We construct a cusum test based on the residuals: the squares of observations

divided by estimated conditional variance, and prove that the asymptotically limiting distribu-

tion of the residuals cusum test statistic is still the sup of a standard Brownian bridge under null

hypothesis. In the proof, we use the invariance principle result for mixing processes, which was

possible thanks to the results of Pelrigrad[17]. As most nonparametric methods, our procedure

also depends on a choice of “bandwidth parameter” q in our case. A choice of q may in actual

practice affects the test, despite the affection would not be so serious for fairly large samples.

The simulation results appear to be remarkably favorable to our test: sizes and powers have been

shown to perform well. This phenomenon also can be explained from a theoretical viewpoint

employing an idea proposed by Lee et al.[16]. In Section 3, the test is applied to the return of IBM

data and detects one change point. In a word, for testing parameters change, we can establish

the asymptotic of this method and assess its performance both theoretically and numerically.
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[18] SHEPHARD N. Statistical Aspects of ARCH and Stochastic Volatility. In Time Series Model in Econometrics,
Finance and Other Fields [M]. Chapman and Hall, 1996.

[19] GIRAITIS L, LEIPUS R, SURGAILIS D. The change-point problem for dependent observations [J]. J. Statist.

Plann. Inference, 1996, 53(3): 297–310.


