Generalized Macaulay-Northcott Modules and Tor-Groups

LIU Zhong Kui, QIAO Hu Sheng

(Department of Mathematics, Northwest Normal University, Gansu 730070, China) (E-mail: liuzk@nwnu.edu.cn; qiaohs@nwnu.edu.cn)

Abstract Let (S, \leq) be a strictly totally ordered monoid which is also artinian, and R a right noetherian ring. Assume that M is a finitely generated right R-module and N is a left Rmodule. Denote by $[[M^{S,\leq}]]$ and $[N^{S,\leq}]$ the module of generalized power series over M, and the generalized Macaulay-Northcott module over N, respectively. Then we show that there exists an isomorphism of Abelian groups:

$$\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([[M^{S,\leq}]], [N^{S,\leq}]) \cong \bigoplus_{s \in S} \operatorname{Tor}_{i}^{R}(M, N).$$

Keywords generalized Macaulay-Northcott module; ring of generalized power series; Torgroup.

Document code A MR(2000) Subject Classification 16W60; 16E30 Chinese Library Classification 0153.3

1. Introduction

Let R be a ring and (S, \leq) a strictly totally ordered monoid. Assume that $[[R^{S,\leq}]]$ is the ring of generalized power series with coefficients in R and exponents in S. The generalized Macaulay-Northcott modules $[M^{S,\leq}]$ and the generalized power series modules $[[M^{S,\leq}]]$ play an important role in the theory of category of $[[R^{S,\leq}]]$ -modules. For polynomial rings R[x], it was shown in ([1], Theorems 1.2 and 2.1) that there are isomorphisms of Abelian groups $\operatorname{Ext}_{R[x]}^{i}(M[x^{-1}], N[x^{-1}]) \cong \operatorname{Ext}_{R}^{i}(M, N)[[x]]$ for left Noetherian rings R and R-modules $_{R}M$, $_{R}N$, and $\operatorname{Tor}_{i}^{R[x]}(M[x^{-1}], N[x^{-1}]) \cong \operatorname{Tor}_{i-1}^{R}(M, N)[x^{-1}]$ for any rings R and R-modules M_{R} and $_{R}N$. It was shown in ([2], Lemma 2.3) and ([3], Lemma 3.3) that there exists a natural isomorphism of Abelian groups $\operatorname{Hom}_{[[R^{S,\leq}]]}([M^{S,\leq}], [N^{S,\leq}]) \cong [[\operatorname{Hom}_{R}(M, N)^{S,\leq}]]$. More generally, under some additional conditions, it was shown that there exist is of Abelian groups $\operatorname{Ext}_{[[R^{S,\leq}]]}^{i}([M^{S,\leq}], [N^{S,\leq}]) \cong \prod_{s\in S} \operatorname{Ext}_{R}^{i}(M, N)^{[3]}$ and $\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([M^{S,\leq}]], [[N^{S,\leq}]]) \cong [[\operatorname{Tor}_{i}^{R}(M, N)^{S,\leq}]]^{[4]}$. In this paper we will consider the Tor-group determined by a generalized power series module $[[M^{S,\leq}]]_{[[R^{S,\leq}]]}$ and a generalized Macaulay-Northcott module $_{[[R^{S,\leq}]]}[N^{S,\leq}]$ under some additional conditions.

Received date: 2007-06-03; Accepted date: 2008-01-03

Foundation item: the National Natural Science Foundation of China (No. 10961021); the Teaching and Research Award Program for Outsanding Young Teachers in Higher Education Institutions of Ministry of Education (No. NCET-02-080).

All rings considered here are associative with identity. Any concept and notation not defined here can be found in [5]–[7].

Let (S, \leq) be an oddered set. Recall that (S, \leq) is artinian if every strictly decreasing sequence of elements of S is finite, and that (S, \leq) is narrow if every subset of pairwise order-incomparable elements of S is finite. Let S be a commutative monoid. Unless stated otherwise, the operation of S shall be denoted additively, and the neutral element by 0. The following definition is due to [8].

Definition 1.1 Let (S, \leq) be a strictly ordered monoid (that is, (S, \leq) is an ordered monoid satisfying the condition that, if $s, s', t \in S$ and s < s', then s + t < s' + t), and R a ring. Let $[[R^{S,\leq}]]$ be the set of all maps $f: S \longrightarrow R$ such that $\operatorname{supp}(f) = \{s \in S | f(s) \neq 0\}$ is artinian and narrow. With pointwise addition, and the operation of convolution

$$(fg)(s) = \sum_{(u,v)\in X_s(f,g)} f(u)g(v),$$

where $X_s(f,g) = \{(u,v) \in S \times S | s = u + v, f(u) \neq 0, g(v) \neq 0\}$ is a finite set by [8, 4.1] for every $s \in S$ and $f,g \in [[R^{S,\leq}]]$, $[[R^{S,\leq}]]$ becomes a ring, which is called the ring of generalized power series. The elements of $[[R^{S,\leq}]]$ are called generalized power series with coefficients in Rand exponents in S.

Many examples and results of rings of generalized power series are given in [5]–[11].

2. Modules of generalized power series

Let M be a right R-module over a ring R and (S, \leq) a strictly ordered monoid. Denote by $[[M^{S,\leq}]]$ the set of all maps $\phi: S \longrightarrow M$ such that $\operatorname{supp}(\phi) = \{s \in S | \phi(s) \neq 0\}$ is artinian and narrow. With pointwise addition, $[[M^{S,\leq}]]$ is an abelian additive group. For each $f \in [[R^{S,\leq}]]$, each $\phi \in [[M^{S,\leq}]]$, and $s \in S$, denote

$$X_s(\phi, f) = \{(u, v) \in S \times S | s = u + v, \phi(u) \neq 0, f(v) \neq 0\}.$$

Then, by [12, Lemma 1], $X_s(\phi, f)$ is finite. Now $[[M^{S,\leq}]]$ can be turned into a right $[[R^{S,\leq}]]$ -module by the scalar multiplication defined as follows

$$(\phi f)(s) = \sum_{(u,v)\in X_s(\phi,f)} \phi(u)f(v)$$

for each $f \in [[R^{S,\leq}]]$ and each $\phi \in [[M^{S,\leq}]]$. $[[M^{S,\leq}]]$ is called the module of generalized power series over a right *R*-module *M*. The elements of $[[M^{S,\leq}]]$ are called generalized power series with coefficients in *M* and exponents in *S*.

Similarly, if M is a left R-module, then $[[M^{S,\leq}]]$ is a left $[[R^{S,\leq}]]$ -module. Examples and results of modules of generalized power series are given in [12].

Let M, N be right R-modules and $\alpha : M \longrightarrow N$ an R-homomorphism. Define a mapping

 $[[\alpha^{S,\leq}]]:[[M^{S,\leq}]]\longrightarrow [[N^{S,\leq}]]$ via

$$\begin{split} [[\alpha^{S,\leq}]](g): \qquad S \longrightarrow N \\ s \longrightarrow \alpha(g(s)) \end{split}$$

for any $g \in [[M^{S,\leq}]]$. Clearly $\operatorname{supp}([[\alpha^{S,\leq}]](g)) \subseteq \operatorname{supp}(g)$. Thus it follows that $\operatorname{supp}([[\alpha^{S,\leq}]](g))$ is artinian and narrow. Hence $[[\alpha^{S,\leq}]](g) \in [[N^{S,\leq}]]$. This means that $[[\alpha^{S,\leq}]]$ is well-defined. The following results appeared in [3].

Lemma 2.1 (1) $[[\alpha^{S,\leq}]]$ is an $[[R^{S,\leq}]]$ -homomorphism.

(2) If $M \xrightarrow{\alpha} N \xrightarrow{\beta} L$ is a complex, then so is

$$[[M^{S,\leq}]] \xrightarrow{[[\alpha^{S,\leq}]]} [[N^{S,\leq}]] \xrightarrow{[[\beta^{S,\leq}]]} [[L^{S,\leq}]]$$

(3) The functor $[[(-)^{S,\leq}]]$: Mod- $R \longrightarrow Mod-[[R^{S,\leq}]]$ is exact.

Let M be a right R-module. Define a mapping $\alpha: M \otimes_R [[R^{S,\leq}]] \longrightarrow [[M^{S,\leq}]]$ via

$$\alpha(\sum(m_i \otimes f_i))(s) = \sum m_i f_i(s), \quad \forall m_i \in M, \ \forall f_i \in [[R^{S, \leq}]], \ \forall s \in S.$$

Lemma 2.2 If M is a finitely presented right R-module, then α is an isomorphism of right $[[R^{S,\leq}]]$ -modules.

Proof The conclusion follows from [4, Lemma 5].

Example 2.3 The converse of Lemma 2.2 is not true in general. Let R be a ring. Suppose that the monoid S is trivially ordered. Then the artinian and narrow subsets are the finite subsets. Thus for every right R-module M, there exists an isomorphism of right R-modules $[[M^{S,\leq}]] \cong \bigoplus_{s \in S} M$. Similarly, there exists an isomorphism of left R-modules $[[R^{S,\leq}]] \cong \bigoplus_{s \in S} R$. Thus there exists an isomorphism of Abelian groups $\beta : M \otimes_R [[R^{S,\leq}]] \cong M \otimes_R (\bigoplus_{s \in S} R) \cong \bigoplus_{s \in S} (M \otimes_R R) \cong \bigoplus_{s \in S} M \cong [[M^{S,\leq}]]$. It is easy to see that $\alpha = \beta$. Thus, by Lemma 1 of [4], α is an isomorphism of right $[[R^{S,\leq}]]$ -modules. But we can take M such that it is not finitely presented.

The following result appeared in [4, Lemma 7].

Lemma 2.4 If P_R is finitely generated projective, then $[[P^{S,\leq}]]$ is a projective right $[[R^{S,\leq}]]$ -module.

3. Generalized Macaulay-Northcott modules

If M is a left R-module, we let $[M^{S,\leq}]$ be the set of all maps $\phi : S \longrightarrow M$ such that the set $\operatorname{supp}(\phi) = \{s \in S | \phi(s) \neq 0\}$ is finite. Now $[M^{S,\leq}]$ can be turned into a left $[[R^{S,\leq}]]$ -module under some additional conditions. The addition in $[M^{S,\leq}]$ is componentwise and the scalar multiplication is defined as follows

$$(f\phi)(s) = \sum_{t \in S} f(t)\phi(s+t), \text{ for every } s \in S,$$

where $f \in [[R^{S,\leq}]]$, and $\phi \in [M^{S,\leq}]$. Since the set $\operatorname{supp}(\phi)$ is finite, this multiplication is welldefined. If (S,\leq) is a strictly totally ordered monoid which is also artinian, then, from [2], $[M^{S,\leq}]$ becomes a left $[[R^{S,\leq}]]$ -module, which we call the generalized Macaulay-Northcott module.

For example, if $S = \mathbb{N}$ and \leq is the usual order, then $[M^{\mathbb{N},\leq}] \cong M[x^{-1}]$, the usual left R[[x]]-module introduced in [13] and [4], which is called the Macaulay-Northcott module in [14] and [1].

We shall henceforth assume that (S, \leq) is a strictly totally ordered monoid which is also artinian. Then it is easy to see that (S, \leq) satisfies the condition that $0 \leq s$ for every $s \in S^{[15]}$.

For any abelian additive group G, we denote by $[[G^{S,\leq}]]$ the set of all maps $h: S \longrightarrow G$. With pointwise addition, $[[G^{S,\leq}]]$ is an abelian additive group.

For any *R*-homomorphism $\alpha : M \longrightarrow N$, define $f \in [[\operatorname{Hom}_R(M, N)^{S,\leq}]]$ via $f(0) = \alpha$ and f(x) = 0 for all $0 \neq x \in S$. By ([2], Lemma 2.3) and its proof, there exists $[\alpha^{S,\leq}] \in \operatorname{Hom}_{[[R^{S,\leq}]]}([M^{S,\leq}], [N^{S,\leq}])$ such that for any $\phi \in [M^{S,\leq}]$ and any $s \in S$,

$$[\alpha^{S,\leq}](\phi)(s) = \sum_{u \in S} f(u)(\phi(s+u)) = \alpha(\phi(s)).$$

The following result appeared in [3, Lemma 3.2].

Lemma 3.1 The functor $[(-)^{S,\leq}]: R$ -Mod $\longrightarrow [[R^{S,\leq}]]$ -Mod defined as $[(-)^{S,\leq}](M) = [M^{S,\leq}], [(-)^{S,\leq}](\alpha) = [\alpha^{S,\leq}], is exact.$

Lemma 3.2 Let $N \leq M$ be left *R*-modules. Then

$$[M^{S,\leq}]/[N^{S,\leq}] \cong [(M/N)^{S,\leq}]$$

as left $[[R^{S,\leq}]]$ -modules.

Proof The conclusion follows from Lemma 3.1.

Lemma 3.3 Let M be a finitely presented right R-module and N a left R-module. Then there is a natural isomorphism $[[M^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \cong [(M \otimes_R N)^{S,\leq}].$

Proof It is easy to see that there exists an isomorphism of left *R*-modules $[N^{S,\leq}] \cong \bigoplus_{s \in S} N$. By Lemma 2.2, there exists a natural isomorphism of right $[[R^{S,\leq}]]$ -modules $M \otimes_R [[R^{S,\leq}]] \cong [[M^{S,\leq}]]$ since *M* is finitely presented. Now, we have

$$[[M^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \cong (M \otimes_R [[R^{S,\leq}]]) \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}]$$
$$\cong M \otimes_R ([[R^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}])$$
$$\cong M \otimes_R [N^{S,\leq}] \cong M \otimes_R (\oplus_{s\in S} N)$$
$$\cong \oplus_{s\in S} (M \otimes_R N)$$
$$\cong [(M \otimes_R N)^{S,\leq}].$$

Clearly all isomorphisms mentioned above are natural.

4. Tor-groups

Theorem 4.1 Let S be a strictly totally ordered monoid which is also artinian and R a right noetherian ring. If M is a finitely generated right R-module and N is a left R-module, then there exist isomorphisms of Abelian groups:

$$\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([[M^{S,\leq}]],[N^{S,\leq}]) \cong [\operatorname{Tor}_{i}^{R}(M,N)^{S,\leq}] \cong \bigoplus_{s\in S} \operatorname{Tor}_{i}^{R}(M,N).$$

Proof Since R is right noetherian, there exists a projective resolution

$$\cdots \longrightarrow P_2 \xrightarrow{\delta_2} P_1 \xrightarrow{\delta_1} P_0 \xrightarrow{\delta_0} M \longrightarrow 0$$

of M such that P_0, P_1, \ldots are finitely generated and projective. Then, by Lemmas 2.1 and 2.4,

$$\cdots \longrightarrow [[P_2^{S,\leq}]] \longrightarrow [[P_1^{S,\leq}]] \longrightarrow [[P_0^{S,\leq}]] \longrightarrow [[M^{S,\leq}]] \longrightarrow 0$$

is a projective resolution of right $[[R^{S,\leq}]]$ -module $[[M^{S,\leq}]]$. Consider the deleted projective resolution

$$\cdots \longrightarrow [[P_2^{S,\leq}]] \xrightarrow{[[\delta_2^{S,\leq}]]} [[P_1^{S,\leq}]] \xrightarrow{[[\delta_1^{S,\leq}]]} [[P_0^{S,\leq}]] \longrightarrow 0.$$

We have the complex

$$\begin{array}{c} \cdots \longrightarrow [[P_2^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \xrightarrow{[[\delta_2^{S,\leq}]](*)} [[P_1^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \\ \\ \xrightarrow{[[\delta_1^{S,\leq}]](*)} [[P_0^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \xrightarrow{[[\delta_0^{S,\leq}]](*)} 0, \end{array}$$

where $[[\delta_i^{S,\leq}]](*) = [[\delta_i^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} 1_{[N^{S,\leq}]}$ for every $i = 0, 1, \ldots$ On the other hand, we have the complex

$$\cdots \longrightarrow P_2 \otimes_R N \xrightarrow{\delta_2(*)} P_1 \otimes_R N \xrightarrow{\delta_1(*)} P_0 \otimes_R N \xrightarrow{\delta_0(*)} 0,$$

where $\delta_i(*) = \delta_i \otimes_R 1_N$ for every $i = 0, 1, \dots$ Thus, by Lemma 3.1, we have the complex

$$\cdots \longrightarrow [(P_2 \otimes_R N)^{S,\leq}] \xrightarrow{[\delta_2(*)^{S,\leq}]} [(P_1 \otimes_R N)^{S,\leq}]$$
$$\xrightarrow{[\delta_1(*)^{S,\leq}]} [(P_0 \otimes_R N)^{S,\leq}] \xrightarrow{[\delta_0(*)^{S,\leq}]} 0.$$

Clearly P_0, P_1, \ldots are finitely presented. Thus by Lemma 3.3, there exists a natural isomorphism

$$[[P_i^{S,\leq}]] \otimes_{[[R^{S,\leq}]]} [N^{S,\leq}] \cong [(P_i \otimes_R N)^{S,\leq}].$$

Consider the following commutative diagram:

Thus, by Lammas 3.1, 3.2 and 3.3, we have

~ ~

$$\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([[M^{S,\leq}]], [N^{S,\leq}]) = \operatorname{Ker}([[\delta_{i}^{S,\leq}]](*))/\operatorname{Im}([[\delta_{i+1}^{S,\leq}]](*))$$
$$\cong \operatorname{Ker}([\delta_{i}(*)^{S,\leq}])/\operatorname{Im}([\delta_{i+1}(*)^{S,\leq}])$$
$$\cong [\operatorname{Ker}(\delta_{i}(*))^{S,\leq}]/[\operatorname{Im}(\delta_{i+1}(*))^{S,\leq}]$$
$$\cong [(\operatorname{Ker}(\delta_{i}(*))/\operatorname{Im}(\delta_{i+1}(*)))^{S,\leq}]$$
$$= [\operatorname{Tor}_{i}^{R}(M, N)^{S,\leq}].$$

The isomorphism $[\operatorname{Tor}_i^R(M, N)^{S,\leq}] \cong \bigoplus_{s \in S} \operatorname{Tor}_i^R(M, N)$ is clear.

Corollary 4.2 If R is a right noetherian ring, M is a finitely generated right R-module and N is a left R-module, then there exist isomorphisms of Abelian groups

$$\operatorname{Tor}_{i}^{R[[x]]}(M[[x]], N[x^{-1}]) \cong \bigoplus_{n=0}^{\infty} \operatorname{Tor}_{i}^{R}(M, N) \cong \operatorname{Tor}_{i}^{R}(M, N)[x^{-1}].$$

Corollary 4.3 Let S be a torsion-free and cancellative monoid, and (S, \leq) be artinian and narrow. If R is a right noetherian ring, M is a finitely generated right R-module and N is a left R-module, then

$$\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([[M^{S,\leq}]], [N^{S,\leq}]) \cong \bigoplus_{S} \operatorname{Tor}_{i}^{R}(M, N).$$

Proof If (S, \leq) is torsion-free and cancellative, then by [5, 3.3], there exists a compatible strict total order \leq' on S, which is finer than \leq , that is, for any $s, t \in S$, $s \leq t$ implies $s \leq' t$. Since (S, \leq) is artinian and narrow, by [5, 2.5] it follows that (S, \leq') is artinian and narrow. Thus, by Theorem 4.1, $\operatorname{Tor}_{i}^{[[R^{S,\leq'}]]}([[M^{S,\leq'}]], [N^{S,\leq'}]) \cong \bigoplus_{S} \operatorname{Tor}_{i}^{R}(M, N)$.

On the other hand, since (S, \leq) is narrow, by [5, 4.4], $[[R^{S, \leq}]] = [[R^{S, \leq'}]]$. Clearly $[[M^{S, \leq}]] = [[M^{S, \leq'}]]$ and $[N^{S, \leq}] = [N^{S, \leq'}]$. Now the result follows.

Any submonoid of the additive monoid $\mathbb{N} \cup \{0\}$ is called a numerical monoid. We have

Corollary 4.4 Let S be a numerical monoid and \leq the usual natural order of $\mathbb{N} \cup \{0\}$. If R is a right noetherian ring, M is a finitely generated right R-module and N is a left R-module, then

$$\operatorname{Tor}_{i}^{[[R^{S,\leq}]]}([[M^{S,\leq}]], [N^{S,\leq}]) \cong \bigoplus_{S} \operatorname{Tor}_{i}^{R}(M, N).$$

Corollary 4.5 Suppose that $(S_1, \leq_1), \ldots, (S_n, \leq_n)$ are strictly totally ordered monoids which are artinian. Denote by (lex \leq) and (rev lex \leq) the lexicographic order, the reverse lexicographic order, respectively, on the monoid $S_1 \times \cdots \times S_n$. If R is a right noetherian ring, M is a finitely generated right R-module and N is a left R-module, then there exist isomorphisms of Abelian groups

$$\operatorname{Tor}_{i}^{[[R^{S_{1} \times \dots \times S_{n}, (\operatorname{lex} \leq)}]]}([[M^{S_{1} \times \dots \times S_{n}, (\operatorname{lex} \leq)}]], [N^{S_{1} \times \dots \times S_{n}, (\operatorname{lex} \leq)}])$$

$$\cong \operatorname{Tor}_{i}^{[[R^{S_{1} \times \dots \times S_{n}, (\operatorname{rev} \operatorname{lex} \leq)}]]}([[M^{S_{1} \times \dots \times S_{n}, (\operatorname{rev} \operatorname{lex} \leq)}]], [N^{S_{1} \times \dots \times S_{n}, (\operatorname{rev} \operatorname{lex} \leq)}])$$

$$\cong \bigoplus_{S_{1} \times \dots \times S_{n}} \operatorname{Tor}_{i}^{R}(M, N).$$

Proof It is easy to see that $(S_1 \times \cdots \times S_n, (\text{lex} \leq))$ and $(S_1 \times \cdots \times S_n, (\text{rev} \text{lex} \leq))$ are strictly totally ordered monoids which are artinian. Thus the result follows from Theorem 4.1.

References

- [1] PARK S. The Macaulay-Northcott functor [J]. Arch. Math. (Basel), 1994, 63(3): 225–230.
- [2] LIU Zhongkui, CHENG Hui. Quasi-duality for the rings of generalized power series [J]. Comm. Algebra, 2000, 28(3): 1175–1188.
- [3] LIU Zhongkui. The ext-groups of generalized Macaulay-Northcott modules [J]. Vietnam J. Math., 2004, 32(2): 161–169.
- [4] LIU Zhongkui, AHSAN J. The Tor-groups of modules of generalized power series [J]. Algebra Colloq., 2005, 12(3): 477–484.
- [5] RIBENBOIM P. Noetherian rings of generalized power series [J]. J. Pure Appl. Algebra, 1992, 79(3): 293–312.
- [6] RIBENBOIM P. Rings of generalized power series. II. Units and zero-divisors [J]. J. Algebra, 1994, 168(1): 71–89.
- [7] RIBENBOIM P. Special properties of generalized power series [J]. J. Algebra, 1995, 173(3): 566–586.
- [8] RIBENBOIM P. Semisimple rings and von Neumann regular rings of generalized power series [J]. J. Algebra, 1997, 198(2): 327–338.
- [9] VARADARAJAN K. Noetherian generalized power series rings and modules [J]. Comm. Algebra, 2001, 29(1): 245–251.
- [10] LIU Zhongkui. Injectivity of modules of generalized inverse polynomials [J]. Comm. Algebra, 2001, 29(2): 583–592.
- [11] LIU Zhongkui. Morita duality for the rings of generalized power series [J]. Acta Math. Sin. (Engl. Ser.), 2002, 18(2): 245–252.
- [12] LIU Zhongkui. A note on Hopfian modules [J]. Comm. Algebra, 2000, 28(6): 3031–3040.
- [13] MCKERROW A S. On the injective dimension of modules of power series [J]. Quart. J. Math. Oxford, 1974, 25(2): 359–368.
- [14] NORTHCOTT D G. Injective envelopes and inverse polynomials [J]. J. London Math. Soc., 1974, 8(2): 290–296.
- [15] PARK S. Inverse polynomials and injective covers [J]. Comm. Algebra, 1993, 21(12): 4599–4613.