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Abstract The general mutual information (GMI) and general conditional mutual information

(GCMI) are considered to measure lag dependences in nonlinear time series. Both of the mea-

sures have the property of invariance with transform. The statistics based on GMI and GCMI

are estimated using the correlation integral. Under the hypothesis of independent series, the

estimators have Gaussian asymptotic distributions. Simulations applied to generated nonlinear

series demonstrate that the methods appear to find frequently the correct lags.
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1. Introduction

Statistics based on mutual information have been found to be helpful in determining the lags

in nonlinear time series, using the identification methods discussed by Granger and Lin [1, 2] and

others [3, 4]. However, the appropriate statistics to distinguish direct and indirect dependence

are conditional mutual information measures. These statistics based on Shannon entropy involve

high dimension kernel density estimation, which is computationally costly to achieve reasonable

accuracy. Diks and Manzan [5] used the correlation integrals to estimate conditional mutual

information. In this paper we consider statistics based on Renyi entropy, which takes Shannon

entropy as a special case. We also prove that the statistics satisfy the properties for being

statistics to measure bivariate dependence. The statistics based on general mutual information

are estimated by correlation integral, which are faster than estimates of the probability density

function. Under the hypothesis of independent series, the estimators have Gaussian asymptotic

distributions, while there is no similar result for kernel density estimate. The methods are applied
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to simulated nonlinear time series. The results show that the statistic based on GMI behaves

much like that based on MI, and the statistic based on GCMI behaves better than the statistic

in [1] for identifying correct lags.

The rest of the paper is organized as follows. The measures based on information theory

are presented and the properties of the statistics are proved in Section 2. Section 3 gives the

nonparametric estimation based on correlation integrals and the asymptotic distribution of the

estimator. In Section 4, numerical examples are presented. Finally conclusions are summarized

in Section 5.

2. The general mutual information

Suppose that a pair of continuous random variables X , Y has a joint probability density

function fX,Y (x, y) with marginals fX(x), fY (y), respectively. The information contained in X

is given by the Shannon entropy

H(X) = −

∫

[ln fX(x)]fX(x)dx. (1)

The amount of information jointly contained in the random vector (X, Y ) is measured by the

joint entropy

H(X, Y ) = −

∫∫

[ln fX,Y (x, y)]fX,Y (x, y)dxdy. (2)

To quantify the dependence between variables, a commonly used measure is the mutual

information

I(X ; Y ) = H(X) + H(Y ) − H(X, Y ). (3)

The mutual information is non-negative, and I(X ; Y ) = 0 if and only if fX,Y (x, y) =

fX(x)fY (y).

When modelling for a time series Xt, we refer to establish a regressive model of explanatory

variable Xt on explained variables Xt−1, . . . , Xt−p, εt−1, . . . , εt−q. In the case of time series, Xt

is known as current variable, while Xt−1, . . . , Xt−p, εt−1, . . . , εt−q are known as lagged variables.

Then the problem of selecting associate explained variables can also be called lag selection.

Granger [1] used R(X, Y ) = [1 − exp {−2I(X ; Y )}]1/2 to identify what lags to use when

building nonlinear models. The estimation of R is based on the kernel density estimate of the

probability density function, which is computationally costly.

Instead of using the Shannon entropy, a generalization of the statistic is obtained by using

the Renyi entropies

Hq(X) = −
1

q − 1
ln

∫

(fX(x))q−1fX(x)dx. (4)

It is easy to show that the limit as q −→ 1 leads to the Shannon entropy. The q-order mutual

information is defined by

Iq(X ; Y ) = Hq(X) + Hq(Y ) − Hq(X, Y ). (5)
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The q-order conditional mutual information, quantifying the average amount of additional

information in Y about X , given the information about X already contained in Z, is defined by

Iq(X ; Y, Z) − Iq(X ; Z) = −Hq(X, Y, Z) + Hq(X, Z) + Hq(Y, Z) − Hq(Z) = Iq(X ; Y |Z). (6)

In this paper, we mainly consider the 2-order Renyi entropy. From Equ.(4), the condition

for H2(X) to be well-defined and finite is that the probability density function fX(x) is square

integrable on the probability space. Throughout the paper, we assume that the process X

satisfies the integrable condition.

The properties of statistic Iq(X ; Y |Z) are shown in the following theorems. With similar

method, one can prove that the properties also exist for Iq(X ; Y ).

Theorem 1 I(X ; Y |Z) is nonnegative and is 0 if and only if X and Y are statistically indepen-

dent given Z.

Proof Kullback-Leibler information divergence

I(f1; f2) =

∫

ln
f1(x)

f2(x)
f1(x)dx

is always nonnegative and I(f1; f2) = 0 if and only if f1 = f2 (see [6]).

The conditional mutual information between X, Y for given Z is defined as

I(X ; Y |Z) =

∫∫∫

fX,Y,Z(x, y, z) ln
fX,Y,Z(x, y, z)

fX|Z(x|z)fY |Z(y|z)fZ(z)
dxdydz,

where fX|Z(x|z) is the conditional density function of X given Z. The result follows immedi-

ately from the properties of Kullback-Leibler information divergence, where f1 = fX,Y,Z(x, y, z),

f2 = fX|Z(x|z)fY |Z(y|z)f(z). 2

Theorem 2 Iq(X ; Y |Z) is invariant to separate one-to-one transformations.

Proof Without loss of generality, it will be assumed that the one-to-one transformations

h1, h2, h3 are differentiable. Let X∗ = h1(X), Y ∗ = h2(Y ), Z∗ = h3(Z) and g, g13, g23, g3

be the joint and marginal densities for X∗, Y ∗, Z∗. By definition,

Iq(X
∗; Y ∗|Z∗) =

1

1 − q
ln

∫

g
q
13(X

∗, Z∗)dx∗dz∗
∫

g
q
23(Y

∗, Z∗)dy∗dz∗
∫

gq(X∗, Y ∗, Z∗)dx∗dy∗dz∗
∫

g
q
3(Z

∗)dz∗

=
1

1 − q
ln

∫

f
q
13

{

h−1
1 (X∗), h−1

3 (Z∗)
} dh−1

1

dx∗

dh−1

3

dz∗
dx∗dz∗

∫

f q
{

h−1
1 (X∗), h−1

2 (Y ∗), h−1
3 (Z∗)

} dh−1

1

dx∗

dh−1

2

dy∗

dh−1

3

dz∗
dx∗dy∗dz∗

+

1

1 − q
ln

∫

f
q
23

{

h−1
2 (Y ∗), h−1

3 (Z∗)
} dh−1

2

dy∗

dh−1

3

dz∗
dy∗dz∗

∫

f
q
3

{

h−1
1 (Z∗)

} dh−1

3

dz∗
dz∗

=
1

1 − q
ln

∫

f
q
13(X, Y, Z)dxdz

∫

f
q
23(Y, Z)dydz

∫

f q(X, Y, Z)dxdydz
∫

f
q
3 (Z)dz

=Iq(X ; Y |Z). 2

Theorem 3 Consider vector X = (X1, X2, X3) with Gaussian distribution N3(µ, V ). Let

ρ12|3 = corr(X1, X2|X3), i.e., the partial correlation coefficient between X1 and X2 given X3.
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Then Iq(X1; X2|X3) = − 1
2 ln(1 − ρ2

12|3).

Proof In this special case of Gaussian vector, the joint entropy of Equ.(4) can be computed

straightforwardly from the definition

Hq(X1, X2, X3) = −
1

q − 1
ln

( |V |q/2

(2π)3q/2

∫

e−
q

2
(x−µ)′V −1(x−µ)dx

)

=
3

2
ln(2π) +

1

2
ln |V | +

3 ln q

2q − 1
. (7)

The q-order conditional mutual information of X1 and X2 given X3 is

Iq(X1, X2|X3) = Hq(X1, X3) + Hq(X2, X3) − Hq(X1, X2, X3) − Hq(X3)

=
1

2
ln

( |V13| |V23|

|V3| |V |

)

, (8)

where V13, V23 are the covariance matrix of (X1, X3) and (X2, X3), respectively, V3 is the variance

of X3.

Then the theorem is obvious from Proposition 6.4.6 in [6]. 2

Remark 1 The theorem can be extended to the case that X3 is a vector straightly.

Thus in Gaussian distributions the information measures for measuring the conditional in-

dependence of X1 and X2 given X3 is a simple function of the partial correlation between X1

and X2 given X3. Then the problem of test independence in linear model is a special situation

of the information measures.

Strictly speaking, the general conditional mutual information Iq(X ; Y |Z) is not positive def-

inite for q 6= 1. This means that it is possible to construct examples of variables X and Y ,

which are conditionally dependent given Z, and for which Iq(X ; Y |Z) is zero or negative. This

situation appears to be very exceptional, and usually I2(X ; Y |Z) is either positive or negative.

This suggests that a one-sided test, rejecting for I2(X ; Y |Z) large, is not always optimal. In

practice, I2(X ; Y |Z) behaves much like I1(X ; Y |Z) in that we usually observe larger power for

one-sided tests (rejecting for large I2(X ; Y |Z)) than for two-sided tests. This leads us to choose

q = 2, together with a one-sided implementation of the test. Pompe [7] proposed an approach

to transform the data to have a uniform distribution to guarantee that the GMI is nonnegative

and equals zero if and only if there are no statistical dependences. Unfortunately, the approach

cannot be used for GCMI.

Note that the general conditional mutual information is an unbounded measure of conditional

dependence. We use a transformed version of the mutual information and conditional mutual

information

G(X, Y ) = 1 − exp {−Iq(X ; Y )} , T (X ; Y |Z) = 1 − exp {−Iq(X ; Y |Z)} . (9)

3. Test lags dependence using general mutual information measures

In this section, we propose to investigate and test for independence in time series using

the general conditional mutual information measure defined above. The advantage of using
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T (X ; Y |Z) as a test statistic is that it captures dependence while the conditioning on intermediate

values of the time series will also give insights on the order of the underlying process. As a special

case of T (X ; Y |Z), G(X, Y ) has the same estimation and asymptotic property.

For a stationary time series {Xt}
n
t=1 we define the M dimension delay vectors as XM

t =

(Xt−1, . . . , Xt−M ), where M is a positive integer determined beforehand.

Let X
−j
t = (Xt−1, . . . , Xt−j+1, Xt−j−1, . . . , Xt−M ) denote the vector of the other variables

in XM
t except Xt−j . The null hypothesis is that

H0: Xt and Xt−j are independent.

The general conditional mutual information between Xt and Xt−j , is

Iq(Xt; Xt−j |X
−j
t ) = Hq(Xt, Xt−j , X

−j
t ) + Hq(Xt, X

−j
t ) − Hq(Xt−j , X

−j
t ) − Hq(X

−j
t ). (10)

The statistics to test the dependence between Xt and Xt−j is

Tj(Xt; Xt−j|X
−j
t ) = 1 − exp{−Iq(Xt; Xt−j|X

−j
t )}. (11)

We use the generalized correlation integral to estimate the information quantities. The

choice q = 2 is by far the most popular in chaos analysis, since it allows for efficient estimation

algorithms. From the results in [8], another reason for using q = 2 is that, because of its

symmetry, it is the fastest to compute all the generalized correlation integrals. The second order

(q = 2) correlation integral for the vector X is

C(X ; ε) =

∫∫

I(‖s−t‖≤ε)fX(s)fX(t)dsdt, (12)

where I(·) denotes the indicator function taking values 0 and 1, and ‖·‖ denotes the supremum

norm, ‖X‖ = supi=1,...,dim X |xi|. The parameter ε plays the role of a bandwidth.

Because (12) is just the expectation of the kernel function, it can be estimated straightfor-

wardly in a U -statistics framework, by

Ĉ(X ; ε) =
2

n(n − 1)

n−1
∑

i=1

n
∑

j=i+1

I(‖X(i)−X(j)‖≤ε), (13)

where n is the length of the observation series.

The relation of H2(X) and C(X ; ε) for ε small is

H2(X) ≃ − lnC(X ; ε) + m ln ε. (14)

where m is the dimension of X .

Then the estimators for G(X, Y ) and T (X, Y |Z) are

Ĝ(X ; Y ) = 1 − exp{−Î2(X ; Y )} = 1 −
Ĉ(X ; ε)Ĉ(Y ; ε)

Ĉ(X, Y ; ε)
,

T̂ (X, Y |Z) = 1 − exp{−Î2(X, Y |Z)} = 1 −
Ĉ(X, Z; ε)Ĉ(Y, Z; ε)

Ĉ(X, Y, Z; ε)Ĉ(Z; ε)
. (15)

Let Cj(ε), C
j
3(ε), C

j
21(ε), C

j
22(ε) be shorthand notation for C(X−j

t ; ε), C(Xt, Xt−j, X
−j
t ; ε),
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C(Xt, X
−j
t ; ε), C(Xt−j , X

−j
t ; ε), respectively. Then the estimator T̂j(ε) for Tj is

T̂j(ε) = 1 −
Ĉ

j
21(ε)Ĉ

j
22(ε)

Ĉ
j
3(ε)Ĉj(ε)

. (16)

Theorem 4 Under the null hypothesis of an i.i.d. process, the asymptotical distribution of T̂j

is

n1/2T̂j(ε)
d

−→ N(0, VT (ε)) (17)

where n is the series length,
d

−→ denotes convergence in distribution. Since ε is fixed, we shall

suppress ε in the notation,

Cj ≡ Cj(ε), C
j
3 ≡ C

j
3(ε), C

j
21 ≡ C

j
21(ε), C

j
22 ≡ C

j
22(ε), T̂j ≡ T̂j(ε), VT ≡ VT (ε).

Proof Let {Yt} be an R
k -valued stochastic process. Then U -statistics of order 2 are defined by

U(n) =
2

n(n − 1)

n
∑

s=1

n
∑

t=s

h(Yt, Ys), (18)

where h : R
k × R

k → R. Moreover, h(y, z) = h(z, y) is a symmetric function and called a

“kernel”.

Since the indicator kernel in the correlation integral is bounded between 0 and 1, the mo-

ment conditions needed by Denker and Keller [9] are trivially satisfied. In addition, under the

stationary and conditional independent assumptions the weak dependence conditions are also

satisfied. The following (finite n) U -statistics and functions of U -statistics are defined.

gj ≡ Ĉ
j
21Ĉ

j
22 − Ĉ

j
3Ĉj ≡ G[Ĉj

21, Ĉ
j
22, Ĉ

j
3 , Ĉj ]. (19)

Note that T̂j ≡ D[Ĉj
21, Ĉ

j
22, Ĉ

j
3 , Ĉj ] and gj are functions of U -statistics. Since Ĉ

j
21, Ĉ

j
22, Ĉ

j
3

and Ĉj converge in probability to C
j
21, C

j
22, C

j
3 and Cj under the stationary and conditional

independent assumptions as n → ∞, respectively (The deduction is straightforward from the

properties of U -statistics), it follows that gj and Ĉj converge in probability to 0 as n → ∞. To

put it in another way, under i.i.d. D and G are 0 at population values.

Let Dk, Gk denote the partial derivatives with respect to the k-th argument of D and G

respectively (k = 1, 2, 3, 4), evaluated at population values, C
j
21, C

j
22, C

j
3 , Cj .

We expand the functions D and G around the population values in a Taylor series and take

the limits as n → ∞. This yields, for any smooth function H such that H [Cj
21, C

j
22, C

j
3 , Cj ] = 0,

lim{n1/2H [Ĉj
21, Ĉ

j
22, Ĉ

j
3 , Ĉj ]}

= lim{n1/2[H1 × (Ĉj
21 − C

j
21) + H2 × (Ĉj

22 − C
j
22) + H3 × (Ĉj

3 − C
j
3) + H4 × (Ĉj − Cj)]}

= N(0, V (H)), (20)

where all partial derivative Hi, i = 1, 2, 3, 4 are evaluated at (Cj
21, C

j
22, C

j
3 , Cj), “lim” denotes

limit in distribution as n → ∞ and N(0, V ) denotes Gaussian distribution with mean 0 and

variance, V . Note that the right hand side of (20) is a linear combination of U -statistics, and

hence a U -statistic for H = G, D. Let g̃j and T̃j denote the linear terms in (20) for H = G, D,
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respectively. In particular

g̃j = Cj × (Ĉj
3 − C

j
3) + C

j
3 × (Ĉj − Cj) − C

j
22 × (Ĉj

21 − C
j
21) − C

j
21 × (Ĉj

22 − C
j
22), (21)

T̃j =
g̃j

C
j
3Cj

. (22)

Equ. (19) implies lim{n1/2g̃j} = N(0, V (G)), lim{n1/2T̃j} = N(0, V (D)), where

V (G) = limE[{n1/2g̃j}
2], V (D) = limE[{n1/2T̃j}

2]. (23)

The limits in (22) can be calculated by methods similar to Wu, Savit and Brock [10]. After

complex calculations, the variance is

VT = 4σ2(T̂j) = 4
σ2(gj)

(Cj
3)2(Cj)2

,

where

σ2(gj) = (Cj
3)2Var(KC

1 ) + (Cj)2Var(KC
1,ab) − (Cj

22)
2Var(KC

1,b) − (Cj
21)

2Var(KC
1,a),

KC ≡ KC [Z(s), Z(t)] = I(‖Z(s)−Z(t)‖≤ε),

KC
ab ≡ KC [Zab(s), Zab(t)] = I(‖Zab(s)−Zab(t)‖≤ε),

KC
1 =

∫

KC [Z(s + i), Z(t + i)]dF [Z(s + i)],

KC
1,ab =

∫

KC
ab[Zab(s + i), Zab(t + i)]dF [Zab(s + i)],

Zab(t) = (Xt, Xt−j, X
−j
t ), Z(t) = (X−j

t ), Za(t) = (Xt, X
−j
t ), Zb(t) = (Xt−j , X

−j
t ). 2

In practical applications, we should pay attention to the choice of the parameter ε. From

(14) and the proof process of Theorem 4, the accuracy of the estimator increases when ε

decreases, while the standard deviation decreases when ε decreases. In general, one selects

ε = 0.5σX , 1.0σX , 1.5σX , where σX is the standard deviation of the process.

The test procedure is composed of the following steps:

Step 1. For chosen significance level, calculate the critical values Cs for observation series

{Xt}
n
t=1. We suggest a simulation algorithm instead of calculating the variance in Theorem 4

straightly.

Step 2. Calculate the test statistic Tj(Xt; Xt−j|X
−j
t ).

Step 3. Reject the independence of Xt and Xt−j , if Tj(Xt; Xt−j|X
−j
t ) > Cs.

4. Simulation results

To investigate the potential applicability of the Ĝ defined in the previous section some sim-

ulation experiments are presented. Unless stated otherwise, the replication number for all sim-

ulations is 200. It has been found that Ĝ is biased in finite samples. In order to show the

relation between the bias and the sample size, a set of Gaussian independent random variables

yt with samples sizes of 100,200,300,500,1000 and 3000 are generated and Ĝj = Ĝ(yt, yt−j) for

j = 1, . . . , 10 are computed. The means and standard deviation are tabulated in Table 1.
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Lag 100 200 300 500 1000 3000

1 -0.0077 -0.0035 -0.0024 0.0005 0.0003 0.0374×10−3

(0.0439) (0.0266) (0.0191) (0.0129) (0.0098) (0.0050)

2 -0.0095 -0.0038 -0.0011 -0.0009 -0.0013 0.2572×10−3

(0.0471) (0.0249) (0.0178) (0.0147) (0.0097) (0.0051)

3 -0.0035 -0.0019 -0.0009 -0.0006 -0.0006 -0.8706×10−3

(0.0446) (0.0256) (0.0196) (0.0162) (0.0095) (0.0050)

4 -0.0041 -0.0039 0.0006 -0.0026 -0.0009 0.0106×10−3

(0.0485) (0.0254) (0.0199) (0.0149) (0.0095) (0.0055)

5 -0.0036 -0.0009 -0.0014 -0.0000 -0.0011 -0.0435×10−3

(0.0486) (0.0270) (0.0190) (0.0137) (0.0093) (0.0052)

6 0.0013 -0.0014 -0.0007

(0.0474) (0.0268) (0.0202)

7 -0.0073 -0.0025 -0.0027

(0.0544) (0.0234) (0.0191)

8 -0.0094 -0.0036 -0.0012

(0.0511) (0.0288) (0.0188)

9 -0.0041 0.0002 -0.0019

(0.0481) (0.0278) (0.0206)

10 -0.0007 -0.0048 -0.0021

(0.0503) (0.0239) (0.0190)

Table 1 The mean and standard deviation of Ĝj for various sample sizes

For simplicity, we use the same ε for all the models. The scale parameter is taken to be

ε = 0.5 (after rescaling each time series to zero mean and unit variance). The reason is that,

when ε = 0.5, the standard deviation of Ĝ is the nearest to that in [1].

Lag Mean Standard deviation 90% 95% 99%

1 -0.0010 0.0200 0.0232 0.0344 0.0453

2 -0.0007 0.0201 0.0252 0.0332 0.0501

3 0.0007 0.0206 0.0265 0.0343 0.0500

4 -0.0007 0.0194 0.0258 0.0334 0.0471

5 -0.0010 0.0196 0.0252 0.0340 0.0481

0 0.02 0.0256 0.0328 0.0466

Table 2 Mean, standard deviation and critical values for Ĝj

The mean, standard deviation and empirical critical values of G were estimated for sample

size 300 using 1000 replications and are reported in Table 2. For this sample size, the appropriate

95% critical value seems to be 0.03 for checking the null hypothesis of independence. The last

row is the corresponding critical values for Gauss distribution N(0, 0.022). The values are very

close to those of simulation, which verify Theorem 4 in a simulation way.
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Various time series were generated to examine the performance of Ĝ. For the purpose of

comparison, we use the same models considered by Granger and Lin [1] too, which are listed

below, with et ∼ i.i.d, N(0, 1).

Model 1 yt = et + 0.8e2
t−1;

Model 2 yt = et + 0.8e2
t−2;

Model 3 yt = et + 0.8e2
t−3;

Model 4 yt = et + 0.8e2
t−1 + 0.8e2

t−2 + 0.8e2
t−3;

Model 5 yt = |yt−1|
0.8 + et;

Model 6 yt = sign(yt−1) + et;

Model 7 yt = 0.8yt−1 + et;

Model 8 yt = yt−1 + et;

Model 9 yt = 0.6et−1yt−2 + et;

Model 10 yt = 4yt−1(1 − yt−1) + et for t > 1, 0 < y1 < 1.

Lag Model 1 Model 2 Model 3 Model 4

1 0.1267 0.0009 -0.0028 0.2138

(0.0254) (0.0270) (0.0247) (0.0322)

2 -0.0008 0.1214 -0.0004 0.1032

(0.0231) (0.0252) (0.0221) (0.0293)

3 -0.0032 -0.0062 0.1230 0.0369

(0.0234) (0.0209) (0.0264) (0.0258)

4 -0.0012 -0.0013 0.0003 0.0018

(0.0242) (0.0251) (0.0230) (0.0261)

5 0.0001 -0.0051 -0.0024 0.0012

(0.0238) (0.0227) (0.0245) (0.0264)

6 -0.0014 -0.0050 -0.0012 -0.0011

(0.0235) (0.0236) (0.0238) (0.0270)

7 -0.0031 -0.0037 -0.0032 0.0006

(0.0242) (0.0247) (0.0227) (0.0267)

8 -0.0027 -0.0032 -0.0026 0.0011

(0.0256) (0.0225) (0.0243) (0.0265)

9 -0.0034 0.0012 -0.0018 0.0009

(0.0231) (0.0265) (0.0249) (0.0264)

10 -0.0007 -0.0036 -0.0041 -0.0014

(0.0230) (0.0210) (0.0233) (0.0249)

Table 3 Mean and standard deviation of Ĝj for nonlinear MA models

The results are listed in Table 3. Model 1 is a nonlinear MA(1) so that, theoretically, all Gi

except G1 should be zero. Column 1 in Table 3 displays exactly this pattern. Ĝ1 is 0.12 and all

other Ĝi’s are close to or less than 0, which is the average value for the independent case. Similar
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results hold for models 2 and 3, which are nonlinear MA(2) and MA(3) with middle coefficients

set to zero. Model 4 is again nonlinear MA(3) but with more nonzero coefficients. Using the

critical values in Table 2, Ĝ1, Ĝ2 and Ĝ3 in column 4 of Table 3 are all significant.

The simulation results for the later 6 models are listed in Table 4. For the autoregressive

models 5, 6 and 7, the Ĝi decreases smoothly as i increases. Finally, consider the random-walk

time series in model 8. The Ĝi remains at a fairly high level and decreases very slowly with i,

which is very similar to the linear case. Model 9 is a bilinear model. Ĝ1 and Ĝ2 are significant,

which demonstrates again the ability of G to detect the nonlinear structure of a time series.

Model 10 is a chaotic time series, the Ĝ1 and Ĝ2 are significant.

Lag Model 5 Model 6 Model 7 Model 8 Model 9 Model 10

1 0.1822 0.2447 0.3534 0.6359 0.0501 0.5632

(0.0367) (0.0322) (0.0418) (0.0386) (0.0327) (0.0064)

2 0.0576 0.1262 0.2063 0.5999 0.0741 0.2024

(0.0335) (0.0373) (0.0458) (0.0515) (0.0295) (0.0239)

3 0.0201 0.0601 0.1296 0.5695 0.0120 -0.0378

(0.0257) (0.0322) (0.0474) (0.0640) (0.0256) (0.0200)

4 0.0088 0.0294 0.0831 0.5437 0.0179 -0.0093

(0.0231) (0.0276) (0.0469) (0.0740) (0.0246) (0.0177)

5 0.0020 0.0138 0.0550 0.5206 0.0005 -0.0212

(0.0228) (0.0241) (0.0422) (0.0827) (0.0226) (0.0141)

6 0.0003 0.0078 0.0379 0.5000 0.0053 -0.0055

(0.0223) (0.0212) (0.0378) (0.0900) (0.0226) (0.0132)

7 0.0003 0.0033 0.0263 0.4811 -0.0021 0.0002

(0.0202) (0.0202) (0.0346) (0.0966) (0.0221) (0.0136)

8 0.0002 0.0016 0.0180 0.4632 0.0016 -0.0011

(0.0215) (0.0181) (0.0324) (0.1022) (0.0224) (0.0130)

9 0.0000 -0.0001 0.0144 0.4471 -0.0011 -0.0008

(0.0231) (0.0190) (0.0310) (0.1070) (0.0223) (0.0133)

10 0.0025 0.0008 0.0125 0.4324 -0.0020 -0.0008

(0.0214) (0.0198) (0.0302) (0.1110) (0.0221) (0.0140)

Table 4 Mean and standard deviation of Ĝj for nonlinear AR models

Except for Model 10, we get the same results with the statistic R in [1], which verify that I2

behaves much like I1 for those models.

In order to identify exact lags for the autoregressive models 5, 6, 7 and 8, the appropriate

statistics should be the conditional mutual measure T̂ . Thus a very large amount of data is

required to achieve reasonable accuracy. The scale parameter is taken to be ε = 1.0 to capture

more information and M = 5 in the delay vectors. The mean, standard deviation and empirical

critical values of T̂ were estimated for sample size 500 using 1000 replications and are listed in
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Table 5. The last row is the corresponding critical values for Gauss distribution N(0, 0.01452).

The values verify Theorem 4 in a simulation way.

Lag Mean Standard deviation 90% 95% 99%

1 -0.0011 0.0145 0.0178 0.0226 0.0340

2 -0.0010 0.0154 0.0182 0.0236 0.0355

3 -0.0008 0.0144 0.0179 0.0225 0.0333

4 -0.0008 0.0144 0.0168 0.0226 0.0314

5 -0.0009 0.0144 0.0176 0.0238 0.0314

0 0.0145 0.0185 0.0237 0.0337

Table 5 Mean, standard deviation and critical values for T̂j

The results are reported in Table 6. For models 5, 6 and 7, all the T̂i are not significant

except for T̂1, which is exactly as expected. For the random-walk time series in model 8, only

T̂1 is significant too. However, the Kendall’s partial τi are all significant from lag 1 up to lag 8

in [1]. In that case the statistic T behaves better than τ .

Lag Model 5 Model 6 Model 7 Model 8 Model 10

1 0.0877 0.1002 0.1204 0.0250 0.2166

(0.0134) (0.0132) (0.0107) (0.0145) (0.0087)

2 0.0012 0.0152 0.0034 0.0031 -0.0305

(0.0105) (0.0088) (0.0056) (0.0016) (0.0117)

3 -0.0003 0.0016 0.0003 0.0015 0.0155

(0.0091) (0.0086) (0.0050) (0.0007) (0.0108)

4 -0.0001 0.0003 0.0002 0.0010 -0.0142

(0.0091) (0.0092) (0.0042) (0.0005) (0.0081)

5 0.0000 -0.0007 0.0010 0.0018 -0.0011

(0.0105) (0.0094) (0.0053) (0.0009) (0.0082)

Table 6 Mean and standard deviation of T̂j for nonlinear AR models

Furthermore, we introduce another four models to verify the power of our statistics Tj.

Model 11 yt =

{

0.7yt−1 + e1t yt−2 < 0

0.5yt−3 + e2t yt−2 ≥ 0
, e1t ∼ N(0, 0.25), e2t ∼ N(0, 1);

Model 12 yt = σtet, σ2
t = 0.3y2

t−1 + 0.5σ2
t−1, et ∼ N(0, 1);

Model 13 yt = (0.3 + 0.9yt−1)e
−3y2

t−1 , +et, et ∼ N(0, 0.25);

Model 14 yt = sin(yt−2)yt−1 + et, et ∼ N(0, 1).

The results are presented in Table 7. For the SETAR model 11, the EXPAR model 13 and

the FAR model 14, the statistic Tn gives correct lag dependence. In the GARCH(1,1) model 12,

T̂1, T̂2, T̂3 are all significant, this is because that the dependence is caused by latent variable.
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Lag Model 11 Model 12 Model 13 Model 14

1 0.0908 0.0498 0.0446 0.0862

(0.0131) (0.0129) (0.0152) (0.0144)

2 0.0360 0.0352 0.0001 0.0390

(0.0088) (0.0119) (0.0140) (0.0097)

3 0.0259 0.0270 -0.0004 0.0014

(0.0128) (0.0112) (0.0123) (0.0082)

4 0.0074 0.0191 0.0000 -0.0018

(0.0080) (0.0118) (0.0129) (0.0083)

5 0.0013 0.0157 -0.0023 -0.0010

(0.0097) (0.0122) (0.0133) (0.0092)

Table 7 Mean and standard deviation of T̂j for new models

5. Conclusion

In this paper, we consider statistics based on GMI and GCMI for identifying what lags to use

in a nonlinear model. The statistics are invariant with one-to-one transformation. In the case

of multivariate Gaussian distribution, T (X ; Y |Z) is strictly increasing function of |ρ(X ; Y |Z)|,

where ρ(X ; Y |Z) is usual partial correlation coefficient between X and Y given Z. The correlation

integral estimates are faster to compute than the kernel density estimates and have Gaussian

distributions under the independence hypothesis. The same simulation results between G(X, Y )

and R(X, Y ) in [1] shows the availability of the 2-order GMI for testing independence. In general

the simulations produce satisfactory results in identifying the correct lags of the true models.
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