α -Resolvable Cycle Systems for Cycle Length 4

MA Xiu Wen¹, TIAN Zi Hong²

(1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China;

2. College of Mathematics and Information Science, Hebei Normal University, Hebei 050016, China) (E-mail: tianzh68@163.com)

Abstract An *m*-cycle system of order v and index λ , denoted by m-CS (v, λ) , is a collection of cycles of length m whose edges partition the edges of λK_v . An m-CS (v, λ) is α -resolvable if its cycles can be partitioned into classes such that each point of the design occurs in precisely α cycles in each class. The necessary conditions for the existence of such a design are $m |\frac{\lambda v(v-1)}{2}, 2|\lambda(v-1), m|\alpha v, \alpha|\frac{\lambda(v-1)}{2}$. It is shown in this paper that these conditions are also sufficient when m = 4.

Keywords cycle; cycle system; α -resolvable.

Document code A MR(2000) Subject Classification 05B07 Chinese Library Classification 0157.2

1. Introduction

Let m, v, λ be positive integers, X a v-set. An edge of X is an unordered pair $\{x, y\}$ where x, y are distinct vertices of X. A complete multigraph of order v and index λ , denoted by λK_v , is a graph on X in which each pair of vertices x, y is joined by exactly λ edges $\{x, y\}$. A cycle of length m is a sequence of m distinct vertices u_1, u_2, \ldots, u_m , denoted by (u_1, u_2, \ldots, u_m) , and its edge set is $\{\{u_i, u_{i+1}\} : i = 1, 2, \ldots, m-1\} \cup \{\{u_1, u_m\}\}$. If the edges of a λK_v can be decomposed into cycles of length m, then these cycles are called an m-cycle system, and denoted by m-CS (v, λ) . An m-CS (v, λ) is said to be α -resolvable if its cycles can be partitioned into classes (called α -resolvable m-CS (v, λ) is simply called resolvable m-CS (v, λ) . The existence of a resolvable m-CS (v, λ) had been solved completely.

Lemma 1.1^[1] Let λ, d, m be positive integers with $m \geq 3$. Then λK_{dm} has a resolvable m-CS (dm, λ) if and only if $\lambda(dm - 1)$ is even and except the following cases:

- (1) $\lambda \equiv 2 \pmod{4}, d = 2, m = 3;$
- (2) $\lambda \text{ odd}, d = 2, m = 3;$
- (3) $\lambda = 1, d = 4, m = 3.$

When m = 3, the existence of an α -resolvable 3-CS (v, λ) had also been solved.

Received date: 2007-12-05; Accepted date: 2008-10-07

Foundation item: the National Natural Science Foundation of China (No. 10971051).

 α -resolvable cycle systems for cycle length 4

Lemma 1.2^[2] An α -resolvable 3-CS (v, λ) exists if and only if

$$\lambda(v-1) \equiv 0 \pmod{2}, \quad \lambda v(v-1) \equiv 0 \pmod{6}, \quad 3|\alpha v, \alpha| \frac{\lambda(v-1)}{2}$$

and $(v, \alpha, \lambda) \notin \{(6, 1, 4i + 2) : i \ge 0\}.$

The purpose of this paper is to investigate the existence of α -resolvable 4-CS $(v, \lambda)s$. The necessary conditions for the existence of such a design are:

$$4|\frac{\lambda v(v-1)}{2}, 2|\lambda(v-1), \quad 4|\alpha v, \alpha|\frac{\lambda(v-1)}{2}.$$
(*)

From condition (*), we can derive minimum values for α and λ , and call them α_0 and λ_0 . Similarly to the Lammas 2.1–2.3 in [3], we have the following lammas.

Lemma 1.3 If an α -resolvable 4-CS (v, λ) exists, then $\alpha_0 | \alpha, \lambda_0 | \lambda$.

Lemma 1.4 If an α -resolvable 4-CS (v, λ) exists, then a $t\alpha$ -resolvable 4-CS $(v, n\lambda)$ exists for any positive integers n, t with $t|\frac{\lambda(v-1)}{2\alpha}$.

Lemma 1.5 If an α_0 -resolvable 4-CS (v, λ_0) exists, and α, λ satisfy condition (*), then an α -resolvable 4-CS (v, λ) exists.

Thus, in order to show the necessary condition (*) for the existence of α -resolvable 4-CS $(v, \lambda)s$ is also sufficient, we only need to prove the existence of α_0 -resolvable 4-CS $(v, \lambda_0)s$.

2. Direct constructions

In order to get the existence of α -resolvable 4-CS $(v, \lambda)s$, we need some definitions and marks. Let m, v be positive integers and ∞ an infinite point. Let Z_v be the residue ring of integers modulo v. Denote $Z_v^* = Z_v \setminus \{0\}$. Let \mathcal{C} be a set of cycles of length m which are constructed on Z_v or $Z_v \cup \{\infty\}$. For each cycle $C = (c_1, c_2, \ldots, c_m)$ and $j \in Z_v$, define C+j to be $(c_1+j, c_2+j, \ldots, c_m+j)$ where $\infty + j = \infty$ if $\infty \in C$. Denote $\mathcal{C} + j = \{C + j : C \in \mathcal{C}\}$ for $j \in Z_v$. The differences of a cycle $C = (c_1, c_2, \ldots, c_m)$ mean $\pm (c_2 - c_1), \pm (c_3 - c_2), \ldots, \pm (c_m - c_{m-1}), \pm (c_1 - c_m)$, where $\infty - j = j - \infty = \infty$ for any $j \in Z_v$.

In what follows, we will get α -resolvable 4-CS $(v, \lambda)s$ through direct constructions. According to condition (*), α_0 and λ_0 are as follows

$$\begin{cases} \alpha_0 = 1, \ \lambda_0 = 2, \ v \equiv 0 \pmod{4}, \\ \alpha_0 = 4, \ \lambda_0 = 1, \ v \equiv 1 \pmod{8}, \\ \alpha_0 = 4, \ \lambda_0 = 2, \ v \equiv 5 \pmod{8}, \\ \alpha_0 = 2, \ \lambda_0 = 4, \ v \equiv 2 \pmod{4}, \\ \alpha_0 = 4, \ \lambda_0 = 4, \ v \equiv 3 \pmod{4}. \end{cases}$$

Lemma 2.1 There exists a resolvable 4-CS(v, 2) for $v \equiv 0 \pmod{4}$.

Proof Since $\alpha_0 = 1$, the conclusion follows from Lemma 1.1.

Lemma 2.2 There exists a 4-resolvable 4-CS(v, 1) for $v \equiv 1 \pmod{8}$.

Proof Let the point set $X = Z_{8k+1}$, k > 0. A 4-resolvable 4-CS(v, 1) contains $\frac{\lambda v(v-1)}{2m} = (8k+1) \times k$ cycles and $\frac{\lambda(v-1)}{2\alpha} = k$ 4-resolution classes. Let C consist of the following k cycles:

It is easy to check that the differences of all cycles of C give every value of Z_{8k+1}^* exactly once, which implies that $\{C + i : i \in Z_{8k+1}\}$ forms a 4-CS(v, 1). In addition, for every $C \in C$, $\{C + i : i \in Z_{8k+1}\}$ is a 4-resolution class of the 4-CS(v, 1). So, we derive a 4-resolvable 4-CS(v, 1).

Lemma 2.3 There exists a 4-resolvable 4-CS(v, 2) for $v \equiv 5 \pmod{8}$.

Proof Let the point set $X = Z_{8k+5}$, $k \ge 0$. A 4-resolvable 4-CS(v, 2) contains $(8k+5) \times (2k+1)$ cycles and 2k + 1 4-resolution classes. Let C consist of the following 2k + 1 cycles:

Part 1: Construct k cycles and repeat them twice:

Part 2: Construct 1 cycle:

$$(2k+1, 0, 2k+2, 4k+3).$$

Since the differences of all cycles of C give every value of Z_{8k+5}^* exactly twice, $\{C+i: i \in Z_{8k+5}\}$ forms a 4-CS(v, 2). On the other hand, for every $C \in C$, $\{C+i: i \in Z_{8k+5}\}$ is a 4-resolution class of the 4-CS(v, 2).

Lemma 2.4 There exists a 2-resolvable 4-CS(v, 4) for $v \equiv 2 \pmod{4}$.

Proof Let the point set $X = Z_{4k+1} \cup \{\infty\}, k > 0$. A 2-resolvable 4-CS(v, 4) contains (4k + 1)(2k + 1) cycles and 4k + 1 2-resolution classes. Let C consist of the following 2k + 1 cycles:

Part 1: Construct k cycles:

Part 2: Construct k - 1 cycles:

Part 3: Construct 2 cycles:

 $(\infty, 0, 2k, 4k), (\infty, 3k, k, k-1).$

The differences of all cycles of C give every value of $Z_{4k+1}^* \cup \{\infty\}$ exactly biquadratic, so $\{C + i : i \in Z_{4k+1}\}$ forms a 4-CS(v, 4). Furthermore, C is a 2-resolution class of the 4-CS(v, 4), and $C, C + 1, \ldots, C + 4k$ are all 2-resolution classes. So, a 2-resolvable 4-CS(v, 4) is given. \Box

Lemma 2.5 There exists a 4-resolvable 4-CS(v, 4) for $v \equiv 3 \pmod{4}$.

Proof (1) $v \equiv 3 \pmod{8}$. Let the point set $X = Z_{8k+3}$, k > 0. A 4-resolvable 4-CS(v, 4) contains (8k+3)(4k+1) cycles and 4k+1 4-resolution classes. Let C consist of the following 4k+1 cycles:

Part 1: Construct 2k cycles:

(1,	0,	2,	5),
(5,	0,	6,	13),
(9,	0,	10,	21),
	:		÷	:	
(8	3k - 7	, 0,	8k - 6,	8k - 14),
(8	3k - 3	, 0,	8k - 2,	8k-6).

Part 2: Construct 2k cycles:

(3,	0,	4,	9),
(7,	0,	8,	17),

$$(11, 0, 12, 25),$$

$$\vdots \vdots \vdots$$

$$(8k-5, 0, 8k-4, 8k-10),$$

$$(8k-1, 0, 8k, 8k-2).$$

Part 3: Construct 1 cycle:

(1, 0, 2, 3).

It is easy to check that $\{C + i : i \in Z_{8k+3}\}$ forms a 4-CS(v, 4). In addition, for every $C \in C$, $\{C+i : i \in Z_{8k+3}\}$ is a 4-resolution class of the 4-CS(v, 4). So we derive a 4-resolvable 4-CS(v, 4).

(2) $v \equiv 7 \pmod{8}$. Let the point set $X = Z_{8k+7}$, $k \ge 0$. A 4-resolvable 4-CS(v, 4) contains (8k+7)(4k+3) cycles and 4k+3 4-resolution classes. Let \mathcal{C} consist of the following 4k+3 cycles:

Part 1: Construct k cycles and repeat them biquadratic:

(1,	0,	2,	4k + 4),
(3,	0,	4,	4k+4),
(5,	0,	6,	4k+4),
			÷	:
(2k	-3,	0,	2k - 2,	4k + 4),
(2k	-1,	0,	2k,	4k + 4).

Part 2: Construct 1 cycle and repeat them twice:

$$(2k+1, 0, 2k+2, 4k+4).$$

Part 3: Construct 1 cycle:

$$(2k+1, 0, 2k+3, 4k+4).$$

It is easy to check that $\{C + i : i \in Z_{8k+7}\}$ forms a 4-CS(v, 4). In addition, for every $C \in C$, $\{C + i : i \in Z_{8k+7}\}$ is a 4-resolution class of the 4-CS(v, 4). Therefore, we get a 4-resolvable 4-CS(v, 4).

3. Main result

Combining Lemmas 2.1-2.5, we obtain the main result:

Theorem 3.1 There exists an α -resolvable 4-CS (v, λ) if and only if

$$4|\frac{\lambda v(v-1)}{2}, 2|\lambda(v-1), 4|\alpha v, \alpha|\frac{\lambda(v-1)}{2}$$

References

- GVOZDJAK P. On the Oberwolfach problem for complete multigraphs [J]. Discrete Math., 1997, 173(1-3): 61–69.
- JUNGNICKEL D, MULLIN R C, VANSTONE S A. The spectrum of α-resolvable block designs with block size 3 [J]. Discrete Math., 1991, 97(1-3): 269–277.
- [3] VASIGA T M J, FURINO S, LING A C H. The spectrum of α-resolvable designs with block size four [J]. J. Combin. Des., 2001, 9(1): 1–16.