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1. Introduction

We first give some definitions and notations.

A generalized convex space or a G-convex space (X, D; Γ) consists of a topological space X

and a nonempty set D such that, for each A = {a0, a1, . . . , an} ∈ 〈D〉, there exist a subset

Γ(A) of X and a continuous function φA : ∆n → Γ(A) such that J ⊂ {0, 1, . . . , n} implies

φA(∆J) ⊂ Γ({aj : j ∈ J}), where, 〈D〉 denotes the set of all nonempty finite subset of D, ∆n an

n-simplex with vertices v0, v1, . . . , vn, and ∆J = co {vj : j ∈ J}, the face of ∆n corresponding

to J . Let ΓA = Γ(A) for each A ∈ 〈D〉.

There are a lot of examples of G-convex spaces[1]. The typical example of G-convex space is

any nonempty convex subset of a topological vector space.

In this paper, we assume that D ⊂ X , and (X, D; Γ) will be denoted by (X ; Γ) if D = X .

For a G-convex space (X, D; Γ), a subset Y ⊂ X is said to be Γ-convex if each N ∈ 〈D〉, N ⊂

Y implies ΓN ⊂ Y .

Let X and Y be two topological spaces. A multimap (simply, a map) T : X ⊸ Y is a

function from X into the power set 2Y of Y . Denote T (A) =
⋃
{T (x) : x ∈ A} for A ⊂ X.

A map T : X ⊸ Y is called upper [resp. lower] semicontinuous (simply, u.s.c. [resp. l.s.c.])

if for each closed[resp. open] subset C of Y , T−(C) = {x ∈ X : T (x) ∩ C 6= ∅} is closed [resp.

open] in X ; and T is called compact if T (X) = {y ∈ Y : y ∈ T (x), x ∈ X} is contained in a
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compact subset of Y ; T is said to be closed if the graph Gr(T ) of T is closed in X × Y .

Definition 1 Let X be a nonempty set, (Y, D; Γ) a G-convex space, Z a topological space. If

S : X ⊸ D is a multimap such that S(x) ∈ 〈D〉 for each x ∈ X , T : Y ⊸ Z and F : X ⊸ Z are

two multimaps satisfying T (ΓS(N)) ⊂ F (N) for each N ∈ 〈X〉, then F is called a gengeralized

S-KKM mapping with respect to T . If a multimap T : Y ⊸ Z satisfies that for each generalized

S-KKM mapping F with respect to T the family {F (x) : x ∈ X} has the finite intersection

property, then T is said to have the S-KKM property. The set {T : Y ⊸ Z|T has the S-KKM

property} is denoted by the class S-KKM(X,Y,D,Z), and S-KKM(X, Y, D, Z) is denoted by S-

KKM(X, Y, Z) if D = Y .

Definition 2[2] A locally G-convex uniform space is a G-convex space (X, D; Γ, U) satisfying

the following conditions:

(i) X is a uniform space with the basis ν for the uniform structure U;

(ii) D is a dense subset of X ;

(iii) For each V ∈ ν and each x ∈ X , V [x] = {x′ ∈ X : (x, x′) ∈ V } is Γ-convex.

Definition 3 Let Y be a topological space, (X, D; Γ) a G-convex space. A map T : Y ⊸ X is

called a Φ-map if there exists a map S : Y ⊸ D such that

(i) For each y ∈ Y , M ∈ 〈S(y)〉 implies ΓM ⊂ T (y);

(ii) Y = {IntS−(x) : x ∈ D}.

Definition 4 G-convex space (X, D; Γ) is called a Φ-space if X is a uniform space and for each

entourge V , there is a Φ-map T : X ⊸ X such that Gr(T ) ⊂ V .

Definition 5 Let (X, D; Γ) be a G-convex space and Y a topological space. We define the

better admissible class B of multimaps from X into Y as follows:

F ∈ B(X, Y ) ⇐⇒ F : X ⊸ Y is a multimap such that for any N ∈ 〈D〉 with |N | = n + 1

and any continuous map p : F (ΓN ) → ∆n, the composition

∆n
φN

−→ ΓN

F |ΓN−→ F (ΓN )
p

−→ ∆n

has a fixed point.

And we define the following two important multimaps:

F ∈ V(X, Y ) ⇐⇒ F : X ⊸ Y is an acyclic map; that is, a u.s.c multimap with compact

acyclic values;

F ∈ Vc(X, Y ) ⇐⇒ F : X ⊸ Y is a finite composition of acyclic maps, where the intermediate

spaces are topological.

Remark It is known that Vc(X, Y ) ⊂ B(X, Y ), and that any map in Vc(X, Y ) is closed[3].

Definition 6 Let Y be a real Hausdorff topological vector space with a convex cone K such

that IntK 6= ∅ and K 6= Y , and C a nonempty subset of Y .

(1) A point y ∈ C is called a vector minimal point of C if for any y ∈ C, y − y /∈ K\{0}.
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The set of all the vector minimal points of C is denoted by MinKC.

(2) A point y ∈ C is called a weakly vector minimal point of C if for any y ∈ C, y−y /∈ IntK.

The set of all the weakly vector minimal points of C is denoted by WMinKC.

Definition 7 Let X and Y be two topological spaces, T : X ⊸ Y a multimap, f : X → Y

a single valued continuous map. If f(x) ∈ T (x) for all x ∈ X , then f is called a continuous

selection of T .

Definition 8 Let X be a nonempty set, (Y, D; Γ) a G-convex space. The map S : X ⊸ D

is said to have Γ-invariable property, if for each x ∈ X , S(x) ∈ 〈D〉 and for each A ∈ 〈X〉,

ΓS(A) = Γ{ωa: a∈A} for any ωa ∈ S(a).

Obviously, if S : X → D is a single valued map, then S has Γ-invariable property.

2. Almost fixed point theorem and fixed point theorems

Theorem 1 Let (X, D; Γ, U) be a locally G-convex uniform space, ν a basis of the uniform struc-

ture U, I a nonempty set, and S : I ⊸ D have Γ-invariable property. If T ∈ S-KKM(I, X, D, X)

is a compact map and T (X) ⊂ S(I), then T : X ⊸ X has the almost fixed point property; that

is, for each V ∈ ν, there exists an xV ∈ X such that V [xV ]
⋂

T (xV ) 6= ∅.

Proof We may assume that each V ∈ ν is an open symmetric element. Define a map F : I ⊸ X

by F (z) = T (X)\
⋃

ω∈S(z) V [ω] for each z ∈ I.

For each y ∈ T (X), since T (X) ⊂ S(I), y ∈ S(I) and V [y] is open neighborhood of y,

V [y] ∩ S(I) 6= ∅, which implies that there exist a z ∈ I and x ∈ S(z) such that x ∈ V [y]. Hence

y ∈ V [x] ⊂
⋃

x̂∈S(z) V [x̂], and therefore T (X) ⊂
⋃

z∈I

⋃
x∈S(z) V [x].

Since T is compact, of course, T (X) is compact. Therefore there exist N = {z1, z2, . . . , zn} ∈

〈I〉 and {ωi,j ∈ S(zi) : j = 1, 2, . . . , ki}n
i=1 such that

T (X) ⊂
n⋃

i=1

ki⋃

j=1

V [ωi,j ] ⊂
⋃

z∈N

⋃

ω∈S(z)

V [ω].

Note that F (z) is closed for each z ∈ I and
⋂

z∈N

F (z) = T (X)\
⋃

z∈N

⋃

ω∈S(z)

V [ω] ⊂ T (X)\T (X) = ∅,

hence {F (z)}z∈I does not have the finite intersection property. Since T ∈ S-KKM(I, X, D, X),

there exists M ∈ 〈I〉 such that T (ΓS(M)) * F (M). Hence there exist xV ∈ ΓS(M) and p ∈ T (xV )

such that p /∈ F (M) =
⋃

m∈M F (m) =
⋃

m∈M

(
T (X)\

⋃
ω∈S(m) V [ω]

)
. But p ∈ T (xV ) ⊂

T (X) ⊂ T (X), hence p ∈
⋃

ω∈S(m) V [ω] for all m ∈ M , which implies that for any m ∈ M there

exists ωm ∈ S(m) such that p ∈ V [ωm], that is, ωm ∈ V [p], hence {ωm ∈ S(m) : m ∈ M} ⊂

D
⋂

V [p]. By Definitions 2 and 8, we have that xV ∈ ΓS(M) = Γ{ωm∈S(m):m∈M} ⊂ V [p], and

hence p ∈ V [xV ]. This implies that T (xV )
⋂

V [xV ] 6= ∅.

Remarks 1) Note that D is assumed to be a dense subset of X in Definition 2. But from the
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proof of Theorem 1, we can find that this condition is superfluous in Theorem 1.

2) S having Γ-invariable property can be replaced by S being a single valued map.

3) The condition T (X) ⊂ S(I) can be replaced by one of the following conditions: (i) T (X) ⊂

S(I); (ii) T (X) ⊂ S(I); (iii) there exists a subset X0 ⊂ S(I) such that T (X) ⊂ X0.

4) The compactness of T can be replaced by the following weaker condition: there exists

an N ∈ 〈I〉 such that T (X) ⊂ S(N). In fact, it is easy to prove that for each V ∈ ν, T (X) ⊂
⋃

z∈N

⋃
ω∈S(z) V [ω].

From Theorem 1, we can obtain the following fixed point theorem for multimap having the

S-KKM property on Hausdorff locally G-convex uniform space.

Theorem 2 Let (X, D; Γ, U) be a Hausdorff locally G-convex uniform space, ν a basis of the

uniform structure U, I a nonempty set, and S : I ⊸ D have Γ-invariable property. If T ∈ S-

KKM(I, X, D, X) is a compact closed map and T (X) ⊂ S(I), then T : X ⊸ X has a fixed point.

Proof For each V ∈ ν, there exists an xV ∈ X such that T (xV )
⋂

V [xV ] 6= ∅ by Theorem 1.

Take yV ∈ T (xV )
⋂

V [xV ], then (xV , yV ) ∈ Gr(T ) and (xV , yV ) ∈ V . Obviously, {yV }V ∈ν is a

net in the compact set T (X), so {yV }V ∈ν has a convergent subnet. We may assume that {yV }V ∈ν

itself converges and {yV } → x0 ∈ T (X). On the other hand, X is Hausdorff and (xV , yV ) ∈ V

for all V ∈ ν, hence xV → x0. But Gr(T ) is closed in X × X , therefore (x0, x0) ∈ Gr(T ). This

implies that x0 ∈ T (x0). 2

Remarks 1) S : X ⊸ D having Γ-invariable property can be replaced by S being a single

valued map.

2) The condition T (X) ⊂ S(I) can be replaced by one of the following conditions: (i) T (X) ⊂

S(I); (ii) T (X) ⊂ S(I); (iii) there exists a subset X0 ⊂ S(I) such that T (X) ⊂ X0.

3) The compactness of T can be replaced by the compactness of X .

4) The closedness of T can be replaced by the upper semi-continuity of T with closed values.

5) If I = X = D is a nonempty convex subset of a topological vector space, S is a single valued

map and T (X) ⊂ S(X) instead of T (X) ⊂ S(X), then Theorem 2 becomes the corresponding

result in [4]; If I = X = D is an H-space, S is a single valued map and T (X) ⊂ S(X) instead

of T (X) ⊂ S(X), then Theorem 2 becomes the corresponding result in [5]; If I = X = D is

a G-convex space, S is a single valued map and T (X) ⊂ S(X) instead of T (X) ⊂ S(X), then

Theorem 2 becomes the corresponding result in [6]. And the method of our proof is completely

different from those in [4], [5] and [6]. Using their method, there must be T (X) ⊂ S(X) instead

of T (X) ⊂ S(X) even if I = D = X and S is a single valued map.

From now on, we only consider the case that S : X ⊸ D is a single valued map, and S is

denoted by s.

Theorem 3 Let X be a nonempty set, (Y, Γ) a G-convex space, Z and W two topological

spaces, s : X → Y a single valued map. If T ∈ s-KKM(X, Y, Z) and f ∈ C(Z, W), then fT ∈ s-

KKK(X, Y, W ).
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Proof Let F : X ⊸ W be a generalized s-KKM map with respect to fT , and assume that

for each x ∈ X , F (x) is closed. If each N ∈ 〈X〉 satisfies fT (Γs(N)) ⊂ F (N), then T (Γs(N)) ⊂

f−1F (N) =
⋃

x∈N f−1F (x), which implies that f−1F is a generalized s-KKM map with respect

to T and for each x ∈ X , f−1F (x) is closed. Since T ∈ s-KKM(X, Y, Z), {f−1F (x) : x ∈ X}

has the finite intersection property, and so does the family {F (x) : x ∈ X}, we have fT ∈ s-

KKK(X, Y, W ). 2

Remark Theorem 3 improves the corresponding result in [4] and [6].

Lemma 1[7] Let Y be a Hausdorff space, (X, D; Γ) a G-convex space, and T : Y ⊸ X a Φ-map.

Then for any nonempty compact subset K of Y , T |K has a continuous selection f : K → X

such that F (K) ⊂ ΓN for some N ∈ 〈D〉. More precisely, there exist two continuous functions

p : K → ∆n and φN : ∆n → ΓN such that f = φN ◦ p for some N ∈ 〈D〉 with |N | = n + 1.

From Theorem 2, Theorem 3 and Lemma 1, we can obtain a coincident point theorem for

two multimaps or a fixed point theorem for composition of two multimaps.

Theorem 4 Let (X, Γ, U) be a Hausdorff locally G-convex uniform space, ν a basis of the

uniform structure U, Y a compact Hausdorff space, and s : X → X a map such that s(X) is

dense in X . If T ∈ s-KKM(X, X, Y ) is a closed map, then for any Φ-map F : Y ⊸ X , FT and

TF have a fixed point in X and Y , respectively.

Proof In view of Lemma 1, F has a continuous selection f : Y → X ; and by Theorem 3,

fT ∈ s-KKK(X, X, X). Since f is continuous and Y is compact, fT is a compact map. And

since T is a closed map and f is continuous, fT is also a closed map. On the other hand,

fT (X) ⊂ X = s(X), then by Theorem 2 with I = D = X , fT has a fixed point x0 ∈ X , that

is, x0 ∈ fT (x0). So there exists a y0 ∈ T (x0) such that x0 = f(y0) ∈ F (y0), which implies that

x0 ∈ FT (x0) and y0 ∈ TF (y0). 2

From Theorem 4, we can obtain the following three fixed point corollaries:

Corollary 1 Let (X, Γ, U) be a Hausdorff locally G-convex uniform space, ν a basis of the

uniform structure U, Y a compact Hausdorff space. If T ∈ idX -KKM(X, X, Y ) is a closed map,

then for any Φ-map F : Y ⊸ X , FT and TF have a fixed point in X and Y , respectively.

Proof Put s = idX : X → X to be an identity map in Theorem 4. 2

Corollary 2 Let (X, Γ, U) be a compact Hausdorff locally G-convex uniform space, ν a basis

of the uniform structure U, s : X → X a surjective map. If idX ∈ s-KKM(X, X, X), then any

Φ-map F : X ⊸ X has a fixed point in X .

Proof Put T = idX : X → X to be an identity map and let Y = X in Theorem 4. 2

Corollary 3 Let (X, Γ, U) be a compact Hausdorff locally G-convex uniform space, ν a basis of

the uniform structure U. If idX ∈ idX -KKM(X, X, X), then any Φ-map F : X ⊸ X has a fixed

point in X .
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Proof Put s = T = idX : X → X to be an identity map and let Y = X in Theorem 4. 2

3. Quasi-variational inequality on Φ-spaces

In this part, we use the well-known fixed point theorem for acyclic map on Φ-space to establish

quasi-variational inequality theorem. First, we introduce some well-known results.

Lemma 2[8] Let C be a nonempty compact subset of a real Hausdorff topological vector space

Y with a closed convex cone K such that K 6= Y , then MinKC 6= ∅.

Lemma 3[3] Let (X, D; Γ) be a Hausdorff Φ-space and F ∈ B(X, X). If F is closed and

compact, then F has a fixed point.

In view of Lemma 3 and Remark after Definition 5, we have the following lemma.

Lemma 4 Let (X, D; Γ) be a Hausdorff Φ-space. Then any compact map F ∈ Vc(X, X) has a

fixed point.

Lemma 5[9] Let (X, D; Γ) be a G-convex space, Y a Γ-convex subset of X with Y
⋂

D 6= ∅.

Then (Y, Y
⋂

D, Γ) is also a G-convex space.

Now, we give a quasi-variational inequality theorem on Φ-space.

Theorem 5 Let (Z, D; Γ1) be a G-convex space, (X, Γ2) a Hausdorff Φ-space, Y a Hausdorff

topological vector space with a closed convex cone K such that K 6= Y and IntK 6= ∅. Let

S : X ⊸ X be a continuous compact multimap with nonempty compact values such that S(X)

is a Γ-convex subset of X , T : X ⊸ Z a Φ-map, C a subset of Z such that T (X) ⊂ C. If

Ψ : X × C × X → Y is a continuous mapping such that for each (x, z) ∈ X × C, the set

G(x, z) = {u ∈ S(x) : Ψ(x, z, u) ∈ WMinKΨ(x, z, S(x))} is acyclic, then there exist x ∈ S(x)

and z ∈ T (x) such that Ψ(x, z, x) − Ψ(x, z, x) /∈-IntK for all x ∈ S(x).

Proof Since S : X ⊸ X is a compact map, S(X) : = X0 is compact. By Lemma 1, T |X0
has a

continuous selection f , that is, there exists a continuous map f : X0 → X such that f(x) ∈ T (x)

for all x ∈ X0 ⊂ X . Obviously, S|X0
: X0 ⊸ X0 and Ψ|X0×C×X0

: X0 × C × X0 → Y are still

continuous maps.

Define two multimaps as follows

H : X0 ⊸ X0 by H(x) = {u ∈ S(x) : Ψ(x, f(x), u) ∈ WMinKΨ (x, f(x), S(x))} for each

x ∈ X0; and

M : X0 ⊸ Y by M(x) = WMinKΨ (x, f(x), S(x)) for each x ∈ X0.

Since S is a continuous map with nonempty compact values, and Ψ and f are both continuous,

Ψ(x, f(x), S(x)) is a nonempty compact subset of Y . It follows from Lemma 2 that M(x) 6= ∅

for all x ∈ X0.

First, we prove that M is a closed map.

Let {(xj , yj)}j∈J be a net in Gr(M) ⊂ X0 ×Y such that (xj , yj) → (x0, y0) ∈ X0 ×Y . Then

yj ∈ M(xj) for each j ∈ J , hence there exists an sj ∈ S(xj) such that yj = Ψ(xj , f(xj), sj).
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Since S is continuous, and X0 and S(x) are both compact for each x ∈ X , S(X0) is a compact

subset of X and S is closed map on X0. And since sj ∈ S(xj) ⊂ S(X0) for each j ∈ J , we

assume that sj → s0 for some s0 ∈ s(X0). Since sj ∈ S(xj) and S is closed map, s0 ∈ S(x0).

Hence y0 = Ψ(x0, f(x0), s0) by the continuty of Ψ and f . Of course, y0 ∈ Ψ(x0, f(x0), S(x0)).

Suppose that y0 /∈ M(x0), then by the definition of WMinK , there exists s∗ ∈ S(x0) such that

Ψ(x0, f(x0), s
∗) − y0 ∈-IntK. Let y∗ = Ψ(x0, f(x0), s

∗). Then y∗ − y0 ∈-IntK. Since xj → x0,

s∗ ∈ S(x0), S is lower semicontinuous on X0, there exists a net {s∗j} such that s∗j ∈ S(xj) and

s∗j → s∗. Let y∗
j = Ψ(xj , f(xj), s

∗
j ). Then y∗

j → Ψ(x0, f(x0), s
∗) = y∗ and y∗

j − yj → y∗ − y0 by

the continuty of Ψ and f . But y∗ − y0 ∈-IntK, hence for j large enough, y∗
j − yj ∈-IntK, which

contradicts yj ∈ M(xj). Thus y0 ∈ M(x0), which means that M is a closed map.

Next, we prove that H : X0 → X0 is a closed valued map.

Let {(xj , uj)}j∈J be a net in Gr(H) ⊂ X0 × X0 such that (xj , uj) → (x0, u0) ∈ X0 × X0.

Then uj ∈ H(xj) for all j ∈ J , which implies that uj ∈ S(xj) and Ψ(xj , f(xj), uj) ∈ M(xj)

for all j ∈ J . Since S is closed, u0 ∈ S(x0). On the other hand, since f and Ψ are continuous,

and M is a closed map, Ψ(xj , f(xj), uj) → Ψ(x0, f(x0), u0) ∈ M(x0), so that u0 ∈ H(x0), that

is, (x0, u0) ∈ Gr(H). This means that H is a closed map on X0. And since X0 is compact, H

is upper semicontinuous map. Notice that X0 is Haudorff space, therefore H is a closed valued

map.

Since (X, Γ2) is a Hausdorff Φ-space and X0 is a Γ-convex subset of X , (X0, Γ2) is also

a Hausdorff Φ-space by Lemma 5 and the definition of Φ-space. In view of given condition,

H(x) = G(x, f(x)) is acyclic, therefore H : X0 ⊸ X0 satisfies all conditions in Lemma 4, so

that there exists an x ∈ X0 such that x ∈ H(x), that is, x ∈ {u ∈ S(x) : Ψ(x, f(x), u) ∈

WMinKΨ(x, f(x), S(x))}. Let z = f(x) ∈ T (x). Then x ∈ S(x) ⊂ X , z ∈ T (x) and Ψ(x, z, x) ∈

WMinKΨ(x, z, S(x)). Therefore, Ψ(x, z, x) − Ψ(x, z, x) /∈-IntK for all x ∈ S(x). 2
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