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Abstract An m-cycle system of order v and index λ, denoted by m-CS(v, λ), is a collection of

cycles of length m whose edges partition the edges of λKv. An m-CS(v, λ) is α-resolvable if its

cycles can be partitioned into classes such that each point of the design occurs in precisely α cycles

in each class. The necessary conditions for the existence of such a design are m|λv(v−1)
2

, 2|λ(v −

1), m|αv, α|λ(v−1)
2

. It is shown in this paper that these conditions are also sufficient when m = 4.
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1. Introduction

Let m, v, λ be positive integers, X a v-set. An edge of X is an unordered pair {x, y} where

x, y are distinct vertices of X . A complete multigraph of order v and index λ, denoted by λKv,

is a graph on X in which each pair of vertices x, y is joined by exactly λ edges {x, y}. A cycle

of length m is a sequence of m distinct vertices u1, u2, . . . , um, denoted by (u1, u2, . . . , um), and

its edge set is {{ui, ui+1} : i = 1, 2, . . . , m − 1} ∪ {{u1, um}}. If the edges of a λKv can be

decomposed into cycles of length m, then these cycles are called an m-cycle system, and denoted

by m-CS(v, λ). An m-CS(v, λ) is said to be α-resolvable if its cycles can be partitioned into

classes (called α-resolution classes) such that each point of the design occurs in precisely α cycles

in each class. A 1-resolvable m-CS(v, λ) is simply called resolvable m-CS(v, λ). The existence of

a resolvable m-CS(v, λ) had been solved completely.

Lemma 1.1
[1] Let λ, d, m be positive integers with m ≥ 3. Then λKdm has a resolvable

m-CS(dm, λ) if and only if λ(dm − 1) is even and except the following cases:

(1) λ ≡ 2 (mod 4), d = 2, m = 3;

(2) λ odd, d = 2, m = 3;

(3) λ = 1, d = 4, m = 3.

When m = 3, the existence of an α-resolvable 3-CS(v, λ) had also been solved.
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Lemma 1.2
[2] An α-resolvable 3-CS(v, λ) exists if and only if

λ(v − 1) ≡ 0 (mod 2), λv(v − 1) ≡ 0 (mod 6), 3|αv, α|
λ(v − 1)

2
,

and (v, α, λ) 6∈ {(6, 1, 4i + 2) : i ≥ 0}.

The purpose of this paper is to investigate the existence of α-resolvable 4-CS(v, λ)s. The

necessary conditions for the existence of such a design are:

4|
λv(v − 1)

2
, 2|λ(v − 1), 4|αv, α|

λ(v − 1)

2
. (∗)

From condition (∗), we can derive minimum values for α and λ, and call them α0 and λ0.

Similarly to the Lammas 2.1–2.3 in [3], we have the following lammas.

Lemma 1.3 If an α-resolvable 4-CS(v, λ) exists, then α0|α, λ0|λ.

Lemma 1.4 If an α-resolvable 4-CS(v, λ) exists, then a tα-resolvable 4-CS(v, nλ) exists for any

positive integers n, t with t|λ(v−1)
2α

.

Lemma 1.5 If an α0-resolvable 4-CS(v, λ0) exists, and α, λ satisfy condition (∗), then an α-

resolvable 4-CS(v, λ) exists.

Thus, in order to show the necessary condition (∗) for the existence of α-resolvable 4-CS(v, λ)s

is also sufficient, we only need to prove the existence of α0-resolvable 4-CS(v, λ0)s.

2. Direct constructions

In order to get the existence of α-resolvable 4-CS(v, λ)s, we need some definitions and marks.

Let m, v be positive integers and ∞ an infinite point. Let Zv be the residue ring of integers modulo

v. Denote Z∗

v = Zv\{0}. Let C be a set of cycles of length m which are constructed on Zv or Zv∪

{∞}. For each cycle C = (c1, c2, . . . , cm) and j ∈ Zv, define C + j to be (c1 + j, c2 + j, . . . , cm + j)

where ∞ + j = ∞ if ∞ ∈ C. Denote C + j = {C + j : C ∈ C} for j ∈ Zv. The differences of

a cycle C = (c1, c2, . . . , cm) mean ±(c2 − c1),±(c3 − c2), . . . ,±(cm − cm−1),±(c1 − cm), where

∞− j = j −∞ = ∞ for any j ∈ Zv.

In what follows, we will get α-resolvable 4-CS(v, λ)s through direct constructions. According

to condition (∗), α0 and λ0 are as follows






























α0 = 1, λ0 = 2, v ≡ 0 (mod 4),

α0 = 4, λ0 = 1, v ≡ 1 (mod 8),

α0 = 4, λ0 = 2, v ≡ 5 (mod 8),

α0 = 2, λ0 = 4, v ≡ 2 (mod 4),

α0 = 4, λ0 = 4, v ≡ 3 (mod 4).

Lemma 2.1 There exists a resolvable 4-CS(v, 2) for v ≡ 0 (mod 4).

Proof Since α0 = 1, the conclusion follows from Lemma 1.1. 2

Lemma 2.2 There exists a 4-resolvable 4-CS(v, 1) for v ≡ 1 (mod 8).
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Proof Let the point set X = Z8k+1, k > 0. A 4-resolvable 4-CS(v, 1) contains λv(v−1)
2m

=

(8k + 1) × k cycles and λ(v−1)
2α

= k 4-resolution classes. Let C consist of the following k cycles:

( 1, 0, 2k, 4k + 1),

( 2, 0, 2k − 1, 4k + 1),

( 3, 0, 2k − 2, 4k + 1),
...

...
...

(k − 1, 0, k + 2, 4k + 1),

( k, 0, k + 1, 4k + 1).

It is easy to check that the differences of all cycles of C give every value of Z∗

8k+1 exactly once,

which implies that {C + i : i ∈ Z8k+1} forms a 4-CS(v, 1). In addition, for every C ∈ C,

{C + i : i ∈ Z8k+1} is a 4-resolution class of the 4-CS(v, 1). So, we derive a 4-resolvable 4-

CS(v, 1). 2

Lemma 2.3 There exists a 4-resolvable 4-CS(v, 2) for v ≡ 5 (mod 8).

Proof Let the point set X = Z8k+5, k ≥ 0. A 4-resolvable 4-CS(v, 2) contains (8k+5)×(2k+1)

cycles and 2k + 1 4-resolution classes. Let C consist of the following 2k + 1 cycles:

Part 1: Construct k cycles and repeat them twice:

( 1, 0, 2, 4k + 3 ),

( 3, 0, 4, 4k + 3 ),

( 5, 0, 6, 4k + 3 ),
...

...
...

(2k − 3, 0, 2k − 2, 4k + 3 ),

(2k − 1, 0, 2k, 4k + 3 ).

Part 2: Construct 1 cycle:

(2k + 1, 0, 2k + 2, 4k + 3 ).

Since the differences of all cycles of C give every value of Z∗

8k+5 exactly twice, {C+ i : i ∈ Z8k+5}

forms a 4-CS(v, 2). On the other hand, for every C ∈ C, {C + i : i ∈ Z8k+5} is a 4-resolution

class of the 4-CS(v, 2). Hence, we get a 4-resolvable 4-CS(v, 2). 2

Lemma 2.4 There exists a 2-resolvable 4-CS(v, 4) for v ≡ 2 (mod 4).

Proof Let the point set X = Z4k+1 ∪ {∞}, k > 0. A 2-resolvable 4-CS(v, 4) contains (4k +

1)(2k + 1) cycles and 4k + 1 2-resolution classes. Let C consist of the following 2k + 1 cycles:

Part 1: Construct k cycles:
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( k, 3k − 1, 3k, k − 2 ),

(k + 1, 3k − 2, 3k + 1, k − 3 ),

(k + 2, 3k − 3, 3k + 2, k − 4 ),
...

...
...

(2k − 2, 2k + 1, 4k − 2, 0 ),

(2k − 1, 2k, 4k − 1, 4k ).

Part 2: Construct k − 1 cycles:

( 1, 2k − 1, 2k + 1, 4k − 1),

( 2, 2k − 2, 2k + 2, 4k − 2),

( 3, 2k − 3, 2k + 3, 4k − 3),
...

...
...

(k − 2, k + 2, 3k − 2, 3k + 2),

(k − 1, k + 1, 3k − 1, 3k + 1).

Part 3: Construct 2 cycles:

(∞, 0, 2k, 4k), (∞, 3k, k, k − 1).

The differences of all cycles of C give every value of Z∗

4k+1 ∪ {∞} exactly biquadratic, so {C + i :

i ∈ Z4k+1} forms a 4-CS(v, 4). Furthermore, C is a 2-resolution class of the 4-CS(v, 4), and

C, C + 1, . . . , C + 4k are all 2-resolution classes. So, a 2-resolvable 4-CS(v, 4) is given. 2

Lemma 2.5 There exists a 4-resolvable 4-CS(v, 4) for v ≡ 3 (mod 4).

Proof (1) v ≡ 3 (mod 8). Let the point set X = Z8k+3, k > 0. A 4-resolvable 4-CS(v, 4)

contains (8k + 3)(4k + 1) cycles and 4k + 1 4-resolution classes. Let C consist of the following

4k + 1 cycles:

Part 1: Construct 2k cycles:

( 1, 0, 2, 5 ),

( 5, 0, 6, 13 ),

( 9, 0, 10, 21 ),
...

...
...

( 8k − 7, 0, 8k − 6, 8k − 14 ),

( 8k − 3, 0, 8k − 2, 8k − 6 ).

Part 2: Construct 2k cycles:

( 3, 0, 4, 9 ),

( 7, 0, 8, 17 ),
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( 11, 0, 12, 25 ),
...

...
...

( 8k − 5, 0, 8k − 4, 8k − 10 ),

( 8k − 1, 0, 8k, 8k − 2 ).

Part 3: Construct 1 cycle:

(1, 0, 2, 3).

It is easy to check that {C + i : i ∈ Z8k+3} forms a 4-CS(v, 4). In addition, for every C ∈ C,

{C+i : i ∈ Z8k+3} is a 4-resolution class of the 4-CS(v, 4). So we derive a 4-resolvable 4-CS(v, 4).

(2) v ≡ 7 (mod 8). Let the point set X = Z8k+7, k ≥ 0. A 4-resolvable 4-CS(v, 4) contains

(8k+7)(4k+3) cycles and 4k+3 4-resolution classes. Let C consist of the following 4k+3 cycles:

Part 1: Construct k cycles and repeat them biquadratic:

( 1, 0, 2, 4k + 4 ),

( 3, 0, 4, 4k + 4 ),

( 5, 0, 6, 4k + 4 ),
...

...
...

(2k − 3, 0, 2k − 2, 4k + 4 ),

(2k − 1, 0, 2k, 4k + 4 ).

Part 2: Construct 1 cycle and repeat them twice:

(2k + 1, 0, 2k + 2, 4k + 4 ).

Part 3: Construct 1 cycle:

(2k + 1, 0, 2k + 3, 4k + 4 ).

It is easy to check that {C + i : i ∈ Z8k+7} forms a 4-CS(v, 4). In addition, for every C ∈ C,

{C + i : i ∈ Z8k+7} is a 4-resolution class of the 4-CS(v, 4). Therefore, we get a 4-resolvable

4-CS(v, 4). 2

3. Main result

Combining Lemmas 2.1–2.5, we obtain the main result:

Theorem 3.1 There exists an α-resolvable 4-CS(v, λ) if and only if

4|
λv(v − 1)

2
, 2|λ(v − 1), 4|αv, α|

λ(v − 1)

2
.
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