Minimal Hausdorff Measure of the Scattered Cantor Sets

LI Jin Jun ${ }^{1}$, LU Shi Pan²
(1. Department of Mathematics, Zhangzhou Normal University, Fujian 363000, China;
2. Teachers College, Jimei University, Fujian 361021, China)

(E-mail: li-jinjun@163.com)

Abstract

In this paper, we construct a scattered Cantor set having the value $\frac{1}{2}$ of $\frac{\log 2}{\log 3}$ dimensional Hausdorff measure. Combining a theorem of Lee and Baek, we can see the value $\frac{1}{2}$ is the minimal Hausdorff measure of the scattered Cantor sets, and our result solves a conjecture of Lee and Baek.

Keywords scattered Cantor set; minimal Hausdorff measure.
Document code A
MR(2000) Subject Classification 28A78
Chinese Library Classification O174.12

1. Introduction

We start with the definition of the scattered Cantor sets. Let E_{0} be the interval $[0,1]$. Take two non-overlapping intervals of length 3^{-1} from E_{0} and let E_{1} be the union of these 2 intervals. Take two non-overlapping intervals of length 3^{-2} from each fundamental interval of E_{1} and let E_{2} be the union of these 2^{2} intervals. We continue in this way, with E_{k} obtained by taking two non-overlapping intervals of length 3^{-k} from each fundamental interval of E_{k-1}. Thus E_{k} consists of 2^{k} intervals of length 3^{-k}. Let

$$
F=\bigcap_{k=0}^{\infty} E_{k}
$$

The set F is called a scattered Cantor set.
The middle-third Cantor set is clearly a scattered Cantor set. Varying the positions of the fundamental intervals, one can easily construct many different scattered Cantor sets.

Let $s=\log 2 / \log 3$. It is known that the scattered Cantor sets all have Hausdorff dimension s, with s-dimensional Hausdorff measures at most 1. As the s-dimensional Hausdorff measure of the middle-third Cantor set is 1 , it is one of the biggest scattered Cantor sets in the sense of Hausdorff measure. Lee and Baek ${ }^{[2]}$ proved $\mathcal{H}^{s}(F) \geq \frac{1}{2}$ for all scattered Cantor sets F. They conjectured that there are scattered Cantor sets of Hausdorff measure

$$
\mathcal{H}^{s}(F)=\frac{1}{2}
$$

Received date: 2007-08-22; Accepted date: 2008-05-21
Foundation item: the National Natural Science Foundation of China (No. 10771164); the Education Committee of Fujian Province (No. JA08155).

In this paper, we shall construct a scattered Cantor set E and prove that its s-dimensional Hausdorff measure is $\frac{1}{2}$.

We recall that ${ }^{[1]}$ the s-dimensional Hausdorff measure of F is defined by

$$
\mathcal{H}^{s}(F)=\lim _{\delta \rightarrow 0} \mathcal{H}_{\delta}^{s}(F)
$$

where

$$
\mathcal{H}_{\delta}^{s}(F)=\inf \left\{\sum_{n=1}^{\infty}\left|U_{n}\right|^{s}:\left\{U_{n}\right\}_{n=1}^{\infty} \text { is a } \delta \text {-cover of } F\right\}
$$

and the Hausdorff dimension of F is defined by

$$
\operatorname{dim}_{H}(F)=\sup \left\{s>0: \mathcal{H}^{s}(F)=\infty\right\}=\inf \left\{s>0: \mathcal{H}^{s}(F)=0\right\}
$$

2. Construction of E

Let $I=[0,1]$.
Step 1. Deleting the middle third open interval of I, we get two subintervals I_{0} and I_{1} of length $3^{-1} . I_{0}$ and I_{1} are arranged from the left to the right. Move $I_{0} 6^{-1}$ to the right and $I_{1} 6^{-1}$ to the left. For the sake of the convenience, we still denote the moved intervals by I_{0} and I_{1} and we will all use this way to label the moved intervals in the sequel. Then I_{0} joins I_{1} non-overlapped and form a interval, denoted by E_{1}^{1}, with length $\frac{2}{3}$.

Step 2. Deleting the middle third open intervals of I_{0} and I_{1}, respectively, we get four subintervals I_{00}, I_{01}, I_{10} and I_{11}. They are arranged from the left to the right and their lengths are same, namely, 3^{-2}. Move $I_{00} 3^{-2}$ to the right and $I_{11} 3^{-2}$ to the left. After these processes, the four subintervals join together non-overlapped and form an interval E_{1}^{2} with length $4 \cdot 3^{-2}$.

Step 3. For every subinterval of the above interval, namely, I_{00}, I_{01}, I_{10} and I_{11}, we remove the middle third open intervals of length 3^{-3}, and get eight subintervals with length 3^{-3}. They are arranged from the left to the right and denoted by $I_{000}, I_{001}, I_{010}, I_{011}, I_{100}, I_{101}, I_{110}$, and I_{111}. Move $I_{000} 3^{-3}$ to the right and $I_{011} 3^{-3}$ to the left. After these processes, the four subintervals, $I_{000}, I_{001}, I_{010}$ and I_{011}, join together non-overlapped and form an interval with length $4 \cdot 3^{-3}$; In the same way, move $I_{100} 3^{-3}$ to the right and $I_{111} 3^{-3}$ to the left and we get another interval with length $4 \cdot 3^{-3}$. It is not difficult to see that the gap between the two intervals is $2 \cdot 3^{-3}$.

We call $I_{\varepsilon_{1}}, I_{\varepsilon_{1} \varepsilon_{2}}$ and $I_{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}$ the basic interval of level-1, the basic interval of level- 2 and the basic interval of level-3, respectively, where $\varepsilon_{i} \in\{0,1\}$. Generally, we call $I_{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \ldots \varepsilon_{k}}$ basic interval of level- k, where $\varepsilon_{i} \in\{0,1\}$. Therefore, after Step 3 , we get two intervals E_{1}^{3}, E_{2}^{3}, and every interval is made up of four basic interval of level-3.

Continuing the above process, after step $k(k \geq 3)$, we get 2^{k-2} intervals and every interval is made up of four basic intervals of level- k with length 3^{-k}. The 2^{k-2} intervals are arranged from the left to the right and denoted by $E_{i}^{k}\left(i=1,2,3, \ldots, 2^{k-2}\right)$. For the sake of convenience, we only show how to get E_{1}^{k+1} and E_{2}^{k+1} from E_{1}^{k}. The other intervals, $E_{i}^{k}\left(i=2,3, \ldots, 2^{k-2}\right)$,
are treated in the same way. For E_{1}^{k}, recall that it contains four basic intervals of level- k. For each one of the four basic intervals of level- k, we delete the middle third open interval and get eight subintervals with length $3^{-(k+1)}$. Then we treat the eight subintervals as in Step 3, and get two new intervals, namely, E_{1}^{k+1} and E_{2}^{k+1}.

Let

$$
E=\bigcap_{k=3}^{\infty} \bigcup_{i=1}^{2^{k-2}} E_{i}^{k}
$$

Then E is exactly the scattered Cantor set which we need. By a simple calculation, we can see that the diameter of E is $\frac{1}{3}$.

Theorem 1 Let E be defined as the above. Then $\mathcal{H}^{s}(E) \leq \frac{1}{2}$, where $s=\frac{\log 2}{\log 3}$.

3. Proof of Theorem 1

Proof For any $\delta>0, \varepsilon>0$. We can choose $k \in \mathbb{N}(k \geq 3)$ such that $4 \cdot 3^{-k}<\delta$, then choose $n \in \mathbb{N}$ such that $2^{-n-2}<\varepsilon$. First, we note that every interval $E_{i}^{k}\left(i=1,2,3, \ldots, 2^{k-2}\right)$ is decomposed into 2^{n} intervals $E^{(k+n)}$ with length $4 \cdot 3^{-(k+n)}$ at step $k+n$. They are arranged from the left to the right and denoted by $E_{i, 1}^{k+n}, E_{i, 2}^{k+n}, \ldots, E_{i, 2^{n}}^{k+n}$ (So, at step $k+n$, we get 2^{k+n-2} intervals with length $4 \cdot 3^{-(k+n)}$ in all). Let $a\left(E_{i, 1}^{k+n}\right)$ be the left endpoint of $E_{i, 1}^{k+n}, b\left(E_{i, 2^{n}}^{k+n}\right)$ be the right endpoint of $E_{i, 2^{n}}^{k+n}\left(i=1,2,3, \ldots, 2^{k-2}\right)$. By a simple calculation, we have

$$
\begin{aligned}
b\left(E_{i, 2^{n}}^{k+n}\right)-a\left(E_{i, 1}^{k+n}\right) & =4 \cdot 3^{-k}-2\left(3^{-(k+1)}+\cdots+3^{-(k+n)}\right) \\
& =3^{-k+1}+3^{-(n+k)}<\delta
\end{aligned}
$$

Obviously,

$$
E \subset \bigcup_{i=1}^{2^{k-2}}\left[a\left(E_{i, 1}^{k+n}\right), b\left(E_{i, 2^{n}}^{k+n}\right)\right]
$$

So we can regard $\left\{\left[a\left(E_{i, 1}^{k+n}\right), b\left(E_{i, 2^{n}}^{k+n}\right)\right]\right\}_{i=1}^{2^{k-2}}$ as a δ-cover of E.
By the definition of \mathcal{H}^{s} and note that $(a+b)^{s} \leq a^{s}+b^{s}$ when $a \geq 0, b \geq 0$ and $0 \leq s \leq 1$, we have

$$
\begin{aligned}
\mathcal{H}_{\delta}^{s}(E) & \leq 2^{(k-2)}\left(3^{-k+1}+3^{-(n+k)}\right)^{s} \leq 2^{(k-2)}\left(\left(3^{-k+1}\right)^{s}+\left(3^{-n-k}\right)^{s}\right) \\
& \leq 2^{(k-2)}\left(2^{-k+1}+2^{-k-n}\right)=2^{-1}+2^{-n-2}<2^{-1}+\varepsilon
\end{aligned}
$$

Letting $\delta \rightarrow 0$, we have $\mathcal{H}^{s}(E) \leq \frac{1}{2}+\epsilon$. By the arbitrariness of ε, we get $\mathcal{H}^{s}(E) \leq \frac{1}{2}$.
Remark By Theorem 1 and the result of Lee and Baek, we affirm the conjecture of Lee and Baek.

References

[1] FALCONER K J. Fractal Geometry. Mathematical Foundations and Applications [M]. John Wiley \& Sons, Ltd., Chichester, 1990.
[2] LEE H H, BAEK I S. Hausdorff measure of the scattered Cantor sets [J]. Kyungpook Math. J., 1996, 35(3): 687-693.

