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Abstract For an entire function represented by a generalized dirichlet series, we define its

maximal term, maximal modulus, order and type. We use the classical methods to study the

relation between order, type and coefficients, exponents, which improve and generalize some

results of the dirichlet series with real exponents.
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1. Introduction

Let Λ = {λn = |λn|eiθn : n = 1, 2, . . .} be a sequence of complex numbers in the right half

plane satisfying the following conditions:

(a) lim infn→∞(|λn+1| − |λn|) = δ(Λ) > 0;

(b) sup{| arg θn| : n = 1, 2, . . .} ≤ α < π
2 ;

(c) lim supn→∞
n

|λn| = D < +∞.

Assume that F is an entire function represented by a generalized dirichlet series

F (s) =

∞
∑

n=1

ane−λns, s = σ + it : σ, t ∈ R, (1)

where {an} is a sequence of complex numbers and {λn} is expressed as above. Let

Gθ = { | arg s − π| ≤ θ < π/2 : s = σ + it, σ, t ∈ R}.

Now we introduce some definitions which will be discussed in the sequel.

Definition 1 Similar to [1] or [4], we define the order ρ of F (s) by

ρ = lim sup
σ→−∞

log log M(σ)

−σ
, (2)

where the maximal modulus M(σ) = supt∈R
{|F (σ + it)| : s = σ + it ∈ Gθ}.
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Definition 2 If 0 < ρ < ∞, then define the type τ of F (s) by

τ = lim sup
σ→−∞

log M(σ)

e−ρσ
, (3)

where M(σ) is defined by (2).

Definition 3 Assume that

m(σ) = sup{|ane−λns| : s = σ + it ∈ Gθ, n ∈ N+}, (4)

which is called the maximal term of the series (1).

If 0 < ρ < ∞, by [1], we introduce

ρr = lim sup
n→∞

Reλn log Reλn

log |1/an|
, τr = lim sup

n→∞

Reλn

eρ
|an|

ρ
Reλn , (5)

and

ρm = lim sup
n→∞

|λn| log |λn|
log |1/an|

, τmi = lim sup
n→∞

|λn|
eρi

|an|
ρi

|λn| (0 < ρi < ∞), i = 1, 2, (6)

where ρ1 = ρ cos θ, ρ2 = ρ 1
1+tan θ tan α .

In this paper, firstly we discuss the relation between the maximal term and the maximal

modulus, then apply it to estimate the order ρ and the type τ , respectively.

At last, we point out that we denote by A a positive constant, and by A(·) a positive constant

only depending on (·) for the whole article, not necessarily the same at each occurrence. ε is an

arbitrary small positive number.

2 Preliminary results

In this section, we will give lemmas which play an important role in the proof of theorems.

Lemma 1 Assume that a, b and λ are positive constants. Then

ϕ(σ) = beσa − σλ

reaches its minimal value at the point σ = 1
a log λ

ab .

Lemma 2 If the sequence Λ = {λn} (n = 1, 2, . . .) satisfies

lim sup
n→∞

log n

Reλn
= E < +∞, (7)

then M(σ) ≤ A(ε)m(σ − E − ε).

Proof Since limn→∞
log n
Reλn

= E < +∞, ∀ε > 0, ∃N > 0, s.t., ∀n > N , we have log n <

(E + ε/2)Reλn. Obviously, if σ + it ∈ Gθ, then σ − E − ε + it ∈ Gθ. Hence

M(σ) ≤
N

∑

n=1

|ane−λns| +
∞
∑

N+1

|ane−λn(σ−E−ε)+it| · e−(E+ε)Reλn

≤ Nm(σ) + m(σ − E − ε)

∞
∑

N+1

1

n

E+ε
E+ε/2

≤ A(ε)m(σ − E − ε).
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Lemma 3 If the sequence Λ = {λn} (n = 1, 2, . . .) satisfies the conditions (a), (b) and (c), then

m(σ) ≤ A(D, ε)M(σ + δ0 −
hD

cosα
),

where δ0 = (πD + ε) cosφ0, 0 ≤ φ0 ≤ 2π, h = 9 − 3 log δ(Λ)D.

Proof Let

Tn(z) =

∞
∏

k=1,k 6=n

(

1 − z2

λk
2

)

.

Since the sequence Λ = {λn} (n = 1, 2, . . .) satisfies the conditions (a) and (b), using the similar

method to [1, Lemma 3.1.3], we can show that Tn(z) is an entire function of exponential type

πD and because

|Tn(±λn)| ≥
∞
∏

k=1,k 6=n

(

∣

∣|λk|2 − |λn|2
∣

∣

|λk|2
)

,

we have

lim sup
n→∞

log |T−1
n (±λn)|
|λn|

≤ hD, D > 0,

where h = [9 − 3 log δ(Λ)D]. For D = 0 is trivial, we omit this case. Then for sufficiently large

N, ∀n > N , we can obtain
1

|Tn(λn)| < eD(h+ε)|λn|. (8)

By (1.3.3) and (1.3.5) in [2], we have

|an| =
1

|Tn(−λn)| · |Ln[F (s)]| · |eλns| (9)

and

|Ln[F (s)]| ≤ A(D, ε)M(σ + δ0), (10)

where s is an arbitrary point in the complex s plane, δ0 = (πD + ε) cosφ0, 0 ≤ φ0 ≤ 2π. Using

the similar method to [1], we can prove δ(Λ)D ≤ 1, so δ0 − hD
cos α < 0. By (8), (9) and (10), for

σ sufficiently small, we obtain

|ane−λns| ≤ A(D, ε)M(σ + δ0) exp{hD|λn|} (11)

≤ A(D, ε)M(σ + δ0) exp{ hD

cosα
Reλn}. (12)

Hence,

m(σ) ≤ A(D, ε)M(σ + δ0 −
hD

cosα
).

Lemma 4 If the sequence Λ = {λn} (n = 1, 2, . . .) satisfies the conditions (a), (b) and (c), then

ρ = lim sup
σ→−∞

log log m(σ)

−σ
.

If 0 < ρ < ∞, then

τ = lim sup
σ→−∞

log m(σ)

e−ρσ
.

Proof By the condition (c), we have lim supn→∞
log n
Reλn

= 0. So from Lemmas 2 and 3, we obtain

the lemma.
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Remark Since F (s) =
∑∞

n=1 ane−λns (s = σ+it : σ, t ∈ R) is an entire function in the complex

plane, according to [5], we have

lim
n→∞

log |an|
|λn|

= −∞. (13)

So ρr ≤ ρm.

3 Main theorems

Our main conclusions are as follows:

Theorem 1 If the sequence Λ = {λn} (n = 1, 2, . . .) satisfies the conditions (a), (b) and (c),

then

ρr ≤ ρ ≤ sec θ ρm, (∗)

and

ρr ≤ ρ ≤ (1 + tan θ tan α)ρr. (∗∗)

Proof 1) We prove ρr ≤ ρ. By the definition of ρ, for sufficiently small σ, we have

log M(σ) ≤ e−(ρ+ε)σ.

For equation (11) holds for all s ∈ Dθ, without loss of generality, putting s = σ ∈ Dθ, σ ∈ R

sufficiently small, then

|an| ≤ A(D, ε)M(σ + δ0)e
σReλn+hD|λn|.

So

log |an| ≤ log A(D, ε) + hD|λn| − δ0Reλn + e−(ρ+ε)(σ+δ0) + (σ + δ0)Reλn.

By Lemma 1, we have

e−(ρ+ε)(σ+δ0) + (σ + δ0)Reλn ≤ Reλn

ρ + ε
(1 + log

Reλn

ρ + ε
).

Hence, we obtain

− 1

ρr
= lim sup

n→∞

log |an|
Reλn log Reλn

< −1

ρ
.

2) We prove ρ ≤ sec θ ρm. By the definition of ρm, for sufficiently large n, we have

|an| ≤ exp
{−|λn| log |λn|

ρm + ε

}

.

Then for −Re(λns) ≤ |λns| ≤ |λnσ| sec θ, σ < 0, we have

log m(σ) ≤ max
{−|λn| log |λn|

ρm + ε
− Re(λns)

}

≤ max
{−|λn| log |λn|

ρm + ε
− σ|λn| sec θ

}

.

Let h1(t) = −a1t log t + b1t, t > 0, where t = |λn|, a1 = 1
ρm+ε , b1 = −σsec θ. Then h1(t) gets its

maximal value a1e
−1+b1/a1 at the point t1 = e−1+b1/a1 . So by Lemma 4 we have

ρ = lim sup
σ→−∞

log log m(σ)

−σ
≤ ρm sec θ.
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3) We prove ρ ≤ (1 + tan θ tan α)ρr. By the definition of ρr, for sufficiently large n, we have

|an| ≤ exp{−Reλn log Reλn

ρr + ε
}.

Then for −t Imλn ≤ −σ tan θ tan α Reλn, σ < 0, we have

log m(σ) ≤ max{−Reλn log Reλn

ρm + ε
− Re(λns)}

≤ max{−Reλn log Reλn

ρr + ε
− σ Reλn − σ tan θ tan α Reλn}.

Let h2(t) = −a2t log t + b2t, t > 0, where t = Reλn, a2 = 1
ρr+ε , b2 = −σ(1 + tan θ tan α). Then

h2(t) gets its maximal value a2e
−1+b2/a2 at the point t2 = e−1+b2/a2 . So from Lemma 4, we have

ρ = lim sup
σ→−∞

log log m(σ)

−σ
≤ ρr(1 + tan θ tan α).

Corollary 1 In Theorem 1, if α = 0, i.e., Λ = {λn} (n = 1, 2, . . .) is a sequence of real numbers

satisfying the conditions (a) and (c), by equation (∗∗), we get

ρ = ρr = ρm = lim sup
n→∞

λn log λn

log |1/an|
,

which is similar to [1, p.40, Theorem 3.2.1].

Corollary 2 Let θ = π
4 in Theorem 1. Then by equation (∗), we have ρr ≤ ρ ≤

√
2ρm, which

is also got in [3, Theorem 1].

Theorem 2 If the sequence Λ = {λn} (n = 1, 2, . . .) satisfies the conditions (a), (b) and (c),

then

e−hDρ sec ατr ≤ τ ≤ τm1
, (⋆)

and

τ ≤ τm2
. (⋆⋆)

Proof 1) We prove e−hDρ sec ατr ≤ τ . By the definition of τ , for sufficiently small σ, we have

M(σ) ≤ exp{(τ + ε)e−ρσ}.

By equation (12) and Lemma 1, for sufficiently small σ, we have

|an| ≤ A(D, ε)M(σ + δ0)e
σReλn+hD|λn|

≤ A(D, ε)ehD|λn| exp{Reλn

ρ
(1 + log

ρ(τ + ε)

Reλn
)}.

Then for sufficiently large n, we have

Reλn

eρ
|an|ρ/Reλn ≤ eρhD|λn|/Reλn(τ + ε).

So

τr = lim sup
n→∞

Reλn

eρ
|an|

ρ
Reλn ≤ ehDρ sec ατ.

2) We prove τ ≤ τm1
. By the definition of τm1

, for n sufficiently large,

log |an| ≤
|λn|
ρ1

log
[

(τm1
+ ε)

eρ1

|λn|
]

.
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For σ sufficiently small,

log m(σ) ≤ max
{ |λn|

ρ1
log

[

(τm1
+ ε)

eρ1

|λn|
]

− Re(λns)
}

≤ max
{ |λn|

ρ1
log

[

(τm1
+ ε)

eρ1

|λn|
]

− |λn|σ sec θ
}

= max{−a3t log t − b3t},

where t = |λn|
(τm1

+ε)eρ1
> 0, a3 = (τm1

+ε)e, b3 = −(τm1
+ε)eρ1σ sec θ, then h3(t) = −a3t log t−b3t

has its maximal value a3e
−1+b3/a3 .

So by the estimate above, we obtain

τ = lim sup
σ→−∞

log m(σ)

e−σρ
≤ lim sup

σ→−∞

(τm + ε)e−σρ1 sec θ

e−σρ
.

By the equation (6), we know ρ1 = ρ cos θ. Therefore, τ ≤ τm1
.

3) We prove τ ≤ τm2
. By the definition of τm2

, for n sufficiently large, we have

log |an| ≤
Reλn

ρ2
log

[

(τm2
+ ε)

eρ2

Reλn

]

.

Then for σ sufficiently small, we get

log m(σ) ≤ max
{Reλn

ρ2
log

[

(τm2
+ ε)

eρ2

Reλn

]

− Re(λns)
}

≤ max
{ |λn|

ρ2
log

[

(τm2
+ ε)

eρ2

Reλn

]

− (1 + tan θ tan α)σReλn

}

= max{−a4t log t − b4t},

where t = Reλn

(τm2
+ε)eρ2

> 0, a4 = (τm2
+ ε)e, b4 = −(τm2

+ ε)eρ2σ(1 + tan θ tan α), then h4(t) =

−a4t log t − b4t has its maximal value b4e
−1+b4/a4 .

So by the estimate above, we obtain

τ = lim sup
σ→−∞

log m(σ)

e−σρ
≤ lim sup

σ→−∞

(τm2
+ ε)e−σρ2(1+tan θ tan α)

e−σρ
.

By the equation (6), we know ρ2 = ρ 1
1+tan θ tan α . Therefore, τ ≤ τm2

.

Corollary 3 Let D = 0, α = 0 in Theorem 2. Then by equations (⋆) and (⋆⋆), we have

τ = τr = τm2
.
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