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Abstract An m-cycle system of order v and index A, denoted by m-CS(v, A), is a collection of
cycles of length m whose edges partition the edges of AK,. An m-CS(v, \) is a-resolvable if its
cycles can be partitioned into classes such that each point of the design occurs in precisely a cycles

in each class. The necessary conditions for the existence of such a design are m|w, 2[A (v —
A(v—1)

5— . It is shown in this paper that these conditions are also sufficient when m = 4.
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1. Introduction

Let m,v, A be positive integers, X a v-set. An edge of X is an unordered pair {z,y} where
x,y are distinct vertices of X. A complete multigraph of order v and index A, denoted by AK,,
is a graph on X in which each pair of vertices z,y is joined by exactly A edges {x,y}. A cycle
of length m is a sequence of m distinct vertices uq, ug, . .., Um, denoted by (u1,us,...,un), and
its edge set is {{us, w1} i = 1,2,...,m — 1} U {{u1,un}}. If the edges of a AK, can be
decomposed into cycles of length m, then these cycles are called an m-cycle system, and denoted
by m-CS(v,\). An m-CS(v,\) is said to be a-resolvable if its cycles can be partitioned into
classes (called a-resolution classes) such that each point of the design occurs in precisely « cycles
in each class. A 1-resolvable m-CS(v, A) is simply called resolvable m-CS(v, A). The existence of
a resolvable m-CS(v, A) had been solved completely.

Lemma 1.1 Let \,d,m be positive integers with m > 3. Then \Kg,, has a resolvable
m-CS(dm, A) if and only if A(dm — 1) is even and except the following cases:

(1) A=2 (mod4),d=2,m=3;

(2) Aodd,d=2, m=3;

(3) A=1,d=4, m=3.

When m = 3, the existence of an a-resolvable 3-CS(v, \) had also been solved.
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Lemma 1.2 An a-resolvable 3-CS(v, \) exists if and only if
Alv—1
AMv—=1)=0 (mod2), Iv(v—1)=0 (mod6), 3|av,a|¥,

and (v,a, \) € {(6,1,4i +2) : i > 0}.

The purpose of this paper is to investigate the existence of a-resolvable 4-CS(v, A)s. The
necessary conditions for the existence of such a design are:
Av(v —1 Alv—1
M+),2|)\(v - 1), 4|av,a|¥. (%)

From condition (%), we can derive minimum values for a and A, and call them «p and A.

4

Similarly to the Lammas 2.1-2.3 in [3], we have the following lammas.
Lemma 1.3 If an a-resolvable 4-CS(v, \) exists, then aglo, Ao|A.

Lemma 1.4 If an a-resolvable 4-CS(v, \) exists, then a ta-resolvable 4-CS(v,n)\) exists for any
A(v—1)

positive integers n,t with t|=5_

Lemma 1.5 If an ag-resolvable 4-CS(v, \g) exists, and a, A satisfy condition (x), then an a-
resolvable 4-CS(v, A) exists.
Thus, in order to show the necessary condition (x) for the existence of a-resolvable 4-CS(v, \)s

is also sufficient, we only need to prove the existence of ag-resolvable 4-CS(v, Ag)s.

2. Direct constructions

In order to get the existence of a-resolvable 4-CS(v, A)s, we need some definitions and marks.
Let m, v be positive integers and oo an infinite point. Let Z, be the residue ring of integers modulo
v. Denote Z = Z,\{0}. Let C be a set of cycles of length m which are constructed on Z, or Z, U
{o0}. For each cycle C' = (¢1,¢2,...,¢n) and j € Z,, define C+j tobe (c1+j,¢2+ 7, .., ¢m+7)
where co +j = 00 if oo € C. Denote C+j = {C+j:C € C} for j € Z,. The differences of
a cycle C = (c1,¢2,...,¢n) mean £(ca —¢1), £(c3 — ¢2),...,2(¢m — ¢m-1), £(c1 — ¢m), where
o00—j=j—o00=oc forany j € Z,.

In what follows, we will get a-resolvable 4-CS(v, A)s through direct constructions. According

to condition (x), ag and Ag are as follows

ag=1, Ap=2, v=0 (mod4),
ag=4, Ao=1, v=1 (mod3),
ag=4, \o=2, v=>5 (mod3),
ag=2, \o=4, v=2 (mod4),
ap=4, \o=4, v=3 (mod4)

Lemma 2.1 There exists a resolvable 4-CS(v,2) for v = 0 (mod 4).
Proof Since ap = 1, the conclusion follows from Lemma 1.1. O

Lemma 2.2 There exists a 4-resolvable 4-CS(v,1) for v =1 (mod 8).
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Proof Let the point set X = Zgr11, k > 0. A 4-resolvable 4-CS(v,1) contains Ao(=1)

2m

(8k + 1) x k cycles and % = k 4-resolution classes. Let C consist of the following k cycles:

1, 0, 2k 4k+1),
(2, 0, 2k—1, 4k +1),
3, 0, 2k—2, dk+1),

(k—1,0, k+2, 4k+1),
(k 0, k+1, 4k+1).

It is easy to check that the differences of all cycles of C give every value of Zg, ;| exactly once,
which implies that {C + i : i € Zggy1} forms a 4-CS(v,1). In addition, for every C € C,
{C+1i:1€ Zsky1} is a 4-resolution class of the 4-CS(v,1). So, we derive a 4-resolvable 4-
CS(v, 1). O

Lemma 2.3 There exists a 4-resolvable 4-CS(v, 2) for v =5 (mod 8).

Proof Let the point set X = Zg15, k > 0. A 4-resolvable 4-CS(v, 2) contains (8k+5) x (2k+1)
cycles and 2k + 1 4-resolution classes. Let C consist of the following 2k 4 1 cycles:

Part 1: Construct k cycles and repeat them twice:

[\

(1, o . 4k +3 ),
(3 0, 4  4k+3),
(5 0, 6 4k+3),

(2k—3, 0, 2k—2, 4k+3 ),
(2k—1, 0, 2k, 4k+3 ).

Part 2: Construct 1 cycle:
(2k+1, 0, 2k+2, 4k+3 ).

Since the differences of all cycles of C give every value of Z3, . . exactly twice, {C+1i :7 € Zgg15}
forms a 4-CS(v,2). On the other hand, for every C € C, {C 4+ i : i € Zsgiy5} is a 4-resolution
class of the 4-CS(v, 2). Hence, we get a 4-resolvable 4-CS(v, 2). O

Lemma 2.4 There exists a 2-resolvable 4-CS(v,4) for v = 2 (mod 4).

Proof Let the point set X = Zy41 U {oo},k > 0. A 2-resolvable 4-CS(v,4) contains (4k +
1)(2k + 1) cycles and 4k + 1 2-resolution classes. Let C consist of the following 2k + 1 cycles:

Part 1: Construct k cycles:
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( K, 3k —1,

(k+1, 3k-—2,
(k+2, 3k-3,

(2k —2, 2k+1,

(2k—1, 2k,

Part 2: Construct k — 1 cycles:

(1, 2k-1,
(2, 2k-2
(3, 2k-3,
(k—2, k+2,
(k—1, k+1,

Part 3: Construct 2 cycles:

3k,
3k + 1,
3k + 2,

4k — 2,
4k — 1,

2k + 1,
2%k + 2,

2% + 3,

3k —2,

3k — 1,

Ak — 1),
ak —2),
Ak — 3),

3k +2),
3k+1).

(00, 0, 2k, 4k), (oo, 3k, k, k—1).

1105

The differences of all cycles of C give every value of Z}, ., U{oo} exactly biquadratic, so {C 4 :
i € Zagt1} forms a 4-CS(v,4). Furthermore, C is a 2-resolution class of the 4-CS(v,4), and

C,C+1,...,C+ 4k are all 2-resolution classes. So, a 2-resolvable 4-CS(v, 4) is given.

Lemma 2.5 There exists a 4-resolvable 4-CS(v,4) for v = 3 (mod 4).

a

Proof (1) v = 3 (mod8). Let the point set X = Zgiys, £k > 0. A 4-resolvable 4-CS(v,4)
contains (8% + 3)(4k + 1) cycles and 4k + 1 4-resolution classes. Let C consist of the following

4k + 1 cycles:

Part 1: Construct 2k cycles:

(1, 0 2
(5 0, 6,
(9, o0 10,

(8k—7,0, 8k—6, 8k—14 ),

(8k—3,0, 8k-—2,

Part 2: Construct 2k cycles:

8k —

6 ).



1106 MA X W and TIAN Z H

( 11, 0, 12, 25 ),

(8 —5,0, 8k—4, 8 —10 ),

(8 —1,0, 8k, 8k—2 ).
Part 3: Construct 1 cycle:

(1, 0, 2, 3).

It is easy to check that {C 4+ i : ¢ € Zggy3} forms a 4-CS(v,4). In addition, for every C € C,
{C+i:i € Zspy3} is a 4-resolution class of the 4-CS(v,4). So we derive a 4-resolvable 4-CS(v, 4).
(2) v =7 (mod8). Let the point set X = Zgi47, k > 0. A 4-resolvable 4-CS(v,4) contains
(8k+7)(4k +3) cycles and 4k + 3 4-resolution classes. Let C consist of the following 4k + 3 cycles:
Part 1: Construct k cycles and repeat them biquadratic:
(1, 0, 2, 4k+4),
( 3, 0 4,  4dk+4 ),
( 5 0 6, 4k+4),

(2k—3, 0, 2k—2, dk+4 ),
(2k—1, 0, 2k Adk+4 ).

Part 2: Construct 1 cycle and repeat them twice:

(2k+1, 0, 2k+2, 4k+4 ).
Part 3: Construct 1 cycle:

(2k+1, 0, 2k+3, dk+4 ).

It is easy to check that {C + ¢ : i € Zgpi7} forms a 4-CS(v,4). In addition, for every C € C,
{C+1i:i€ Zgpyr} is a 4-resolution class of the 4-CS(v,4). Therefore, we get a 4-resolvable
4-CS(v, 4). 0

3. Main result
Combining Lemmas 2.1-2.5, we obtain the main result:

Theorem 3.1 There exists an a-resolvable 4-CS(v, \) if and only if
M(v—1) Av—=1)

4
2

72|/\(v - 1),4|O&’U, a|
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