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Abstract This paper is a further investigation of large deviation for partial and random sums of

random variables, where {Xn, n ≥ 1} is non-negative independent identically distributed random

variables with a common heavy-tailed distribution function F on the real line R and finite mean

µ ∈ R. {N(n), n ≥ 0} is a binomial process with a parameter p ∈ (0, 1) and independent of

{Xn, n ≥ 1}; {M(n), n ≥ 0} is a Poisson process with intensity λ > 0, Sn =
∑

N(n)
i=1 Xi − cM(n).

Suppose F ∈ C, we futher extend and improve some large deviation results. These results can

apply to certain problems in insurance and finance.
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1. Introduction and main results

Hu[1] introduced a generalized compound binomial risk model, which is based on the following

independent objects:

(i) A binomial process {N(n); n = 0, 1, 2, . . .} with a parameter p, 0 < p < 1, corresponding

to the claim number process, N(0) = 0;

(ii) A sequence {Xn; n ≥ 1} of non-negative i.i.d random variables with common distribution

function (df for short) F , corresponding to the claim size process, 0 < µ = EX1 < ∞;

(iii) A Poisson process {M(n); n = 0, 1, 2, . . .} with intensity λ > 0, where M(n) is corre-

sponding to the number of customers who buy the insurance portfolios in the time interval (0, n],

M(0)=0;

(iv) {N(n); n = 0, 1, 2, . . .}; {Xn; n ≥ 1} and {M(n); n = 0, 1, 2, . . .} are mutually indepen-

dent.

For the GCBRM, the risk reserve process {R(n); n = 0, 1, 2, . . .} is then given by

R(n) = u + cM(n) −

N(n)∑

i=1

Xi, n = 0, 1, 2, . . . (1)

Received date: 2007-01-10; Accepted date: 2008-04-16



1048 KONG F C and ZHAO P

while the net total claim amount process {S(n); n = 0, 1, 2, . . .} is

S(n) =

N(n)∑

i=1

Xi − cM(n), n = 0, 1, 2, . . . , (2)

where c > 0 is the premium of a single insurance portfolio (i.e., the price of the insurance

portfolio), and u > 0 is the initial capital of the company. For the GCBRM, the net profit

condition becomes cλ > pEX1.

The time of ruin for the GCBRM is described by

T (u) = inf{n; R(n) < 0} = inf{n; S(n) > u}. (3)

In [1], Hu investigated the GCBRM with heavy-tailed claim sizes, namely in

(i) The probabilities of large deviations of {S(n)};

(ii) The Lundberg type limiting results for the finite time ruin probabilities.

He obtained the following results.

Theorem A For the GCBRM, let {S(n)} be as in (2) and suppose that F ∈ ERV (−α,−β)

for some 1 < α ≤ β < ∞. Then P (S(n) − ES(n) > x) ∼ pnF (x) holds uniformly for x ≥ γpn

for any fixed γ > 0 satisfying γp > cλ, i.e.,

lim
n→∞

sup
x≥γpn

|
P (S(n) − ES(n) > x)

pnF (x)
− 1| = 0. (4)

Theorem B For the GCBRM, suppose that F ∈ ERV (−α,−β) for some 1 < α ≤ β < ∞.

Then

(i) For every x > 0 and y > 0,

lim inf
u→∞

1

log u
log P (T (u) ≤ yux) ≥ x − β · max{1, x}; (5)

(ii) For either x=1 and 0 < y < (pµ)−1or 0 < x < 1 and y > 0,

lim sup
u→∞

1

log u
log P (T (u) ≤ yux) ≤ x − α, (6)

where µ = EX1 < ∞.

In this paper, we will extend F ∈ ERV (−α,−β) to F ∈ C, and give some counterparts of

(4), (5) and (6). First we give some definitions.

Definition 1 The random variable X (or its d.f.F ) is called heavy-tailed, if EetX = ∞ holds

for any fixed t > 0. The two important subclasses of heavy-tailed df are C and ERV .

(i) We call F ∈ C, if liml↓1 lim infx→∞
F (lx)

F (x)
= 1.

(ii) We call F ∈ ERV (−α,−β), if there exist constants 1 < α ≤ β < ∞ such that

y−β ≤ lim inf
x→∞

F (xy)

F (x)
≤ lim sup

x→∞

F (xy)

F (x)
≤ y−α, ∀y > 1.

Remark 1 Let N be a random variable with the geometric distribution, i.e., P (N = k) =

p(1 − p)k−1, k > 1, 0 < p < 1; U is another r.v. with uniform distribution U(0, 1) and it is

independent of N . Write X := 22N (1+U). F denotes distribution of r.v.X , then F ∈ C, but
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F 6∈ ERV . From Lemma 7 in [2], we have ERV ⊂ C. Thereby, C is a larger subclass than

ERV .

Corresponding to the Proposition 2.1 in [1], we have the following result.

Theorem 1 For the GCBRM, if F ∈ C, then for every fixed γ > 0, P (Y (n) − EY (n) > x) ∼

pnF (x)holds uniformly for x ≥ γpn, that is,

lim
n→∞

sup
x≥γpn

|
P (Y (n) − EY (n) > x)

pnF (x)
− 1| = 0,

where Y (n) =
∑N(n)

i=1 Xi, n = 0, 1, 2, . . . .

About the large deviations of {S(n)} in (2), we have the following theorem.

Theorem 2 For the GCBRM, let {S(n)} be as in (2) and suppose that F ∈ C. Then for any

fixed γ > 0, P (S(n) − ES(n) > x) ∼ pnF (x) holds uniformly for x ≥ γpn, where γp > cλ, i.e.,

lim
n→∞

sup
x≥γpn

|
P (S(n) − ES(n) > x)

pnF (x)
− 1| = 0. (7)

Remark 2 Obviously, (7) is equivalent to the following properties: for any fixed γ > 0, where

γp > cλ,

lim inf
n→∞

inf
x≥γpn

P (S(n) − ES(n) > x)

pnF (x)
≥ 1, lim sup

n→∞
sup

x≥γpn

P (S(n) − ES(n) > x)

pnF (x)
≤ 1.

Before giving Theorem 3, we first see Lemma 1.

Lemma 1 Let X be a non-negative random variable with its tail F ∈ C and 0 < µ = EX1 < ∞.

There exists some 1 < β < ∞, such that K1x
−β ≤ F (x) ≤ µx−1 for all x ≥ x0(β), where the

constant K1 = K1(β) is independent of x.

Proof By Lemma 3.1 in [3], if F ∈ C, then there exists β > 1, K > 0 and x0 > 0, such

that F (x) ≥ Kx−β . For all x > x0, where K > 0 is a constant and independent of x. Since

∞ > µ = EX ≥ EXI(X>x) ≥ xF (x), F (x) ≤ µx−1.

Recall that T (u) as in (3) is time of ruin for the GCBRM. By the corresponding Lundberg

type limiting result, we have

Theorem 3 For the GCBRM, suppose that F ∈ C. Then

(i) For every 0 < x ≤ 1 and y > 0, β0 = inf{β}, β satisfying Lemma 1, we have

lim inf
u→∞

1

log u
log P (T (u) ≤ yux) ≥ x − β0. (8)

(ii) For 0 < x < 1 and y > 0, we get

lim sup
u→∞

1

log u
log P (T (u) ≤ yux) ≤ x − 1. (9)

2. Proofs of main results

We first prove Theorem 1.
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Proof of Theorem 1 For the GCBRM and F ∈ C, from Lemma 9 in [2] we have

lim
n→∞

sup
x≥γn

|
P (Sn − ESn > x)

nF (x)
− 1| = 0,

where Sn =
∑n

i=0 Xi, n = 1, 2, . . . .

Since {N(n); n ≥ 0} is a binomial process with a parameter p ∈ (0, 1), there exists a sequence

{Yi; i ≥ 1} which are i.i.d.r.v, independent of {Xn; n ≥ 1}, and P (Y1 = 1) = p = 1 − P (Y1 = 0),

such that N(n) =
∑n

i=1 Yi. Then

Y (n) =

N(n)∑

i=1

Xi =

Y1∑

i=1

Xi +

Y1+Y2∑

i=Y1+1

Xi + · · · +

n∑
k=1

Yk

∑

i=
n−1∑
k=1

Yk+1

Xi :=

n∑

j=1

Zj ,

where
∑0

i=1 Xi := 0 and N(0) := 0. Obviously, {Zj , j = 1, . . . , n} are independent.

E exp(r

j+1∑
k=1

Yk

∑

i=
j∑

k=1

Yk+1

Xi) =

1∑

n1=0

· · ·

1∑

nj=0

E exp(r

n1+···+nj+Yj+1∑

i=n1+···+nj+1

Xi)I(Y1=n1,...,Yj=nj)

= E exp(r

Yj+1∑

i=1

Xi) = E exp(r

Y1∑

i=1

Xi).

Thus {Zj, j ≥ 1} are i.i.d and EZ1 = EY1 · EX1 = pµ > 0.

Since P (Z1 > x) = P (X1 > x, Y1 = 1) = pF (x), x > 0, for any y > 1, we have

P (Z1 > xy)

P (Z1 > x)
=

pF (xy)

pF (x)
=

F (xy)

F (x)
.

By F ∈ C, we obtain Z1 ∈ C. Then

lim
n→∞

sup
x≥γn

|

P (
n∑

i=1

Zi − E(
n∑

i=1

Zi) > x)

nP (Z1 > x)
− 1| = 0,

thereby

lim
n→∞

sup
x≥γn

|
P (Y (n) − E(Y (n)) > x)

npF (x)
− 1| = 0.

Thus the proof of Theorem 1 is completed. 2

Proof of Theorem 2 Observe that {M(n); n = 0, 1, 2, . . .} is a Poisson process with intensity

λ > 0, by [1], there exist a positive sequence {ε(n) ↓ 0} as n → ∞ and

P (|M(n) − λn| > ε(n)λn) = o(1). (10)

Noting that Y (n) =
∑N(n)

i=1 Xi, n = 0, 1, 2, . . ., we have

P (S(n) − ES(n) > x) = P (Y (n) − EY (n) > x − cλn + cM(n))

=

∞∑

k=0

P (Y (n) − EY (n) > x − cλn + ck)P (M(n) = k).
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Therefore, Theorem 2 will be proved from the following three Lemmas 2–4.

Lemma 2 Let {ε(n)} be as in (10). Then for any fixed γ > 0
∑

|k−λn|≤ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck) ∼ pnF (x)

holds uniformly for x ≥ γpn.

Lemma 3 Let {ε(n)} be as in (10). Then for any fixed γ > 0 satisfying γp > cλ

∑

k−λn<−ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck) = o(pnF (x))

holds uniformly for x ≥ γpn.

Lemma 4 Let {ε(n)} be as in (10). Then for any fixed γ > 0
∑

k−λn>ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck) = o(pnF (x))

holds uniformly for x ≥ γpn.

Proof of Lemma 2 In view of Theorem 1, for fixed γ > 0, we have

P (Y (n) − EY (n) > x) ∼ pnF (x),

as n → ∞, holds uniformly for x ≥ γpn.

Moreover, for |k − λn| ≤ ε(n)λn with ε(n) as in (10), and x ≥ γpn,

x − cλn + ck = x + c(k − λn) = x + o(x), n → ∞.

Then
F (x − cλn + ck)

F (x)
=

F (x + o(x))

F (x)
.

By Lemma 8 in [2], for any γ > 0, we have

lim
n→∞

sup
x≥γpn

|
F (x + o(x))

F (x)
− 1| = 0.

Thereby

P (Y (n) − E(Y (n)) > x − cλn + ck) ∼ pnF (x − cλn + ck)

as n → ∞, holds uniformly for |k − λn| ≤ ε(n)λn and x ≥ γpn. Hence
∑

|k−λn|≤ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck)

∼ pnF (x)
∑

|k−λn|≤ε(n)λn

P (M(n) = k)
F (x − cλn + ck)

F (x)

∼ pnF (x)P (|M(n) − λn| ≤ ε(n)λn) ∼ pnF (x)

holds uniformly for x ≥ γpn. Lemma 2 is proved.
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Proof of Lemma 3 For x ≥ γpn, we have

x − cλn = x(1 −
cλn

x
) ≥ x(1 −

cλ

γp
) := γ′x.

Since F ∈ C ⊂ D = {lim sup
x→∞

F (γ′x)

F (x)
< ∞} for any fixed 0 < γ′ < 1, again using Theorem 1 and

choosing ε(n) as in(10), we obtain that
∑

k−λn<−ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck)

≤
∑

k−λn<−ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn)

∼ pnF (x)
∑

k−λn<−ε(n)λn

P (M(n) = k)
F (x − cλn)

F (x)

≤ pnF (x)
∑

k−λn<−ε(n)λn

P (M(n) = k)
F (γ′x)

F (x)

≤ c1pnF (x)P (M(n) − λn ≤ −ε(n)λn) = o(1)pnF (x) = o(pnF (x))

uniformly for x ≥ γpn, where γ > 0 is a fixed constant, satisfying γp > cλ and c1 > 0 is also a

constant. Lemma 3 is proved.

Proof of Lemma 4 Using Theorem 1 once more and choosing ε(n) as in(10), we have
∑

k−λn>ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x − cλn + ck)

≤
∑

k−λn>ε(n)λn

P (M(n) = k)P (Y (n) − EY (n) > x)

∼ pnF (x)
∑

k−λn>ε(n)λn

P (M(n) = k)

= pnF (x)P (M(n) − λn > ε(n)λn) = o(1)pnF (x) = o(pnF (x))

uniformly for x ≥ γλn where γ > 0 is a fixed constant. Lemma 4 is proved.

By Lemmas 2, 3 and 4, the proof of Theorem 2 is completed. 2

Proof of Theorem 3 (i) Proof of (8). Let 0 < x ≤ 1 and y > 0, in view of Remark 2, for any

0 < θ < 1 we have uniformly for u large enough that

P (T (u) ≤ yux) ≥ P (S([yux]) > u) = P (S([yux]) − ES([yux]) > u − (pµ − cλ)[yux])

≥ P (S([yux]) − ES([yux]) > u + cλ[yux]) ≥ (1 − θ)p[yux]F (u + cλ[yux])

where [y] stands for the integer part of y ∈ R. Consequently, let 1 < β < ∞, by Lemma 1

lim inf
u→∞

1

log u
log P (T (u) ≤ [yux]) ≥ x + lim inf

u→∞

1

log u
(−β) log(u + cλ[yux]) ≥ x − β0,

thus (8) is proved.

(ii) Proof of (9). Let 0 < x < 1 and y > 0. By Theorem 1, for every 0 < θ < 1, we have
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uniformly for u large enough that

P (T (u) ≤ [yux]) ≤ P (Y ([yux] > u) = P (Y ([yux]) − EY ([yux]) > u − p[yux]µ)

≤ (1 + θ)p[yux]F (u − pµ[yux]).

Consequently, by Lemma 4

lim sup
u→∞

1

log u
log P (T (u) ≤ yux) ≤ x + lim sup

u→∞

1

log u
(−1) log(u − pµ[yux]) = x − 1.

The proof of Theorem 3 is completed. 2
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