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Abstract Multivariate spline function is an important research object and tool in Compu-

tational Geometry. The singularity of multivariate spline spaces is a difficult problem that is

ineritable in the research of the structure of multivariate spline spaces. The aim of this paper is

to reveal the geometric significance of the singularity of bivariate spline space over Morgan-Scott

type triangulation by using some new concepts proposed by the first author such as characteristic

ratio, characteristic mapping of lines (or ponits), and characteristic number of algebraic curve.

With these concepts and the relevant results, a polished necessary and sufficient conditions for

the singularity of spline space S
µ
µ+1(∆

µ
MS) are geometrically given for any smoothness µ by re-

cursion. Moreover, the famous Pascal’s theorem is generalized to algebraic plane curves of degree

n ≥ 3.
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1. Introduction

Algebraic geometry is the theoretical foundation of multivariate polynomial splines and mul-

tivariate interpolation by polynomial. The definition of multivariate spline is stated as follows

[28]: Let Ω be a given planar polygonal region and ∆ be a triangulation or partition of Ω. The

linear space

Sµ
k (∆) := {s | s|Ti

∈ Pk, s ∈ Cµ(Ω), ∀Ti ∈ ∆}

is called the spline space of degree k with smoothness µ, where Ti is a cell of the ∆ and Pk is

the polynomial space of total degree less than or equal to k.

Previous research has shown that there is an equivalent relationship between the study of the

intrinsic properties of planar algebraic curves and the singularity of bivariate spline spaces. It

thus leads to the possibility of studying intrinsic properties of plane curves by the spline method.
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The singularity of multivariate spline spaces is an important object that is inevitable in the re-

search of the structure of multivariate spline spaces. Morgan and Scott [20] pointed out that the

dimension of the multivariate spline space depends not only on the topological property of its

partition, but also heavily on the geometric property of the partition. Although the singularity of

multivariate spline over any triangulation has not been completely settled to date, many achieve-

ments concerning the structure of multivariate spline space can be found in many of references

published in the past 30 years [1–12, 16, 21, 22, 27, 28]. For Morgan-Scott’s triangulation, Shi [23]

and Diener [12] independently obtained the geometric significance of the necessary and sufficient

condition of dim(S1
2(∆MS)) = 7, respectively. Du [13] obtained another equivalent geometric

necessary and sufficient condition of singularity of S1
2(∆MS) from the viewpoint of the projective

geometry. More precisely, if the six quasi-inner edges are regarded as six points in the projective

plane, then they lie on a conic. Obviously, the equivalence of the results obtained by Shi and

Du is sustained by Pascal’s Theorem: If a hexagon is inscribed in a conic in the project plane,

then the opposite sides of the hexagon meet in collinear points. The equivalent relationship of

the results to the singularity of S1
2(∆MS) can be interpreted clearly in table 1.

S1
2(∆MS) is singular ⇐⇒

∑6
i=1 λil

2
i (x, y, z) = 0 has nonzero solutions

m m

k3k4

k1k2
· k7k8

k5k6
· k11k12

k9k10
= 1[15,24]

Aa, Bb, Cc concurrent[23]
⇐⇒

li(i = 1, 2, . . . , 6) lie on

a conic

Pascal

Theorem

Table 1 The equivalent relation of the singularity

To make an intensive study of the singularity of multivariate spline spaces over triangulations,

Luo & Chen [17] investigated the singularity of the space Sµ
µ+1(∆

µ
MS) (µ ≥ 2) and gave out an

algebraic necessary and sufficient condition to the singularity. Taking µ = 2 for instance, it

follows from Luo & Wang’s results [16] that an equivalent geometric condition to the singularity

of S2
3(∆2

MS) is: the 9 quasi-inner edges of the triangulation ∆2
MS (regarded as points on the

projective plane) lie on a “cubic”. Hence, it is reasonable to believe that there must be some

profound mathematical relationship between the algebraic and geometric conditions as Pascal’s

theorem in the case of µ = 1.

It is necessary to observe Pascal’s theorem in a different way. Pascal’s theorem implies that

any given six points on a conic determine three points through simple linear mapping (from

intersection points of some lines) and the three points lie on an algebraic curve of degree of 1

(instead of “collinear”). The following extended problem is spontaneously proposed: is there a

homothetic result in the case of plane curves of degree 3? or are there 6 points inscribed in a

conic determined by any 9 or 10 points on a cubic through simple linear mapping (intersections of
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some lines or other simple mapping)? How about the cases of plane curves of higher degrees? Of

cause, it is not difficult to prove that the above problems are invalid for general cases. Whereas

what kind of characters does a cubic has if the cubic preserves similar to Pascal’s theorem? We

believe that the conclusion to this problem results a direct generalization of Pascal’s theorem.

The necessary and sufficient condition in algebraic form to the space Sµ
µ+1(∆

µ
MS) (µ ≥ 2)

derived by Luo & Chen [17] naturally leads to some important concepts in algebraic geometry–

Characteristic ratio of points on a line, Characteristic mapping, and Characteristic number of

plane curves. [18] discovered that the characteristic number is an invariant of plane curves

in a subspace of polynomial spaces known as Pascal space in the projective plane, and the

characteristic mapping is a transformation which preserves some geometric properties or quantity

to plane curves in Pascal space. By introducing the characteristic mapping and the characteristic

number, another intrinsic property (Pascal’s type Theorem) of a class of plane curves of degree

n ≥ 3 is proved.

The following definition is necessary to our discussion. Let P
2 be the projective plane, and

{φ1(x, y, z), φ2(x, y, z), . . . , φN (x, y, z)} be linearly independent functions over P2. The following

set of points

Γ(N) := {(x, y, z)|
N
∑

i=0

ciφi(x, y, z) = 0, ci ∈ C}

is called a planar algebraic curve in V := span{φ1(x, y, z), φ2(x, y, z), . . . , φN (x, y, z)}, where C

is the complex field. The following point set, determined by

Γn := {(x, y, z)|
∑

i+j+k=n

aijkxiyjzk = 0,
∑

i+j+k=n

a2
ijk 6= 0}, aijk ∈ C

is called a plane algebraic curve of degree n in the projective plane P2. Denoted by Pn the

homogeneous polynomial space of total degree ≤ n. In what follows we use the term plane curve

always for plane algebraic curve in the projective plane.

This paper is organized as follows: In Section 2, we introduce and list the basic methods

and some known results of multivariate spline functions related to the discussion of the paper.

In Section 3, the concepts of characteristic ratio of points (or lines) on a line (or at point),

characteristic mapping, and characteristic number of plane curves in the projective geometry are

introduced and obtained. In Section 4, we obtained our main results in the geometric significance

of the singularity in Sµ
µ+1(∆

µ
MS)(µ ≥ 2). We also obtained a generalized Pascal’s theorem and a

geometric invariant of algebraic curves via the duality principle in Section 4.

2. Singularity of multivariate spline space and the relevant results

It is well known that spline is an important approximation tool in computational geometry,

and it is widely used in CAGD, scientific computations and many engineering fields. Splines,

i.e., piecewise polynomials, forms linear spaces that have a very simple structure in univariate

case. However, the bivariate case is very complicated to determine the structure of a space of

bivariate spline over arbitrary triangulation.
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Bivariate spline is defined as follows [28]:

Definition 2.1 Let Ω be a given planar polygonal region and ∆ be a triangulation or partition

of Ω, Denoted by Ti, i = 1, 2, . . . , V , all cells of ∆. For integer k > µ ≥ 0, the linear space

Sµ
k (∆) := {s | s|Ti

∈ Pk, s ∈ Cµ(Ω), ∀Ti ∈ ∆}

is called the spline space of degree k with smoothness µ, where Pk is the polynomial space of

total degree less than or equal to k.

From the Smoothing Cofactor method [28], the fundamental theorem on bivariate splines was

established.

Theorem 2.2 s(x, y) ∈ Sµ
k (∆) if and only if the following conditions are satisfied:

1) For each interior edge of ∆, which is defined by Γi : li(x, y) = 0, there exists a so-called

smoothing cofactor qi(x, y), such that

pi1(x, y) − pi2(x, y) = lµ+1
i (x, y)qi(x, y),

where the polynomials pi1(x, y) and pi2(x, y) are determined by the restriction of s(x, y) on the

two cells ∆i1 and ∆i2 with Γi as the common edge and qi(x, y) ∈ Pk−(µ+1).

2) For any interior vertex vj of ∆, the following conformality conditions are satisfied

∑

[l
(j)
i (x, y)]µ+1q

(j)
i (x, y) ≡ 0, (1)

where the summation is taken on all interior edges Γ
(j)
i passing through vj , and the sign of the

smoothing cofactors q
(j)
i are refixed in such a way that when a point crosses Γ

(j)
i from ∆i1 to

∆i2, it goes around vj counter-clockwisely.

From Theorem 2.2, the dimension of the space Sµ
k (∆) can be expressed as

dim Sµ
k (∆) =

(

k + 2

2

)

+ τ,

where τ is the dimension of the linear space defined by the conformality conditions (1).

However, for arbitrary given triangulation, the dimension of these spaces depends not only

on the topology of the triangulation, but also on the geometry of the triangulation. In general

case, no dimension formula is known. We say that a triangulation is singular to Sµ
k (∆) if the

dimension of the spline space depends not only on the topology of the triangulation, but also on

the geometric position of the vertices of ∆, and Sµ
k (∆) is singular when its dimension increases

according to the geometric property of ∆. Hence, the singularity of multivariate spline spaces is

an important object that is impossible to avoid in the research of the structure of multivariate

spline spaces. For example, Morgan and Scott’s triangulation ∆MS ([20], see Figure 1.1) is a

singular to S1
2(∆MS). For Morgan-Scott’s triangulation, Shi [23] and Diener [12] independently

obtained the geometric significance of the necessary and sufficient condition of dim(S1
2(∆MS)) =

7, respectively. Du [13] obtained another equivalent geometric necessary and sufficient condition

of singularity of S1
2(∆MS) from the viewpoint of the projective geometry.
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2.1 Singularity of S1
2(∆MS) and Pascal’s Theorem

In Morgan-Scott’s unpublished manuscripts of the 70’s of last century, it was found that

the dimension of spline spaces with degree 2 and smoothness 1 over the triangulation shown

in Figure 3.1 heavily depends on the geometric property of the partition. Chou-Su-Wang [9]

pointed out that the singularity of Morgan-Scott triangulation for S1
2(∆MS) does not need to

be a symmetric partition and they obtained a sufficient condition for the dimension to be seven.

Shi [23] and Diener [12] independently obtained the geometric necessary and sufficient condition

of dimS1
2(∆MS) = 7.

Theorem 2.3 ([23]) The spline space S1
2(∆MS) is singular (dimS1

2(∆MS) = 7) if and only if

Aa, Bb, Cc are concurrent, otherwise dimS1
2(∆MS) = 6 (see Figure 2.1).

From the algebraic geometry viewpoint, Du [13] proved another type of equivalent condition.

Theorem 2.4 ([13]) The spline space S1
2(∆MS) is singular (dimS1

2(∆MS) = 7) if and only if

6 points lie on a conic when we regard li(x, y) = 0 (i = 1, 2, . . . , 6) as points in the projective

space, otherwise dimS1
2(∆MS) = 6.

The following definition of a duality of figures consisting of lines and points in the projective

plane is useful for our discussion.

Definition 2.5 (Duality of planar figure) Let ∆ be a planar figure consists of lines and points

in the projective plane. If the points and lines of ∆ are regarded as lines and points respectively

and are drawn in the projective plane, then the new graphics from ∆ is called Duality of ∆,

denoted by ∆∗.
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Figure 2.1 Morgan-Scott’s partition ∆MS
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u

v
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AB
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Figure 2.2 Duality of triangulation ∆∗

MS

Figure 2.2 shows the duality of Morgan-Scott’s triangulation ∆MS . Obviously, the Pascal’s

theorem plays pivotal role in the equivalence between Theorems 2.3 and 2.4.

This problem can also be solved via the Generator Basis method by Luo [15]. Let
{

l1 = a1u + b1w

l2 = a2u + b2w
,

{

l3 = a3w + b3v

l4 = a4w + b4v
and

{

l5 = a5v + b5u

l6 = a6v + b6u
. (2)

Then we have the following conclusion in algebraic form:
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Theorem 2.6 ([15, 23]) The spline space S1
2(∆MS) is singular (dimS1

2(∆MS) = 7) if and only

if
b1b2

a1a2
·

b3b4

a3a4
·

b5b6

a5a6
= 1. (3)

It is evident that the result of Theorem 2.6 is also equivalent to the conclusions of Theorems

2.3 and 2.4.

2.2 Singularities of S2
3(∆2

MS) and Sµ
µ+1(∆

µ
MS) (µ ≥ 3)

The singularity of the space S2
3(∆2

MS) (see Figure 2.3) was investigated by Luo & Wang

[16] using the Generator Basis method. They obtained a necessary and sufficient condition in

algebraic form and two sufficient geometric conditions for the singularity as follows: Let










l1 = a1u + b1w

l2 = a2u + b2w

l3 = a3u + b3w

,











l4 = a4w + b4v

l5 = a5w + b5v

l6 = a6w + b6v

and











l7 = a7v + b7u

l8 = a8v + b8u

l9 = a9v + b9u

. (4)
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Figure 2.3 Morgan-Scott’s type

triangulation ∆2
MS
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Figure 2.4 Morgan-Scott’s type

triangulation ∆µ
MS

Then, the following conclusion in algebraic form holds.

Theorem 2.7 ([16]) The spline space S2
3(∆2

MS) is singular (dim S2
3(∆2

MS) = 11) if and only if

a1a2a3

b1b2b3
·
a4a5a6

b4b5b6
·
a7a8a9

b7b8b9
= −1. (5)

To get the geometric significance of (5) in Theorem 2.7, Luo & Wang [16] analyzed it using

a similar method as in [13]. Denoted by li : αix + βiy + γiz = 0, i = 1, 2, . . . , 9 in ∆2
Ms partition,

λi (i = 1, 2, . . . , 9) the corresponding smoothing cofactors and let pi = (αi, βi, γi), i = 1, 2, . . . , 9.

Then dimS2
3(∆2

MS) = 11 if and only if there exists nonzero solution of equation:

9
∑

i=1

λil
3
i (x, y, z) = 0. (6)

Hence, if we regard pi = (αi, βi, γi) (i = 1, 2, . . . , 9) as points in the projective space, then

pi = (αi, βi, γi) (i = 1, 2, . . . , 9) lie on a cubic plane curve in the duality partition. Denote by P3

the cubic polynomial subspaces spanned by any nine monomials of {x3, y3, z3, x2y, xy2, y2z,

yz2, x2z, xz2, xyx}. Then the necessary and sufficient condition for nonzero solution of (6) to
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exist can be represented as:

Theorem 2.8 ([16]) The spline space S2
3(∆2

MS) is singular (dimS2
3(∆2

MS) = 11) if and only if

pi = (αi, βi, γi) (i = 1, 2, . . . , 9) lie on a plane curve in P3 space.

The following corollaries are direct results of Theorems 2.6 and 2.7.

Corollary 2.9 Any pi = (αi, βi, γi) (i = 1, 2, . . . , 9) of the form (5) lie on a plane curve in P3 if

and only if (6) holds.

Corollary 2.10 If Aa, Bb, Cc in ∆2
Ms are concurrent, then the triangulation ∆2

MS is singular

for S2
3 if and only if A∗a, B∗b, C∗c are concurrent.

Corollary 2.11 If Aa, Bb, Cc in ∆2
Ms are not concurrent, and A∗a, B∗b, C∗c are prolongative

lines of Aa, Bb, Cc, respectively, then the triangulation ∆2
MS is singular for S2

3 .

For a general case of µ ≥ 3, Luo & Chen [17] gave the equivalent condition in an algebraic

form to the singularity of Sµ
µ+1(∆

µ
MS) (µ ≥ 3) as follows: for a given triangulation ∆µ

MS (see

Figure 2.4), suppose

li = aiu + biw, i = 1, 2, . . . , µ + 1,

lj = ajw + bjv, j = µ + 2, µ + 3, . . . , 2µ + 2,

lk = akv + bku, k = 2µ + 3, 2µ + 4, . . . , 3µ + 3.

(7)

Then we have the following theorem

Theorem 2.12 ([17]) The spline space Sµ
µ+1(∆

µ
MS) is singular if and only if

a1 · · ·aµ+1

b1 · · · bµ+1
·
aµ+2 · · · a2µ+2

bµ+2 · · · b2µ+2
·
a2µ+3 · · ·a3µ+3

b2µ+3 · · · b3µ+3
= (−1)

µ+1
. (8)

The Corollaries 2.10 and 2.11 only provided sufficient geometric conditions to the singularity

of the space S2
3(∆2

Ms). What is the equivalent geometric condition for the singularity of S2
3(∆2

Ms)

(in general Sµ
µ+1(∆

µ
MS) (µ ≥ 3)) which resembles Theorem 2.7? In this paper, we obtained the

results to the problems and also provided some important concepts in algebraic geometry.

The following conclusion can serve to account for the intrinsic relationship of our results in

the paper.

Proposition 2.13 ([19]) For any given six points in P2, the six points lie on a conic if and only

if the lines AB, BC, CA, DE, EF , FD, regarded as points in P2, lie on a conic.

3. Characteristic ratio, characteristic mapping and characteristic num-

ber

In [18], a characteristic ratio was defined which quite differs from the cross ratio, and the

concepts characteristic mapping and characteristic number were introduced to study intrinsic

properties of algebraic plane curve. In what follows, we will use u = 〈a, b〉 for the intersection

point of lines a and b, and a = (u, v) for the line determined by the points u and v.
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Definition 3.1 (characteristic ratio [18]) Let u, v ∈ P2 be two lines (or points), l1, l2, . . . , lk

be distinct lines (or points) passing through 〈u, v〉 (on the line (u, v)), and li = aiu + biv, i =

1, 2, . . . , k. The ratio

[u, v; l1, . . . , lk] :=
b1b2, . . . , bk

a1a2, . . . , ak

is called the characteristic ratio of l1, l2, . . . , lk to the basic lines (or basic points) u, v.

Definition 3.2 (characteristic mapping [18]) Let u, v, p, q ∈ P2 be concurrent lines (or collinear

points), the mapping χ(u,v) : p 7→ q is called a Characteristic mapping if

[u, v; p, q] = 1

holds, and the characteristic mapping is denoted by q = χ(u,v)(p).

It can be seen that if q is the characteristic mapping point (or line) of p, then p is the

characteristic mapping of q as well, that is, the characteristic mapping is reflexive mapping, i.e.,

χ(u,v) ◦ χ(u,v) = I (identity mapping).

Definition 3.3 (characteristic number [18]) Let Γn is a given plane curve of degree n, and L1,

L2 and L3 be any three distinct lines in P2 such that none of them is a component of Γn. Let

q1 = 〈L1, L2〉, q2 = 〈L2, L3〉, q3 = 〈L3, L1〉 and pij (j = 1, 2, . . . , n) be n points between Li and

curve Γn, i = 1, 2, 3. The following number determined by characteristic ratio:

Kn(Γn) :=

3
∏

i=1

[qi, qi+1; pi1, pi2, . . . , pin]

is called the characteristic number of the planar algebraic curve Γn. If there are multiple points

in the intersection points, the corresponding characteristic number can be defined by their limit

form.

It is not difficult to verify from the Definition 3.3 that if Γn is a reducible curve in P2 and

their components are Γn1
and Γn2

, n = n1 + n2 then, Kn(Γn) = Kn1
(Γn1

) · Kn1
(Γn1

).

Next, we list some crucial properties of plane curves of lower degrees (for lines and conics).

Theorem 3.4 ([18]) For any line Γ1 in the projective plane P2,

K1(Γ1) = −1.

The following Corollary can be easily proved using the definition of characteristic mapping

and Theorem 3.4.

Corollary 3.5 ([18]) Three points P, Q and R in the projective plane P2 are collinear if and

only if their characteristic mapping χ(q3,q1)(P ), χ(q1,q2)(Q) and χ(q2,q3)(R) are also collinear.

In the case of conic, we have

Theorem 3.6 ([18]) For any given conic Γ2 in the projective plane P2,

K2(Γ2) = 1.
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Let li ∈ P2 (i = 1, 2, . . . , 6) be any six distinct points. Denoted by a = (l1, l2), b = (l3, l4), c =

(l5, l6) and u = 〈a, c〉, v = 〈b, c〉, w = 〈a, b〉. The following theorems can be easily shown by using

the same arguments as in (2.4) and Theorem 3.6.

Theorem 3.7 ([18]) Any six points in the projective plane lie on a conic if and only if (2.5)

holds.

Theorem 3.8 ([18]) Any six distinct points li ∈ P2 (i = 1, 2, . . . , 6) lie on a conic if and only if

their characteristic mapping χ(u,w)(l1), χ(u,w)(l2), χ(w,v)(l3), χ(w,v)(l4), χ(v,u)(l5) and χ(v,u)(l6)

lie on a conic as well.

Remark 3.9 Summarizing above discussions, we get the following systemic conclusions for the

singularity of S1
2 over Morgan-Scott’s triangulation. The following statements are equivalent to

each other:

1) dimS1
2(∆MS) = 7;

2) dimS1
2(∆̃MS) = 7, where ∆̃MS consists of the lines u, w, v and χ(u,w)(l1), χ(u,w)(l2),

χ(w,v)(l3), χ(w,v)(l4), χ(v,u)(l5), χ(v,u)(l6);

3) Aa, Bb, Cc in Figure 2.1 are concurrent;

4) χ(w,v)(Aa), χ(u,w)(Bb), χ(v,u)(Cc) are concurrent;

5) The lines li (i = 1, 2, 3, 4, 5, 6) regarded as points in the projective plane, lies on a conic;

6) The characteristic mapping lines χ(u,w)(l1), χ(u,w)(l2), χ(w,v)(l3), χ(w,v)(l4), χ(v,u)(l5),

χ(v,u)(l6), regarded as the points in the projective plane, lie on a conic.

Generally,

Theorem 3.10 ([18]) For any given plane curve Γn in P̄n, the corresponding characteristic

number is

Kn = (−1)n,

where

P̄n := span{{any 3 terms of {xn, xn−1y, . . . , yn}} ∪ {zP̄n−1}}

and P̄1 := P1, P̄2 := P2.

4. Main Results

In this section, we study the geometric significance of the singularity of the spline space Sµ
µ+1

over ∆µ
MS . For any given three class of concurrent lines (which intersect at three distinct points a,

b and c, resp.) in the projection plane, {l1, l2, . . . , lµ+1}, {lµ+2, . . . , l2(µ+1)}, {l2µ+3, . . . , l3(µ+1)},

let u = (b, c), w = (a, b) and v = (c, a). Then a Morgan-Scott’s partition of order µ, ∆µ
MS , is

defined as a planar figure consisting of the edges {l1, l2, . . . , l3(µ+1), u, w, v with Morgan-Scott’s

topology.

To clarify our argument clearly, for any positive integer µ and a ∆µ
MS we define the three

lines la := (〈l1, l3(µ+1)〉, 〈lµ+2, l2(µ+1)〉), lb := (〈l1, lµ+1〉, 〈l2(µ+1), l2µ+3〉) and lc := (〈lµ+1, lµ+2〉,
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〈l2µ+3, l3(µ+1)〉) (see Aa, Bb, Cc in Figure 4.1) as the intrinsic lines of ∆µ
MS . Suppose that Ξµ

MS

denotes a set consists of all ∆µ
MS .

la

lblc

a

bc

A

B C

u

v w

l1

lµ+1

lµ+2l2µ+2

l2µ+3

l3(µ+1)

l2

lµ

l̄b

lµ+3l̄al2µ+1

l2µ+4

l̄c

l3µ+2

..
.

. . .

. .
.

Figure 4.1 Inductive mapping of ∆µ
MS : ∆µ−1

MS

For a given Morgan-Scott’s type par-

tition of order µ ∆µ
MS ∈ Ξµ

MS shown

in Figure 2.4, we define an inductive

mapping

φ : Ξµ
MS 7→ Ξµ−1

MS

by defining the image of ∆µ
MS as a

new Morgan-Scott’s type partition of

order µ − 1 whose edges consist of

l2, . . . , lµ, lµ+3, . . . , l2µ+1,

l2µ+4, . . . , l3µ+2,

χ(w,v)(la), χ(u,w)(lb), χ(v,u)(lc)

and u, w, v (see the solid lines in Figure

4.1). The following equivalent relation-

ship “∼” is introduced in Ξµ
MS :

For ∆̄µ
MS , ∆̃µ

MS ∈ Ξµ
MS , we say ∆̄µ

MS ∼ ∆̃µ
MS , if they have the same the intrinsic lines. Obviously,

the inductive mapping

φ : Ξµ
MS/ ∼7→ Ξµ−1

MS / ∼

becomes a bijection.

We will pay attention to the case of µ = 2. For the triangulation ∆2
MS , let l

′

2, l
′

5, l
′

8 be

the characteristic mappings of the lines l2, l5, l8, resp. That is, l
′

2 := χ(u,w)(l2) = b2u + a2w,

l
′

5 := χ(w,v)(l5) = b5w + a5v, l
′

8 := χ(v,u)(l8) = b8v + a8u.

Without loss of generality, we assume that the six points determined by intersections of

Aa, Bb, Cc and intersections of l
′

2, l
′

5, l
′

8 are distinct from each other in Figure 2.3.

Under this assumption, we now prove the following important conclusion.

Theorem 4.1 For a given partition ∆2
MS ∈ Ξµ

MS/ ∼, the spline space S2
3(∆2

MS) is singular if

and only if the six points determined by the intersections of the intrinsic lines Aa, Bb, Cc and

the intersections of χ(u,w)(l2), χ(w,v)(l5), χ(v,w)(l8) lie on a conic. Furthermore, the intersections

of χ(w,v)(Aa), χ(u,w)(Bb), χ(v,u)(Cc) and the intersections of l2, l5, l8 lie on a conic as well.

Proof Without loss of generality, we regard the lines u, v, w as basic lines, and let u =

(1, 0, 0), w = (0, 1, 0), v = (0, 0, 1) and l
′

2 = χ(u,w)(l2), l
′

5 = χ(w,v)(l5), l
′

8 = χ(v,w)(l8). From

(2.4), we have

l1 = (a1, b1, 0)

l3 = (a3, b3, 0)

l
′

2 = (b2, a2, 0)

,

l4 = (0, a4, b4)

l6 = (0, a6, b6)

l
′

5 = (0, b5, a5)

and

l7 = (b7, 0, a7)

l9 = (b9, 0, a9)

l
′

8 = (a8, 0, b8),
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and

A = l1 × l9 = (b1a9,−a1a9,−b1b9), B = l6 × l7 = (a6a7, b6b7,−a6b7),

C = l3 × l4 = (b3b4,−a3b4, a3a4), a = w × v = (1, 0, 0), b = u × w

= (0, 0, 1), c = u × v = (0,−1, 0).

So the lines Aa, Bb and Cc can be expressed as follows

Aa = A × a = (0,−b1b9, a1a9), Bb = B × b = (b6b7,−a6a7, 0),

Cc = C × c = (a3a4, 0,−b3b4).

By direct calculations, the intersections of Aa, Bb, Cc and the intersections of l
′

2, l
′

5, l
′

8 are formed

to be

v1 = Aa × Bb = (a1a9a6a7, a1a9b6b7, b1b9b6b7),

v2 = Bb × Cc = (a6a7b3b4, b6b7b3b4, a6a7a3a4),

v3 = Cc × Aa = (−b3b4b1b9,−a3a4a1a9,−a3a4b1b9),

v4 = l
′

2 × l
′

5 = (a2a5,−b2a5, b2b5),

v5 = l
′

5 × l
′

8 = (b5b8, a5a8,−b5a8),

v6 = l
′

8 × l
′

2 = (−b8a2, b8b2, a8a2).

We now give an equivalent condition that v1, v2, . . . , v6 lie on a conic by Pascal’s Theorem. To

do this, the three intersection points of three subtense of the hexagon with vertices v1, v2, . . . , v6

are

B1 = (v1 × v5) × (v2 × v6) =

((b1b9b6b7b5b8 + a1a9a6a7b5a8)(a6a7b3b4b8b2 + b6b7b3b4b8a2) − (a1a9a6a7a5a8

− a1a9b6b7b5b8)(−a6a7a3a4b8a2 − a6a7b3b4a8a2), (a1a9a6a7a5a8 − a1a9b6b7b5b8)

(b6b7b3b4a8a2 − a6a7a3a4b8b2) − (−a1a9b6b7b5a8 − b1b9b6b7a5a8)(a6a7b3b4b8b2

+ b6b7b3b4b8a2), (−a1a9b6b7b5a8 − b1b9b6b7a5a8)(−a6a7a3a4b8a2 − a6a7b3b4a8a2)

− (b1b9b6b7b5b8 + a1a9a6a7b5a8)(b6b7b3b4a8a2 − a6a7a3a4b8b2)),

B2 = (v1 × v4) × (v3 × v6) =

((b1b9b6b7a2a5 − a1a9a6a7b2b5)(−b3b4b1b9b8b2 − a3a4a1a9b8a2) − (−a1a9a6a7b2a5

− a1a9b6b7a2a5)(a3a4b1b9b8a2 + b3b4b1b9a8a2), (−a1a9a6a7b2a5 − a1a9b6b7a2a5)

(−a3a4a1a9a8a2 + a3a4b1b9b8b2) − (a1a9b6b7b2b5 + b1b9b6b7b2a5)(−b3b4b1b9b8b2

− a3a4a1a9b8a2), (a1a9b6b7b2b5 + b1b9b6b7b2a5)(a3a4b1b9b8a2 + b3b4b1b9a8a2)

− (b1b9b6b7a2a5 − a1a9a6a7b2b5)(−a3a4a1a9a8a2 + a3a4b1b9b8b2)),

B3 = (v2 × v4) × (v3 × v5)

= ((a6a7a3a4a2a5 − a6a7b3b4b2b5)(−b3b4b1b9a5a8 + a3a4a1a9b5b8) − (−a6a7b3b4b2a5

− b6b7b3b4a2a5)(−a3a4b1b9b5b8 − b3b4b1b9b5a8), (−a6a7b3b4b2a5 − b6b7b3b4a2a5)
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(a3a4a1a9b5a8 + a3a4b1b9a5a8) − (b6b7b3b4b2b5 + a6a7a3a4b2a5)(−b3b4b1b9a5a8

+ a3a4a1a9b5b8), (b6b7b3b4b2b5 + a6a7a3a4b2a5)(−a3a4b1b9b5b8 − b3b4b1b9b5a8)

− (a6a7a3a4a2a5 − a6a7b3b4b2b5)(a3a4a1a9b5a8 + a3a4b1b9a5a8)).

The directed area of triangle determined by B1, B2 and B3 is

(B1, B2, B3) = −(b5b8b2 + a2a5a8)
2(b7b6a2 + b2a6a7)(b1b9a5 + a1a9b5)

(b3b4a8 + b8a3a4)(b1b3b4b6b7b9 − a1a3a4a6a7a9)
2(b1b2b3b4b5b6b7b8b9+

a1a2a3a4a5a6a7a8a9).

Since the six points v1, v2, . . . , v6 are all distinct, we have

(b5b8b2 + a2a5a8)
2(b7b6a2 + b2a6a7)(b1b9a5 + a1a9b5)(b3b4a8 + b8a3a4)

(b1b3b4b6b7b9 − a1a3a4a6a7a9)
2 6= 0. (9)

Hence, it follows from Pascal’s Theorem (stating that v1, v2, . . . , v6 lie on a conic if an only if

(B1, B2, B3) = 0) that the necessary and sufficient condition that v1, v2, . . . , v6 lie on a conic is

a1a2a3

b1b2b3
·
a4a5a6

b4b5b6
·
a7a8a9

b7b8b9
= −1.

It follows from Theorem 2.8 that the proof of the first statement is completed. The second

statement of the theorem can be obtained immediately from Theorem 3.8.

From Proposition 2.13 and Theorem 4.1, we can easily prove the following corollary.

Corollary 4.2 The spline space S2
3(∆2

MS) is singular (dim S2
3(∆2

MS) = 11) if and only if the

lines Aa, Bb, Cc and χ(u,w)(l2), χ(w,v)(l5), χ(v,w)(l8) regarded as points in P2 lie on a conic.

The following theorem follows from Theorems 2.7, 2.8 and 3.8.

Theorem 4.3 For a given partition ∆2
MS ∈ Ξ2

MS/ ∼, the spline space S2
3(∆2

MS) is singular

(dimS2
3(∆2

MS) = 11) if and only if the space S1
2(φ(∆2

MS)) is singular as well.

We provide two examples to illustrate our conclusions more clearly. We consider a given

triangulation shown in Figure 4.2, where

A = (1/2, 2, 1), B = (−4,−2, 1), C = (4,−2, 1), a = (0,−1, 1), b = (1, 0, 1),

c = (−1, 0, 1), u : −y = 0 v : −x − y − z = 0 w : x − y − z = 0

l1 : −4x − y +
4

3
z = 0, l2 : 2x − y − 2z = 0, l3 : −

2

3
x − y +

2

3
z = 0,

l4 : −
1

4
x − y − z = 0, l5 : −

1

2
x − y − z = 0, l6 :

1

4
x − y − z = 0,

l7 :
2

3
x − y +

2

3
z = 0, l8 : −

42

47
x − y −

42

47
z = 0, l9 :

4

3
x − y +

4

3
z = 0.

It can be proved that the spline space S2
3(∆2

MS) of piecewise polynomial of degree three with

smoothness two is singular. The characteristic mappings of l2, l5, l8 corresponding to (u, w), (w, v)

and (v, u) are

l
′

2 : = χ(u,w)(l2) : −x − y + z = 0, l
′

5 := χ(w,v)(l5) : 1/2x − y − z = 0,
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l
′

8 : = χ(v,u)(l8) : −5/47x− y − 5/47z = 0.

The conic corresponding to Theorem 4.1, which is determined by the following six points, the

intersections of the intrinsic lines Aa, Bb, Cc and the intersections of the characteristic mappings

of l2, l5, l6, is of the form

302x2 − 2861xy + 15800y2 − 1421x + 12880y + 2624 = 0,

which forms elliptic conic and is shown in Figure 4.2. One can straightly prove that the

S1
2(φ(∆2

MS)) is singular, where φ(∆2
MS) is an inductive Morgan-Scott’s partition (or triangu-

lation) whose edges consists of Aa, Bb, Cc, ξ(u,w)(l2), ξ(w,v)(l5), ξ(v,u)(l8) and u, w, v (all dashed

lines and u, w, v in Figure 4.2) (or ξ(w,v)(Aa), ξ(u,w)(Bb), ξ(v,u)(Cc), l2, l5, l8 and u, w, v).

x

y

x2 + 7900/151y2
− 2861/302xy − · · · + 1312/151 = 0

l1

l2

l3

l4
l5

l6

l7

l8
l9

l′2

l′8

l′5

A

CB

b

a

c

-4 -3 -2 -1 0 1 2 3 4
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4.2 Singular △2
MS and the elliptic conic

x

y

1143/2803x2 + 1028/1963y2
− 1022/715xy − · · · + 1 = 0

l1

l2

l3

l4

l5

l6

l7

l8
l9

A

B

C

a

c

b

l′2

l′5

l′8

w

u

v

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

Figure 4.3 Singular △2
MS and hyperbolic conic

The next example of singular Morgan-Scott’s partition ∆2
MS to S2

3 is shown in Figure 4.3,

where

A = (1/2, 2, 1), B = (−4,−3, 1), C = (3,−4, 1), a = (0,−2, 1), b = (1,−1, 1),

c = (−1, 0, 1), u : −1/2x− y − 1/2z = 0 v : −2x − y − 2z = 0

w : x − y − 2z = 0, l1 : −6x − y + 5z = 0, l2 : 1/7x− y − 8/7z = 0,

l3 : −3/2x− y + 1/2z = 0, l4 : −2/3x− y − 2z = 0, l5 : 2x − y − 2z = 0,

l6 : 1/4x− y − 2z = 0, l7 : x − y + z = 0, l8 : −38/61x− y − 38/61z = 0,

l9 : −4/3x− y + 4/3z = 0,

and

l
′

7 : = χ(u,w)(l7) :
5

14
x −

19

14
− y = 0, l

′

8 := χ(u,w)(l8) : −3x − 2 − y = 0,

l
′

9 : = χ(u,w)(l9) : −
229

122
x −

229

122
− y = 0.

The corresponding conic, which forms hyperbola, uniquely determined by the six points (the

intersections of the intrinsic lines Aa, Bb, Cc and the intersections of the characteristic mappings
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of l2, l5, l6) is
1143

2803
x2 +

1028

1963
y2 −

1022

715
xy −

503

256
xz +

1161

1112
yz + z = 0,

and is shown in Figure 4.3. From Theorem 4.3, the spline space S1
2 over the inductive partition

φ(∆2
MS) is singular as well.

For the case of µ ≥ 3, we have the following main result.

Theorem 4.4 Let ∆µ
MS ∈ Ξµ

MS/ ∼ be a Morgan-Scott’s partition as shown in Figure 2.4. The

spline space Sµ
µ+1(∆

µ
MS) is singular if and only if the spline space Sµ−1

µ (φ(∆µ
MS)) is singular as

well.

Proof Without loss of generality, suppose that u = (1, 0, 0), w = (0, 1, 0), v = (0, 0, 1) and let

li = (ai, bi, 0), i = 1, 2, . . . , n,

lj = (0, aj , bj), j = n + 1, n + 2 . . . , 2n,

lk = (bk, 0, ak), k = 2n + 1, 2n + 2, . . . , 3n.

Since

Aa : = (〈l1, l3n〉, 〈ln+1, l2n〉) = (0,−b1b3n, a1a3n) = −b1b3nw + a1a3nv

Bb : = (〈l1, ln〉, 〈l2n, l2n+1〉) = (b2nb2n+1,−a2na2n+1, 0) = b2nb2n+1u − a2na2n+1w

Cc : = (〈ln, ln+1〉, 〈l2n+1, l3n〉) = (anan+1, 0,−bnbn+1) = −bnbn+1v + anan+1u,

we have

χ(w,v)(Aa) = a1a3nw − b1b3nv

χ(u,w)(Bb) = −a2na2n+1u + b2nb2n+1w

χ(v,u)(Cc) = anan+1v − bnbn+1u.

It follows from Theorem 2.13 that the necessary and sufficient condition for the singularity of

Sµ−1
µ (φ(∆µ

MS)) is that

a2 · · · an−1 · (−a2na2n+1)

b2 · · · bn−1 · (b2nb2n+1)
·

an+2 · · · a2n−1 · (a1a3n)

bn+2 · · · b2n−1 · (−b1b3n)
·

a2n+2 · · ·a3n−1 · (anan+1)

b2n+2 · · · b3n−1 · (−bnbn+1)

= (−1)
n−1

,

which is equivalent to (2.10), and it follows from Theorem 3.10 that the proof is completed. 2

Using the duality principle to Theorem 4.4, some interesting results on algebraic curves can

be derived easily. They are listed in the paper without proofs.

Let a, b, c be three distinct non-infinity lines in P
2 and Γn be a given plane curve in P

2.

Denote the points of intersection between lines a, b, c and the curve Γn by li (i = 1, 2, . . . , n),

lj (j = n + 1, . . . , 2n) and lk (k = 2n + 1, . . . , 3n), and let u = 〈b, c〉, v = 〈c, a〉, w = 〈a, b〉,

respectively.

It follows from the definition of duality of figure that the planar figure consisting of lines

a, b, c and points {li (i = 1, 2, . . . , n), lj (j = n + 1, . . . , 2n), lk (k = 2n + 1, . . . , 3n), u, v, w}

yields a dual figure in the same projective plane. Fortunately, the generated dual figure is in the
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form of a Morgan-Scott’s type triangulation as shown in Figure 2.4.

Theorem 4.5 Let a, b, c ∈ P2 be three distinct lines, and u = 〈b, c〉, v = 〈c, a〉, w = 〈a, b〉.

Suppose that pi = aiu + biw (i = 1, 2, . . . , n), pj = ajw + bjv (j = n + 1, . . . , 2n) and

pk = akv + bku (j = 2n + 1, . . . , 3n) are three classes of points lying on the lines a, b and c,

respectively. Then the 3n points pi (i = 1, 2, . . . , 3n) lie on a plane curve in P̄n if and only

if the following 3(n − 1) points {χ(w,v)(〈(p1, p3n), (pn+1, p2n)〉), χ(u,w)(〈(p1, pn), (p2n, p2n+1)〉),

χ(v,u)(〈(pn, pn+1), (p2n+1, p3n)〉), p2, . . . , pn−1, pn+2, . . . , p2n−1, p2n+2, . . . , p3n−1} lie on a plane

curve in P̄n−1.

The following corollary is directly from the definition of the characteristic mapping and

Theorem 4.5.

Corollary 4.6 Let a, b, c ∈ P2 be three distinct lines, and u = 〈b, c〉, v = 〈c, a〉, w = 〈a, b〉.

Suppose that pi = aiu + biw (i = 1, 2, . . . , n), pj = ajw + bjv (j = n + 1, . . . , 2n) and pk =

akv+bku (j = 2n+1, . . . , 3n) are three classes of points lying on the lines a, b and c, respectively.

Then the 3n points pi (i = 1, 2, . . . , 3n) lie on a plane curve in P̄n if and only if the following

3(n− 1) points {(〈(p1, p3n), (pn+1, p2n)〉), (〈(p1, pn), (p2n, p2n+1)〉), (〈(pn, pn+1), (p2n+1, p3n)〉),

χ(w,v)(p2), . . . , χ(u,w)(pn−1), χ(w,v)(pn+2), . . . , χ(u,w)(p2n−1), χ(v,u)(p2n+2), . . . , χ(v,u)(p3n−1)}

lie on a plane curve in P̄n−1.

Theorem 4.5 and Corollary 4.6 can be regarded as a direct generalizations of the famous

Pascal’s theorem in algebraic geometry since the Pascal’s theorem is the case of n = 2 in Theorem

4.5 or Corollary 4.6. This generalization of the Pascal’s theorem is quite different from the known

generalizations as Chasles’s Theorem and Cayley-Bacharach Theorem in algebraic geometry.
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