α-Resolvable Cycle Systems for Cycle Length 4

MA Xiu Wen ${ }^{1}$, TIAN Zi Hong ${ }^{2}$
(1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, China)
(E-mail: tianzh68@163.com)

Abstract

An m-cycle system of order v and index λ, denoted by $m-\operatorname{CS}(v, \lambda)$, is a collection of cycles of length m whose edges partition the edges of λK_{v}. An $m-\operatorname{CS}(v, \lambda)$ is α-resolvable if its cycles can be partitioned into classes such that each point of the design occurs in precisely α cycles in each class. The necessary conditions for the existence of such a design are $m\left|\frac{\lambda v(v-1)}{2}, 2\right| \lambda(v-$ $1), m|\alpha v, \alpha| \frac{\lambda(v-1)}{2}$. It is shown in this paper that these conditions are also sufficient when $m=4$.

Keywords cycle; cycle system; α-resolvable.
Document code A
MR(2000) Subject Classification 05B07
Chinese Library Classification O157.2

1. Introduction

Let m, v, λ be positive integers, X a v-set. An edge of X is an unordered pair $\{x, y\}$ where x, y are distinct vertices of X. A complete multigraph of order v and index λ, denoted by λK_{v}, is a graph on X in which each pair of vertices x, y is joined by exactly λ edges $\{x, y\}$. A cycle of length m is a sequence of m distinct vertices $u_{1}, u_{2}, \ldots, u_{m}$, denoted by $\left(u_{1}, u_{2}, \ldots, u_{m}\right)$, and its edge set is $\left\{\left\{u_{i}, u_{i+1}\right\}: i=1,2, \ldots, m-1\right\} \cup\left\{\left\{u_{1}, u_{m}\right\}\right\}$. If the edges of a λK_{v} can be decomposed into cycles of length m, then these cycles are called an m-cycle system, and denoted by $m-\mathrm{CS}(v, \lambda)$. An m - $\mathrm{CS}(v, \lambda)$ is said to be α-resolvable if its cycles can be partitioned into classes (called α-resolution classes) such that each point of the design occurs in precisely α cycles in each class. A 1-resolvable $m-\mathrm{CS}(v, \lambda)$ is simply called resolvable m - $\mathrm{CS}(v, \lambda)$. The existence of a resolvable $m-\mathrm{CS}(v, \lambda)$ had been solved completely.

Lemma 1.1 ${ }^{[1]}$ Let λ, d, m be positive integers with $m \geq 3$. Then $\lambda K_{d m}$ has a resolvable $m-\mathrm{CS}(d m, \lambda)$ if and only if $\lambda(d m-1)$ is even and except the following cases:
(1) $\lambda \equiv 2(\bmod 4), d=2, m=3$;
(2) λ odd, $d=2, m=3$;
(3) $\lambda=1, d=4, m=3$.

When $m=3$, the existence of an α-resolvable 3 - $\mathrm{CS}(v, \lambda)$ had also been solved.
Received date: 2007-12-05; Accepted date: 2008-10-07
Foundation item: the National Natural Science Foundation of China (No. 10971051).

Lemma 1.2 ${ }^{[2]}$ An α-resolvable 3-CS (v, λ) exists if and only if

$$
\lambda(v-1) \equiv 0(\bmod 2), \quad \lambda v(v-1) \equiv 0(\bmod 6), \quad 3|\alpha v, \alpha| \frac{\lambda(v-1)}{2}
$$

and $(v, \alpha, \lambda) \notin\{(6,1,4 i+2): i \geq 0\}$.
The purpose of this paper is to investigate the existence of α-resolvable 4 - $\mathrm{CS}(v, \lambda) s$. The necessary conditions for the existence of such a design are:

$$
\begin{equation*}
4\left|\frac{\lambda v(v-1)}{2}, 2\right| \lambda(v-1), \quad 4|\alpha v, \alpha| \frac{\lambda(v-1)}{2} \tag{*}
\end{equation*}
$$

From condition $(*)$, we can derive minimum values for α and λ, and call them α_{0} and λ_{0}. Similarly to the Lammas 2.1-2.3 in [3], we have the following lammas.

Lemma 1.3 If an α-resolvable 4-CS (v, λ) exists, then $\alpha_{0}\left|\alpha, \lambda_{0}\right| \lambda$.
Lemma 1.4 If an α-resolvable 4-CS (v, λ) exists, then a t α-resolvable 4-CS $(v, n \lambda)$ exists for any positive integers n, t with $t \left\lvert\, \frac{\lambda(v-1)}{2 \alpha}\right.$.

Lemma 1.5 If an α_{0}-resolvable 4-CS $\left(v, \lambda_{0}\right)$ exists, and α, λ satisfy condition $(*)$, then an α resolvable $4-\mathrm{CS}(v, \lambda)$ exists.

Thus, in order to show the necessary condition $(*)$ for the existence of α-resolvable 4-CS $(v, \lambda) s$ is also sufficient, we only need to prove the existence of α_{0}-resolvable 4 - $\mathrm{CS}\left(v, \lambda_{0}\right) s$.

2. Direct constructions

In order to get the existence of α-resolvable 4 - $\operatorname{CS}(v, \lambda) s$, we need some definitions and marks. Let m, v be positive integers and ∞ an infinite point. Let Z_{v} be the residue ring of integers modulo v. Denote $Z_{v}^{*}=Z_{v} \backslash\{0\}$. Let \mathcal{C} be a set of cycles of length m which are constructed on Z_{v} or $Z_{v} \cup$ $\{\infty\}$. For each cycle $C=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ and $j \in Z_{v}$, define $C+j$ to be $\left(c_{1}+j, c_{2}+j, \ldots, c_{m}+j\right)$ where $\infty+j=\infty$ if $\infty \in C$. Denote $\mathcal{C}+j=\{C+j: C \in \mathcal{C}\}$ for $j \in Z_{v}$. The differences of a cycle $C=\left(c_{1}, c_{2}, \ldots, c_{m}\right)$ mean $\pm\left(c_{2}-c_{1}\right), \pm\left(c_{3}-c_{2}\right), \ldots, \pm\left(c_{m}-c_{m-1}\right), \pm\left(c_{1}-c_{m}\right)$, where $\infty-j=j-\infty=\infty$ for any $j \in Z_{v}$.

In what follows, we will get α-resolvable 4-CS $(v, \lambda) s$ through direct constructions. According to condition $(*), \alpha_{0}$ and λ_{0} are as follows

$$
\begin{cases}\alpha_{0}=1, \lambda_{0}=2, & v \equiv 0(\bmod 4) \\ \alpha_{0}=4, \lambda_{0}=1, & v \equiv 1 \quad(\bmod 8) \\ \alpha_{0}=4, \lambda_{0}=2, & v \equiv 5(\bmod 8) \\ \alpha_{0}=2, \lambda_{0}=4, & v \equiv 2(\bmod 4) \\ \alpha_{0}=4, & \lambda_{0}=4, \\ \hline \equiv 3 \quad(\bmod 4)\end{cases}
$$

Lemma 2.1 There exists a resolvable $4-\mathrm{CS}(v, 2)$ for $v \equiv 0(\bmod 4)$.
Proof Since $\alpha_{0}=1$, the conclusion follows from Lemma 1.1.
Lemma 2.2 There exists a 4-resolvable 4-CS $(v, 1)$ for $v \equiv 1(\bmod 8)$.

Proof Let the point set $X=Z_{8 k+1}, k>0$. A 4-resolvable 4-CS $(v, 1)$ contains $\frac{\lambda v(v-1)}{2 m}=$ $(8 k+1) \times k$ cycles and $\frac{\lambda(v-1)}{2 \alpha}=k 4$-resolution classes. Let \mathcal{C} consist of the following k cycles:

$$
\begin{array}{cccc}
\left(\begin{array}{ccc}
1, & 0, & 2 k,
\end{array}\right. & 4 k+1), \\
(2, & 0, & 2 k-1, & 4 k+1), \\
(3, & 0, & 2 k-2, & 4 k+1), \\
\vdots & & \vdots & \vdots \\
(k-1, & 0, & k+2, & 4 k+1), \\
(k, & 0, & k+1, & 4 k+1) .
\end{array}
$$

It is easy to check that the differences of all cycles of \mathcal{C} give every value of $Z_{8 k+1}^{*}$ exactly once, which implies that $\left\{\mathcal{C}+i: i \in Z_{8 k+1}\right\}$ forms a $4-\operatorname{CS}(v, 1)$. In addition, for every $C \in \mathcal{C}$, $\left\{C+i: i \in Z_{8 k+1}\right\}$ is a 4-resolution class of the 4 - $\operatorname{CS}(v, 1)$. So, we derive a 4-resolvable 4$\operatorname{CS}(v, 1)$.

Lemma 2.3 There exists a 4-resolvable 4-CS $(v, 2)$ for $v \equiv 5(\bmod 8)$.
Proof Let the point set $X=Z_{8 k+5}, k \geq 0$. A 4-resolvable 4-CS $(v, 2)$ contains $(8 k+5) \times(2 k+1)$ cycles and $2 k+14$-resolution classes. Let \mathcal{C} consist of the following $2 k+1$ cycles:

Part 1: Construct k cycles and repeat them twice:

(1,	0 ,	2,	$4 k+3)$,
(3,	0 ,	4 ,	$4 k+3)$,
(5,	0 ,	6,	$4 k+3)$,
		:	
($2 k-3$,	0,	$2 k-$	$k+3$
(2k-1,		$2 k$,	$4 k+3)$

Part 2: Construct 1 cycle:

$$
(2 k+1, \quad 0, \quad 2 k+2,4 k+3)
$$

Since the differences of all cycles of \mathcal{C} give every value of $Z_{8 k+5}^{*}$ exactly twice, $\left\{\mathcal{C}+i: i \in Z_{8 k+5}\right\}$ forms a 4 -CS $(v, 2)$. On the other hand, for every $C \in \mathcal{C},\left\{C+i: i \in Z_{8 k+5}\right\}$ is a 4-resolution class of the 4 -CS $(v, 2)$. Hence, we get a 4 -resolvable 4 -CS $(v, 2)$.

Lemma 2.4 There exists a 2-resolvable 4-CS $(v, 4)$ for $v \equiv 2(\bmod 4)$.
Proof Let the point set $X=Z_{4 k+1} \cup\{\infty\}, k>0$. A 2-resolvable 4-CS $(v, 4)$ contains $(4 k+$ $1)(2 k+1)$ cycles and $4 k+12$-resolution classes. Let \mathcal{C} consist of the following $2 k+1$ cycles:

Part 1: Construct k cycles:

$$
\left.\begin{array}{cccc}
(k, & 3 k-1, & 3 k, & k-2), \\
(k+1, & 3 k-2, & 3 k+1, & k-3), \\
(k+2, & 3 k-3, & 3 k+2, & k-4), \\
\vdots & \vdots & \vdots \\
(2 k-2, & 2 k+1, & 4 k-2, & 0
\end{array}\right),
$$

Part 2: Construct $k-1$ cycles:

$$
\begin{array}{cccc}
\left(\begin{array}{ccc}
1, & 2 k-1, & 2 k+1,
\end{array}\right. & 4 k-1), \\
(2, & 2 k-2, & 2 k+2, & 4 k-2), \\
(3, & 2 k-3, & 2 k+3, & 4 k-3), \\
\vdots & \vdots & \vdots \\
(k-2, & k+2, & 3 k-2, & 3 k+2), \\
(k-1, & k+1, & 3 k-1, & 3 k+1) .
\end{array}
$$

Part 3: Construct 2 cycles:

$$
(\infty, 0,2 k, 4 k),(\infty, 3 k, k, k-1)
$$

The differences of all cycles of \mathcal{C} give every value of $Z_{4 k+1}^{*} \cup\{\infty\}$ exactly biquadratic, so $\{\mathcal{C}+i$: $\left.i \in Z_{4 k+1}\right\}$ forms a 4 -CS $(v, 4)$. Furthermore, \mathcal{C} is a 2 -resolution class of the 4 - $\mathrm{CS}(v, 4)$, and $\mathcal{C}, \mathcal{C}+1, \ldots, \mathcal{C}+4 k$ are all 2 -resolution classes. So, a 2 -resolvable 4 - $\mathrm{CS}(v, 4)$ is given.

Lemma 2.5 There exists a 4-resolvable 4-CS $(v, 4)$ for $v \equiv 3(\bmod 4)$.
Proof (1) $v \equiv 3(\bmod 8)$. Let the point set $X=Z_{8 k+3}, k>0$. A 4-resolvable 4-CS $(v, 4)$ contains $(8 k+3)(4 k+1)$ cycles and $4 k+14$-resolution classes. Let \mathcal{C} consist of the following $4 k+1$ cycles:

Part 1: Construct $2 k$ cycles:
$\left(\begin{array}{cccc}1, & 0, & 2, & 5\end{array}\right)$,
$\left(\begin{array}{ccc}5, & 0, & 6, \\ 9, & 0, & 10, \\ \vdots & & \vdots \\ (8 k-7, & 0, & 8 k-6, \\ (8 k-3, & 0, & 8 k-2, \\ (8 k-14\end{array}\right)$,
$\left(\begin{array}{c}8\end{array}\right)$,

Part 2: Construct $2 k$ cycles:
$\left.\begin{array}{ccccc}\left(\begin{array}{ccc}3, & 0, & 4, \\ (7, & 0, & 8,\end{array}\right. & 17\end{array}\right)$,
$\left.\begin{array}{cccc}\left(\begin{array}{ccc}11, & 0, & 12, \\ \vdots & \vdots & \vdots\end{array}\right), \\ (8 k-5, & 0, & 8 k-4, & 8 k-10 \\ (8 k-1, & 0, & 8 k, & 8 k-2\end{array}\right)$.

Part 3: Construct 1 cycle:

$$
(1, \quad 0, \quad 2,3)
$$

It is easy to check that $\left\{\mathcal{C}+i: i \in Z_{8 k+3}\right\}$ forms a $4-\operatorname{CS}(v, 4)$. In addition, for every $C \in \mathcal{C}$, $\left\{C+i: i \in Z_{8 k+3}\right\}$ is a 4-resolution class of the 4 -CS $(v, 4)$. So we derive a 4-resolvable 4-CS $(v, 4)$.
(2) $v \equiv 7(\bmod 8)$. Let the point set $X=Z_{8 k+7}, k \geq 0$. A 4-resolvable 4-CS $(v, 4)$ contains $(8 k+7)(4 k+3)$ cycles and $4 k+34$-resolution classes. Let \mathcal{C} consist of the following $4 k+3$ cycles:

Part 1: Construct k cycles and repeat them biquadratic:

(1,	0,	2 ,	$4 k+4)$,
(3,	0 ,	4 ,	$4 k+4)$,
(5,	0 ,	6,	$4 k+4$
\vdots			
($2 k-3$,	0,	$2 k-2$,	$4 k+4$
(2k-1,		$2 k$,	$4 k+4)$.

Part 2: Construct 1 cycle and repeat them twice:

$$
(2 k+1, \quad 0, \quad 2 k+2, \quad 4 k+4)
$$

Part 3: Construct 1 cycle:

$$
(2 k+1, \quad 0, \quad 2 k+3, \quad 4 k+4)
$$

It is easy to check that $\left\{\mathcal{C}+i: i \in Z_{8 k+7}\right\}$ forms a $4-\operatorname{CS}(v, 4)$. In addition, for every $C \in \mathcal{C}$, $\left\{C+i: i \in Z_{8 k+7}\right\}$ is a 4-resolution class of the $4-\mathrm{CS}(v, 4)$. Therefore, we get a 4-resolvable $4-\mathrm{CS}(v, 4)$.

3. Main result

Combining Lemmas 2.1-2.5, we obtain the main result:
Theorem 3.1 There exists an α-resolvable 4-CS (v, λ) if and only if

$$
4\left|\frac{\lambda v(v-1)}{2}, 2\right| \lambda(v-1), 4|\alpha v, \alpha| \frac{\lambda(v-1)}{2} .
$$

References

[1] GVOZDJAK P. On the Oberwolfach problem for complete multigraphs [J]. Discrete Math., 1997, 173(1-3): 61-69.
[2] JUNGNICKEL D, MULLIN R C, VANSTONE S A. The spectrum of α-resolvable block designs with block size 3 [J]. Discrete Math., 1991, 97(1-3): 269-277.
[3] VASIGA T M J, FURINO S, LING A C H. The spectrum of α-resolvable designs with block size four [J]. J. Combin. Des., 2001, 9(1): 1-16.

