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Abstract The Laplacian spread of a graph is defined to be the difference between the largest

eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In our recent

work, we have determined the graphs with maximal Laplacian spreads among all trees of fixed

order and among all unicyclic graphs of fixed order, respectively. In this paper, we continue the

work on Laplacian spread of graphs, and prove that there exist exactly two bicyclic graphs with

maximal Laplacian spread among all bicyclic graphs of fixed order, which are obtained from a

star by adding two incident edges and by adding two nonincident edges between the pendant

vertices of the star, respectively.
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1. Introduction

Let G be a graph of order n with the vertex set V = V (G) = {v1, v2, . . . , vn} and the edge

set E = E(G). The adjacency matrix of the graph G is defined to be a matrix A = A(G) = [aij ]

of order n, where aij = 1 if vi is adjacent to vj , and aij = 0 otherwise. Since A is symmetric and

real, the eigenvalues of A can be arranged as follows:

λn(G) ≤ λn−1(G) ≤ · · · ≤ λ1(G).

The spread of the graph G is defined as

SA(G) = λ1(G) − λn(G).

Generally, the spread of a square complex matrix M is defined to be s(M) = maxi,j |λi − λj |,
where the maximum is taken over all pairs of eigenvalues of M . There is a considerable literature

on the spread of an arbitrary matrix [11, 15, 18, 20, 21].
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Recently, the spread of a graph has received much attention. In [19], Petrović determined

all minimal graphs whose spread does not exceed 4. In [7], Gregory, Hershkowitz and Kirkland

presented some lower and upper bounds for the spread of a graph. They showed that the path

is the unique graph with minimal spread among all connected graphs of given order. However

the graph(s) with maximal spread is still unknown, and some conjectures are presented in their

paper. In [12], Li, Zhang and Zhou determined the unique graph with maximal spread among all

unicyclic graphs with given order not less than 18, which is obtained from a star by adding an

edge between two pendant vertices. In [17], Nikiforov considered a more general problem: what

is the property of the linear combination of some extreme eigenvalues of a graph? He gave a

theorem involving the limit of a certain combination as the order of a graph goes to infinity, and

presented an upper bound for the sum of the largest eigenvalue and the second largest eigenvalue

of all graphs of fixed order.

Here we consider another version of spread of a graph, i.e., the Laplacian spread of a graph,

which is defined as follows. Let G be a graph as above. The Laplacian matrix of the graph G is

defined as L = L(G) = D(G) − A(G), where D(G) = diag{d(v1), d(v2), . . . , d(vn)} is a diagonal

matrix, and d(v) denotes the degree of the vertex v of G. It is known that L is symmetric and

positive semidefinite so that its eigenvalues can be arranged as follows:

0 = µn(G) ≤ µn−1(G) ≤ · · · ≤ µ1(G),

where µn(G) = 0 as each row sum of L is zero. There are a lot of results involved with the relations

between the spectrum of L(G) and numerous invariants of the graph G, such as connectivity,

diameter, isoperimetric number, and expanding properties of a graph [5, 9, 10, 13, 16]. In

particular, µn−1(G) > 0 if and only if G is connected. Fiedler calls µn−1(G) the algebraic

connectivity of the graph G, which is considered as an algebraic measurement of the connectivity

of a graph. The corresponding eigenvectors of µn−1(G) are usually called Fiedler vectors, which

have a beautiful structure property given by Fiedler [6, Theorem 3.14]. One can find that µ1(G)

is exactly the spectral radius of L(G), which also has a lot of results (especially the upper bounds)

for this eigenvalue [3]. We define the Laplacian spread of the graph G as

SL(G) = µ1(G) − µn−1(G).

Note that in the definition we consider the largest eigenvalue and the second smallest eigenvalue,

as the smallest eigenvalue always equals zero.

In our recent work we have shown that among all trees of fixed order, the star is the unique

one with maximal Laplacian spread and the path is the unique one with the minimal Laplacian

spread [4]. And among all unicyclic graphs of fixed order, the unique unicyclic graph with

maximal Laplacian spread is obtained from a star by adding an edge between two pendant

vertices [2]. In this paper, we continue the work on Laplacian spread of graphs, and prove that

there exist exactly two bicyclic graphs with maximal Laplacian spread among all bicyclic graphs

of fixed order, which are obtained from a star by adding two incident edges and by adding two

nonincident edges between the pendant vertices of the star, respectively.
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2. Results

We first introduce some preliminary results, which are needed in the following proofs. Let

G be a graph and let v be a vertex of G. The neighborhood of v in G is denoted by N(v), i.e.,

N(v) = {w : wv ∈ E(G)}. Denote by ∆(G) the maximum degree of all vertices of a graph G.

Lemma 2.1 ([1]) Let G be a connected graph of order n ≥ 2. Then µ1(G) ≤ n, with equality

holding if and only if the complement graph of G is disconnected.

Lemma 2.2 ([3]) Let G be a connected graph with vertex set {v1, v2, . . . , vn} (n ≥ 2). Then

µ1(G) ≤ max{d(vi) + d(vj) − |N(vi) ∩ N(vj)| : vivj ∈ E(G)}.

Lemma 2.3 ([14]) Let G be a connected graph with vertex set {v1, v2, . . . , vn} (n ≥ 2). Then

µ1(G) ≤ max{d(vi) + m(vi) : vi ∈ V (G)}, where m(vi) =
Σvj∈N(vi)

d(vj)

d(vi)
is the average of the

degrees of the vertices adjacent to vi.

Lemma 2.4 ([10]) Let G be graph of order n ≥ 2 containing at least one edge. Then µ1(G) ≥
∆(G) + 1. If G is connected, then the equality holds if and only if ∆(G) = n − 1.

Lemma 2.5 ([8]) Let G be a connected graph of order n with a cutpoint v. Then µn−1(G) ≤ 1,

with equality holding if and only if v is adjacent to every other vertex of G.

We introduce ten bicyclic graphs of order n in Figure 2.1: the graphs G1(r, s; n), r ≥ s ≥ 0;

G2(r, s; n), r ≥ 0, s ≥ 0; G3(r, s; n), r ≥ s ≥ 0; G4(r, s; n), r ≥ s ≥ 0; G5(r, s; n), r ≥ 0, s ≥ 1;

G6(r, s; n), r ≥ 0, s ≥ 1; G7(r, s; n), r ≥ 0, s ≥ 1; G8(r, s; n), r ≥ 0, s ≥ 0; G9(r, s; n), r ≥ 0,

s ≥ 1; G10(r, s; n), r ≥ s ≥ 0. Here r, s are nonnegative integers, which are respectively the

numbers of pendant vertices adjacent to some vertices of the related graphs.

Lemma 2.6 Let G be the graph G1(n − 4, 0; n) or G2(n − 5, 0; n). Then

SL(G1(n − 4, 0; n)) = SL(G2(n − 5, 0; n)) = n − 1.

Proof By Lemmas 2.4 and 2.5, we can get the result easily. 2

In the following, we will prove that the graphs G1(n−4, 0; n) and G2(n−5, 0; n) are the only

two bicyclic ones with maximal Laplacian spread. We first narrow down the possibility of the

bicyclic graphs with maximal Laplacian spread.

Lemma 2.7 Let G be a graph with maximal Laplacian spread among all bicyclic graphs of order

n ≥ 9. Then G is among the graphs G1(n−4, 0; n), G1(n−5, 1; n), G2(n−5, 0; n), G2(n−6, 1; n),

G3(n − 5, 0; n), G5(n − 6, 1; n), G6(n − 7, 1; n), G8(n − 6, 0; n), G9(n − 5, 1; n), G9(0, n − 4; n).

Proof Let vivj be an edge of G. Then

d(vi) + d(vj) − |N(vi) ∩ N(vj)| = |N(vi) ∪ N(vj)| ≤ n,

with equality holding if and only if G is one graph in Figure 2.1 for some r or s. Therefore,

if G is not a graph in Figure 2.1, then by Lemma 2.2, µ1(G) ≤ n − 1 and hence SL(G) =

µ1(G) − µn−1(G) < n − 1 as µn−1(G) > 0. However, by Lemma 2.6, SL(G1(n − 4, 0; n)) =
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SL(G2(n − 5, 0; n)) = n − 1. So G must be one graph in Figure 2.1.
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9( , ; )G r s n 10( , ; )G r s n

Figure 2.1 Ten bicyclic graphs on n vertices

For the graph G1(r, s; n) of Figure 2.1 with 0 ≤ s ≤ r ≤ n − 4, by Lemma 2.3,

µ1(G1(r, s; n)) ≤ max{r + 3 +
n + 3

r + 3
, s + 3 +

n + 3

s + 3
} =: α.

Note that r + 3 ≥ n−4
2 + 3 >

√
n + 3. If r ≤ n − 6 and n ≥ 9, then

µ1(G1(r, s; n)) ≤ α ≤ max{3 +
n + 3

3
, n − 3 +

n + 3

n − 3
} ≤ n − 1.

Hence, if n ≥ 9 and r ≤ n − 6, then SL(G1(r, s; n)) < n − 1 as µn−1(G) > 0.

For the graph G2(r, s; n) of Figure 2.1 with 0 ≤ r, s ≤ n − 5, by Lemma 2.3,

µ1(G2(r, s; n)) ≤ max{s + 2 +
n + 1

s + 2
, r + 4 +

n + 3

r + 4
}.

For n ≥ 9, r ≤ n − 7, and an arbitrary s,

s + 2 +
n + 1

s + 2
≤ max{2 +

n + 1

2
, n − 3 +

n + 1

n − 3
} ≤ n − 1,
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r + 4 +
n + 3

r + 4
≤ max{4 +

n + 3

4
, n − 3 +

n + 3

n − 3
} ≤ n − 1,

and hence µ1(G2(r, s; n)) ≤ n − 1, SL(G2(r, s; n)) < n − 1.

For the graph G3(r, s; n) of Figure 2.1 with 0 ≤ s ≤ r ≤ n − 5, by Lemma 2.3,

µ1(G3(r, s; n)) ≤ max{r + 3 +
n + 2

r + 3
, s + 3 +

n + 2

s + 3
}.

For n ≥ 8 and r ≤ n − 6,

µ1(G3(r, s; n)) ≤ max{3 +
n + 2

3
, n − 3 +

n + 2

n − 3
} ≤ n − 1,

and hence SL(G3(r, s; n)) < n − 1.

For the graph G4(r, s; n) of Figure 2.1 with 0 ≤ s ≤ r ≤ n − 6, by Lemma 2.3,

µ1(G4(r, s; n)) ≤ max{r + 3 +
n + 1

r + 3
, s + 3 +

n + 1

s + 3
}.

For n ≥ 7 and arbitrary r, s,

µ1(G4(r, s; n)) ≤ max{3 +
n + 1

3
, n − 3 +

n + 1

n − 3
} ≤ n − 1,

and hence SL(G4(r, s; n)) < n − 1.

For the graph G5(r, s; n) of Figure 2.1 with 1 ≤ s ≤ n − 5, 0 ≤ r ≤ n − 6, by Lemma 2.3,

µ1(G5(r, s; n)) ≤ max{s + 1 +
n − 1

s + 1
, r + 4 +

n + 3

r + 4
}.

For n ≥ 9, r ≤ n − 7, and an arbitrary s,

s + 1 +
n − 1

s + 1
≤ max{2 +

n − 1

2
, n − 4 +

n − 1

n − 4
} ≤ n − 1,

r + 4 +
n + 3

r + 4
≤ max{4 +

n + 3

4
, n − 3 +

n + 3

n − 3
} ≤ n − 1,

and hence SL(G5(r, s; n)) < n − 1.

For the graph G6(r, s; n) of Figure 2.1 with 1 ≤ s ≤ n − 6, 0 ≤ r ≤ n − 7, by Lemma 2.3,

µ1(G6(r, s; n)) ≤ max{s + 1 +
n − 1

s + 1
, r + 5 +

n + 3

r + 5
}.

For n ≥ 9, r ≤ n − 8, and an arbitrary s,

s + 1 +
n − 1

s + 1
≤ max{2 +

n − 1

2
, n − 5 +

n − 1

n − 5
} ≤ n − 1,

r + 5 +
n + 3

r + 5
≤ max{5 +

n + 3

5
, n − 3 +

n + 3

n − 3
} ≤ n − 1,

and hence SL(G6(r, s; n)) < n − 1.

For the graph G7(r, s; n) of Figure 2.1 with 1 ≤ s ≤ n − 5, 0 ≤ r ≤ n − 6, by Lemma 2.3,

µ1(G7(r, s; n)) ≤ max{s + 2 +
n

s + 2
, r + 3 +

n + 2

r + 3
}.

For n ≥ 8 and arbitrary r, s,

s + 2 +
n

s + 2
≤ max{3 +

n

3
, n − 3 +

n

n − 3
} ≤ n − 1,
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r + 3 +
n + 2

r + 3
≤ max{3 +

n + 2

3
, n − 3 +

n + 2

n − 3
} ≤ n − 1,

and hence SL(G7(r, s; n)) < n − 1.

For the graph G8(r, s; n) of Figure 2.1 with 0 ≤ r, s ≤ n − 6, by Lemma 2.3,

µ1(G8(r, s; n)) ≤ max{s + 2 +
n

s + 2
, r + 4 +

n + 2

r + 4
}.

For n ≥ 8, r ≤ n − 7, and an arbitrary s,

s + 2 +
n

s + 2
≤ max{2 +

n

2
, n − 4 +

n

n − 4
} ≤ n − 1,

r + 4 +
n + 2

r + 4
≤ max{4 +

n + 2

4
, n − 3 +

n + 2

n − 3
} ≤ n − 1,

and hence SL(G8(r, s; n)) < n − 1.

For the graph G9(r, s; n) of Figure 2.1 with 0 ≤ r ≤ n − 5, 1 ≤ s ≤ n − 4, by Lemma 2.3,

µ1(G9(r, s; n)) ≤ max{r + 3 +
n + 3

r + 3
, s + 2 +

n + 2

s + 2
}.

For n ≥ 9, r ≤ n − 6 and s ≤ n − 5,

r + 3 +
n + 3

r + 3
≤ max{3 +

n + 3

3
, n − 3 +

n + 3

n − 3
} ≤ n − 1,

s + 2 +
n + 2

s + 2
≤ max{3 +

n + 2

3
, n − 3 +

n + 2

n − 3
} ≤ n − 1,

and hence SL(G9(r, s; n)) < n − 1.

For the graph G10(r, s; n) of Figure 2.1 with 0 ≤ s ≤ r ≤ n − 6, by Lemma 2.3,

µ1(G10(r, s; n)) ≤ max{r + 3 +
n + 1

r + 3
, s + 3 +

n + 1

s + 3
}.

For n ≥ 7 and arbitrary r, s,

µ1(G10(r, s; n)) ≤ max{3 +
n + 1

3
, n − 3 +

n + 1

n − 3
} ≤ n − 1,

and hence SL(G10(r, s; n)) < n − 1.

By the above discussion, if G is one with maximal Laplacian spread of all bicyclic graphs

of order n ≥ 9, then G is among the graphs G1(n − 4, 0; n), G1(n − 5, 1; n), G2(n − 5, 0; n),

G2(n − 6, 1; n), G3(n − 5, 0; n), G5(n − 6, 1; n), G6(n − 7, 1; n), G8(n − 6, 0; n), G9(n − 5, 1; n),

G9(0, n− 4; n). The result follows. 2

We next show that except the graphs G1(n − 4, 0; n) and G2(n − 5, 0; n), the Laplacian

spreads of the other graphs in Lemma 2.7 are all less than n − 1 for a suitable n. Thus by a

little computation for the graphs in Figure 2.1 of small order, G1(n− 4, 0; n) and G2(n− 5, 0; n)

are proved to be the only two bicyclic graphs with maximal Laplacian spread among all bicyclic

graphs of order n ≥ 5.

In the following Lemmas 2.8–2.15, for convenience we simply write µ1(Gi(r, s; n)), µn−1(Gi(r, s; n))

as µ1, µn−1 respectively if no confusions occur.

Lemma 2.8 For n ≥ 7, SL(G1(n − 5, 1; n)) < n − 1.



The Laplacian spread of bicyclic graphs 23

Proof The characteristic polynomial det(λI − L(G1(n − 5, 1; n))) of L(G1(n − 5, 1; n)) is

λ(λ − 1)n−6(λ − 2)[λ4 − (n + 6)λ3 + (7n + 4)λ2 − (11n − 6)λ + 4n].

By Lemmas 2.1 and 2.4, n > µ1 > n − 1 ≥ 6, and by Lemma 2.5, µn−1 < 1. So µ1, µn−1 are

both the roots of the following polynomial:

f1(λ) =: λ4 − (n + 6)λ3 + (7n + 4)λ2 − (11n− 6)λ + 4n

with the derivative

f ′

1(λ) = 4λ3 − 3(n + 6)λ2 + 2(7n + 4)λ − (11n− 6),

and the second derivative

f ′′

1 (λ) = 12λ2 − 6(n + 6)λ + 2(7n + 4).

Observe that

(n − 1) − SL(G1(n − 5, 1; n)) = (n − 1) − (µ1 − µn−1) = (n − µ1) − (1 − µn−1).

If we can show n − µ1 > 1 − µn−1, the result will follow. By Lagrange Mean Value Theorem,

f1(n) − f1(µ1) = (n − µ1)f
′

1(ξ1)

for some ξ1 ∈ (µ1, n). As f ′

1(x) is positive and strictly increasing on the interval (µ1, +∞) and

µ1 < n,

n − µ1 =
f1(n) − f1(µ1)

f1(ξ1)
>

n3 − 7n2 + 10n

f ′

1(n)
=

n(n − 2)(n − 5)

(n − 1)(n2 − 3n− 6)
>

n − 5

n − 1
.

By Lagrange Remainder Theorem,

f1(µn−1) = f1(1) + f ′

1(1)(µn−1 − 1) +
f ′′

1 (ξ2)

2!
(µn−1 − 1)2

for some ξ2 ∈ (µn−1, 1). As f ′

1(1) = 0 and f ′′

1 (x) is positive and strictly decreasing on the open

interval (0,1),

(1 − µn−1)
2 =

2(n − 5)

f ′′

1 (ξ2)
<

2(n − 5)

f ′′

1 (1)
=

n − 5

4(n − 2)
.

If n ≥ 7, n−5
n−1 >

√

n−5
4(n−2) , and hence n − µ1 > 1 − µn−1. The result follows. 2

Lemma 2.9 For n ≥ 7, SL(G2(n − 6, 1; n)) < n − 1.

Proof The characteristic polynomial of L(G2(n − 6, 1; n)) is

λ(λ − 1)n−6(λ − 3)[λ4 − (n + 5)λ3 + (6n + 3)λ2 − (9n − 5)λ + 3n].

By a similar discussion to the proof of Lemma 2.8, both µ1 and µn−1 are the roots of the

polynomial

f2(λ) =: λ4 − (n + 5)λ3 + (6n + 3)λ2 − (9n − 5)λ + 3n,

f ′

2(λ) = 4λ3 − 3(n + 5)λ2 + 2(6n + 3)λ − (9n − 5), f ′′

2 (λ) = 12λ2 − 6(n + 5)λ + 6(2n + 1).
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and

n − µ1 =
f2(n) − f2(µ1)

f ′

2(ξ1)
>

n3 − 6n2 + 8n

f ′

2(n)
=

n(n − 2)(n − 4)

(n − 1)(n2 − 2n − 5)
>

n − 4

n − 1
,

for some ξ1 ∈ (µ1, n). In addition,

f2(µn−1) = f2(1) + f ′

2(1)(1 − µn−1) +
f ′′

2 (ξ2)

2!
(1 − µn−1)

2,

for some ξ2 ∈ (µn−1, 1). Noting f ′

2(1) = 0, we have

(1 − µn−1)
2 =

2(n − 4)

f ′′

2 (ξ2)
<

2(n − 4)

f ′′

2 (1)
=

n − 4

3(n − 2)
.

If n ≥ 7, n−4
n−1 >

√

n−4
3(n−2) , and hence n − µ1 > 1 − µn−1. The result follows. 2

Lemma 2.10 For n ≥ 6, SL(G3(n − 5, 0; n)) < n − 1.

Proof The characteristic polynomial of L(G3(n − 5, 0; n)) is

λ(λ − 1)n−6[λ5 − (n + 8)λ4 + (9n + 18)λ3 − (27n + 6)λ2 + (31n − 10)λ − 11n].

So µ1, µn−1 are both the roots of the polynomial

f3(λ) =: λ5 − (n + 8)λ4 + 9(n + 2)λ3 − 3(9n + 2)λ2 + (31n − 10)λ − 11n,

and

n − µ1 =
f3(n) − f3(µ1)

f ′

3(ξ1)
>

n4 − 9n3 + 25n2 − 21n

f ′

3(n)
= 1 − 4n3 − 25n2 + 40n− 10

n4 − 5n3 + 19n − 10
,

for some ξ1 ∈ (µ1, n). Note that the function

g1(x) =:
4x3 − 25x2 + 40x − 10

x4 − 5x3 + 19x − 10

is strictly decreasing for x ≥ 6. Hence

(n − µ1) − (1 − µn−1) = µn−1 − g1(n) ≥ µn−1 − g1(6) = µn−1 −
97

160
.

Observe that a star of order n has eigenvalues: 0, n, 1 of multiplicity n − 2, and hence has

(n−1) eigenvalues not less than 1. As G3(n−5, 0; n) contains a star of order n−1, by eigenvalues

interlacing theorem (that is, µi(G) ≥ µi(G − e) for i = 1, 2, . . . , n if we delete an edge e from

a graph G of order n; or see [16]), G3(n − 5, 0; n) has (n − 2) eigenvalues not less than 1. Now

f3(
97
160 ) ≈ −5.2557 − 0.2595n < 0. So µn−1 > 97

160 ; otherwise µn−2 < 97
160 < 1, a contradiction.

The result follows. 2

Lemma 2.11 For n ≥ 6, SL(G5(n − 6, 1; n)) < n − 1.

Proof The characteristic polynomial of L(G5(n − 6, 1; n)) is

λ(λ − 1)n−6(λ − 2)(λ − 4)[λ3 − (n + 2)λ2 + (3n − 2)λ − n].

So µ1, µn−1 are both the roots of the polynomial

f4(λ) =: λ3 − (n + 2)λ2 + (3n − 2)λ − n.
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By Lagrange Mean Value Theorem,

n − µ1 =
f4(n) − f4(µ1)

f ′

4(ξ1)
>

n2 − 3n

f ′

4(n)
= 1 − 2n − 2

n2 − n − 2
,

for some ξ1 ∈ (µ1, n). Note that the function g2(x) =: 2x−2
x2−x−2 is strictly decreasing for all x.

Hence

(n − µ1) − (1 − µn−1) > µn−1 − g2(n) ≥ µn−1 − g2(6) = µn−1 −
5

14
.

By a similar discussion to those in the last paragraph of the proof of Lemma 2.10, as f4(
5
14 ) =

− 2535
2744 − 11n

196 < 0, µn−1 > 5
14 , and the result follows. 2

Lemma 2.12 For n ≥ 7, SL(G6(n − 7, 1; n)) < n − 1.

Proof The characteristic polynomial of L(G6(n − 7, 1; n)) is

λ(λ − 1)n−6(λ − 3)2[λ3 − (n + 2)λ2 + (3n − 2)λ − n].

So µ1, µn−1 are both the roots of the polynomial λ3 − (n + 2)λ2 + (3n − 2)λ − n, which is the

same to f4(λ) in the proof of Lemma 2.11. Hence, for n ≥ 7, n − µ1 > 1 − µn−1. The result

follows. 2

Lemma 2.13 For n ≥ 6, SL(G8(n − 6, 0; n)) < n − 1.

Proof The characteristic polynomial of L(G8(n − 6, 0; n)) is

λ(λ − 1)n−6(λ − 2)(λ − 3)[λ3 − (n + 3)λ2 + (4n − 2)λ − 2n].

So µ1, µn−1 are both the roots of the polynomial f5(λ) =: λ3 − (n + 3)λ2 + (4n − 2)λ − 2n. By

Mean Value Theorem,

n − µ1 =
f5(n) − f5(µ1)

f ′

5(ξ1)
=

n2 − 4n

f ′

5(ξ1)
,

1 − µn−1 =
f5(1) − f5(µn−1)

f ′

5(ξ2)
=

n − 4

f ′

5(ξ2)
,

for some ξ1 ∈ (µ1, n) and ξ2 ∈ (µn−1, 1). If we can show

n

f ′

5(ξ1)
>

1

f ′

5(ξ2)
,

the result will follow.

Note that f ′

5(λ) = 3λ2 − 2(n + 3)λ + 4n − 2. As f ′

5(λ) is positive and strictly decreasing on

the interval (0,1), and is positive and strictly increasing on the interval (µ1, +∞),

nf ′

5(ξ2) > nf ′

5(1) = n(2n − 5).

f ′

5(ξ1) < f ′

5(n) = n2 − 2n− 2.

Then

nf ′

5(ξ2) − f ′

5(ξ1) > n2 − 3n + 2 > 0.

The result follows. 2
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Lemma 2.14 For n ≥ 6, SL(G9(n − 5, 1; n)) < n − 1.

Proof The characteristic polynomial of L(G9(n − 5, 1; n)) is

λ(λ − 1)n−6[λ5 − (n + 8)λ4 + (17 + 9n)λ3 − (2 + 26n)λ2 + (27n− 13)λ − 8n].

So µ1, µn−1 are both the roots of the polynomial f6(λ) =: λ5 − (n + 8)λ4 + (17 + 9n)λ3 − (2 +

26n)λ2 + (27n − 13)λ − 8n, and

n − µ1 =
f6(n) − f6(µ1)

f ′

6(ξ1)
>

n4 − 9n3 + 25n2 − 21n

f ′(n)
= 1 − 4n3 − 26n2 + 44n− 13

n4 − 5n3 − n2 + 23n− 13
.

Noting that the function g3(x) =: 4x3
−26x2+44x−13

x4−5x3−x2+23x−13 is strictly decreasing for x ≥ 6, we have

(n − µ1) − (1 − µn−1) ≥ µn−1 − g3(6) = µn−1 −
179

305
.

As f(179
305 ) ≈ −5.17633− 0.405628n < 0, µn−1 > 179

305 . The result follows. 2

Lemma 2.15 For n ≥ 5, SL(G9(0, n − 4; n)) < n − 1.

Proof The characteristic polynomial of L(G9(0, n − 4; n)) is

λ(λ − 1)n−5(λ − 4)[λ3 − (n + 3)λ2 + (4n − 2)λ − 2n].

So µ1, µn−1 are both the roots of the polynomial f7(λ) =: λ3 − (n+3)λ2 +(4n− 2)λ− 2n. Then

n − µ1 >
f7(n)

f ′

7(n)
= 1 − 2n − 2

n2 − 2n − 2
.

Denote g4(x) = 2x−2
x2

−2x−2 . Then

(n − µ1) − (1 − µn−1) ≥ µn−1 − g4(6) = µn−1 −
5

11
.

Noting that f7(
5
11 ) = − 1910

1331 − 47n
121 < 0, we have µn−1 > 5

11 . The result follows. 2

Let G be one with maximal Laplacian spread of all bicyclic graphs of order n ≥ 5. From the

first paragraph of the proof of Lemma 2.7, the graph G is necessarily among graphs in Figure

2.1. If the order n ≥ 9, by Lemmas 2.7–2.15, G is the graph G1(n − 4, 0; n) or G2(n − 5, 0; n)

of Figure 2.1. For the order n ≤ 8, the graph(s) with maximal Laplacian spread are among

the graphs in Figure 2.1, and can be identified by a little computation (through the software

Mathematica), or by Lemmas of this paper; see Figure 2.2, where “Lemma” is abbreviated to

“L” (e.g. “Lemma 2.15” is written as “L2.15”), and “Proof of Lemma 2.7” is abbreviated to “Pf.

L2.7” for the explanation of the results on spreads of some graphs. From Figure 2.2 we find that

in the case of 5 ≤ n ≤ 8, the graph G is also G1(n − 4, 0; n) or G2(n − 5, 0; n).

Theorem 2.16 For n ≥ 5, G1(n − 4, 0; n) and G2(n − 5, 0; n) of Figure 2.1 are the only two

graphs with maximal Laplacian spread among all bicyclic graphs of order n.



The Laplacian spread of bicyclic graphs 27

n = 5

graph G1(1, 0; 5) G2(0, 0; 5) G3(0, 0; 5) G9(0, 1; 5)

spread 4 4 1 +
√

5 < 4 (L2.15)

n = 6

graph G1(2, 0; 6) G1(1, 1; 6) G2(1, 0; 6) G2(0, 1; 6) G3(1, 0; 6) G4(0, 0; 6)

spread 5 2
√

5 5 ≈ 4.476 < 5 (L2.10)
√

17

graph G5(0, 1; 6) G7(0, 1; 6) G8(0, 0; 6) G9(0, 2; 6) G9(1, 1; 6) G10(0, 0; 6)

spread < 5 (L2.11) ≈ 4.170 < 5 (L2.13) < 5 (L2.15) < 5 (L2.14) 4

n = 7

graph G1(3, 0; 7) G1(2, 1; 7) G2(2, 0; 7) G2(1, 1; 7) G2(0, 2; 7) G3(2, 0; 7)

spread 6 < 6 (L2.8) 6 < 6 (L2.9) 2
√

6 < 6 (L2.10)

graph G3(1, 1; 7) G4(r, s; 7) G5(0, 2; 7) G5(1, 1; 7) G6(0, 1; 7) G7(0, 2; 7)

spread ≈ 4.863 < 6 (Pf. L2.7) ≈ 4.863 < 6 (L2.11) < 6 (L2.12) ≈ 4.808

graph G7(1, 1; 7) G8(1, 0; 7) G8(0, 1; 7) G9(0, 3; 7) G9(1, 2; 7) G9(2, 1; 7) G10(r, s; 7)

spread ≈ 4.808 < 6 (L2.13) 2 + 2
√

2 < 6 (L2.15) ≈ 4.884 < 6 (L2.14) < 6 (Pf. L2.7)

n = 8

graph G1(4, 0; 8) G1(3, 1; 8) G1(2, 2; 8) G2(3, 0; 8) G2(2, 1; 8) G2(1, 2; 8)

spread 7 < 7 (L2.8)
√

33 7 < 7 (L2.9) ≈ 5.681

graph G3(3, 0; 8) G3(2, 1; 8) G4(r, s; 8) G5(0, 3; 8) G5(1, 2; 8) G5(2, 1; 8)

spread < 7 (L2.10) < 7 (Pf. L2.7) < 7 (Pf. L2.7) < 7 (L2.3) ≈ 5.768 < 7 (L2.11)

graph G6(0, 2; 8) G6(1, 1; 8) G7(r, s; 8) G8(0, 2; 8) G8(1, 1; 8) G8(2, 0; 8)

spread ≈ 5.768 < 7 (L2.12) < 7 (Pf. L2.7) < 7 (Pf. L2.7) < 7 (Pf. L2.7) < 7 (L2.13)

graph G9(0, 4; 8) G9(1, 3; 8) G9(2, 2; 8) G9(3, 1; 8) G10(r, s; 8)

spread < 7 (L2.15) < 7 (L2.3) ≈ 5.639 < 7 (L2.14) < 7 (Pf. L2.7)

Figure 2.2 Laplacian spreads of graphs of order n in Figure 2.1 when 5 ≤ n ≤ 8.
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