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Abstract Using perturbation theories on sums of ranges of nonlinear accretive mappings of

Calvert and Gupta, we present the abstract results on the existence of solutions of one kind
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1. Introduction

Nonlinear boundary value problems involving p-Laplacian operator −∆p occur in a variety

of physical phenomena. And, many mathematicians do their researches from different angles on

−∆p and its generalized forms. Some significant work has been done by us too, see [1–7].

In 2005, we studied in [6] the following equation (1.1):

−div(α(gradu)) + |u|p−2u+ g(x, u(x)) = f(x), a.e. in Ω

−〈ϑ, α(gradu)〉 ∈ βx(u(x)), a.e. on Γ
(1.1)

which had a solution in L2(Ω), where 2N
N+1 < p < +∞ and N ≥ 1. Here α : RN → RN was a

function satisfying some conditions and was related to p, and ϑ was the exterior normal derivative

of Γ. Moreover, in [7], we showed that Eq(1.1) had a solution in Lp(Ω), where 2 ≤ p < +∞.

We note that if α(ξ) = |ξ|p−2ξ, for ∀ξ ∈ RN , then Eq(1.1) is reduced to the case involving

the p-Laplacian operator.
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We also need to mention that although Eq(1.1) was similar to that discussed in [8] from the

appearance, however, their discussion in [8] did not include the case of p-Laplacian operator.

In this paper, we’ll continue to study Eq(1.1) in a more general space Ls(Ω), where 2N
N+1 <

p ≤ s < +∞ and N ≥ 1. Necessary details of Eq(1.1) will be provided in Section 3.

2. Preliminaries

LetX be a real Banach space with a strictly convex dual spaceX∗.We use “→” and “w−lim”

to denote strong and weak convergence, respectively. For any subset G of X , we denote by

intG its interior and G its closure, respectively. Let “X →֒ Y ” denote the space X embedded

continuously in space Y and “X →֒→֒ Y ” denote that X is embedded compactly in Y . A

mapping T : D(T ) = X → X∗ is said to be hemi-continuous on X if w− limt→0 T (x+ ty) = Tx,

for any x, y ∈ X. A mapping T : D(T ) = X → X∗ is said to be demi–continuous on X if

w − limn→∞ Txn = Tx, for any sequence {xn} strongly convergent to x in X.

Let J denote the duality mapping from X into 2X∗

defined by

J(x) = {f ∈ X∗ : 〈x, f〉 = ‖x‖ · ‖f‖, ‖f‖ = ‖x‖}, ∀x ∈ X,

where 〈·, ·〉 denotes the generalized duality pairing between X and X∗. Since X∗ is strictly

convex, J is a single-valued mapping.

A multi-valued mapping A : X → 2X is said to be accretive if (v1 − v2, J(u1 − u2)) ≥ 0, for

any ui ∈ D(A) and vi ∈ Aui, i = 1, 2. The accretive mapping A is said to be m-accretive if

R(I + λA) = X for some λ > 0. We say that A : X → 2X is boundedly-inversely-compact if, for

any pair of bounded subsets G and G′ of X , the subset G
⋂

A−1(G′) is relatively compact in X .

A multi-valued mapping B : X → 2X∗

is said to be monotone if its graph G(B) is a monotone

subset of X × X∗ in the sense that (u1 − u2, w1 − w2) ≥ 0, for any [ui, wi] ∈ G(B), i =

1, 2. The monotone operator B is said to be maximal monotone if G(B) is maximal among all

monotone subsets of X ×X∗ in the sense of inclusion. The mapping B is said to be coercive if

limn→+∞ (xn, x
∗
n)/‖xn‖ = +∞ for all [xn, x

∗
n] ∈ G(B) such that limn→+∞ ‖xn‖ = +∞.

Definition 2.1 ([8]) The duality mapping J : X → X∗ is said to satisfy Condition (I) if there

exists a function η : X → [0,+∞) such that for u, v ∈ X ,

‖Ju− Jv‖ ≤ η(u − v). (I)

Lemma 2.1 ([8]) Let Ω be a bounded domain in RN and let Jp : Lp(Ω) → Lp′

(Ω) denote

the duality mapping. Then, Jp satisfies Condition (I). Moreover, for 2 ≤ p < +∞, Jpu =

|u|p−1sgnu‖u‖2−p
p , ∀u ∈ Lp(Ω); for 1 < p ≤ 2, Jpu = |u|p−1sgnu, ∀u ∈ Lp(Ω), where 1

p + 1
p′

= 1.

Definition 2.2 ([8]) Let A : X → 2X be an accretive mapping and J : X → X∗ be a duality

mapping. We say that A satisfies Condition (∗) if, for any f ∈ R(A) and a ∈ D(A), there exists

a constant C(a, f) such that, for any u ∈ D(A), v ∈ Au,

(v − f, J(u− a)) ≥ C(a, f). (∗)
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Lemma 2.2 ([9]) Let Ω be a bounded conical domain in RN . If mp > N, then Wm,p(Ω) →֒

CB(Ω); if mp < N and q = Np
N−mp , then Wm,p(Ω) →֒ Lq(Ω); if mp = N and p > 1, then for

1 ≤ q < +∞, Wm,p(Ω) →֒ Lq(Ω).

Lemma 2.3 ([9]) Let Ω be a bounded conical domain in RN . If mp > N, then Wm,p(Ω) →֒→֒

CB(Ω); if 0 < mp ≤ N and q0 = Np
N−mp , then Wm,p(Ω) →֒→֒ Lq(Ω), where 1 ≤ q < q0.

Lemma 2.4 ([8]) Let Ω be a bounded domain in RN and g : Ω×R → R be a function satisfying

Carathéodory’s conditions such that

(i) g(x, ·) is monotonically increasing on R;

(ii) The mapping u ∈ Lp(Ω) → g(x, u(x)) ∈ Lp(Ω), 1 < p < +∞, is well defined.

Then, the mapping B : Lp(Ω) → Lp(Ω) defined by (Bu)(x) = g(x, u(x)), for any x ∈ Ω, satisfies

Condition (*).

Theorem 2.1 ([8]) Let X be a real Banach space with a strictly convex dual X∗. Let J :

X → X∗ be a duality mapping on X satisfying Condition (I). Let A, C1 : X → 2X be accretive

mappings such that

(i) Either both A and C1 satisfy Condition (∗), or D(A) ⊂ D(C1) and C1 satisfies Condition

(∗);

(ii) A+ C1 is m-accretive and boundedly-inversely-compact.

If C2 : X → X is a bounded continuous mapping such that, for any y ∈ X , there is a constant

C(y) satisfying (C2(u+ y), Ju) ≥ −C(y) for any u ∈ X , then:

(a) [R(A) +R(C1)] ⊂ R(A+ C1 + C2);

(b) int[R(A) +R(C1)] ⊂ intR(A+ C1 + C2).

3. Main results

3.1 Explanation of Equation (1.1)

In this paper, unless otherwise stated, we assume that 2N
N+1 < p ≤ s < +∞ where N ≥ 1.

Moreover, assume that 1
p + 1

p′
= 1, and 1

s + 1
s′

= 1.

In Equation (1.1), Ω is a bounded conical domain of an Euclidean space RN with its boundary

Γ ∈ C1 (see [1]). We shall assume that Green’s Formula is available. f ∈ Ls(Ω) is a given

function, and ϑ denotes the exterior normal derivative of Γ.

α : RN → RN is a given monotone and continuous function, and there exist positive constants

k1, k2 and k3 such that for ∀ξ, ξ′ ∈ RN , the following conditions are satisfied:

(i) |α(ξ)| ≤ k1|ξ|p−1;

(ii) |α(ξ) − α(ξ′)| ≤ k2||ξ|p−2ξ − |ξ′|p−2ξ′|;

(iii) 〈ξ, α(ξ)〉 ≥ k3|ξ|p.

Let ϕ : Γ × R → R be a given function such that, for each x ∈ Γ, ϕx = ϕ(x, ·) : R → R is a

proper, convex and lower-semi-continuous function with ϕx(0) = 0. Let βx be the subdifferential

of ϕx, i.e., βx ≡ ∂ϕx. Suppose that 0 ∈ βx(0), βx is continuous and for each t ∈ R, the function
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x ∈ Γ → (I+λβx)−1(t) ∈ R is measurable for λ > 0. g : Ω×R → R is a given function satisfying

Carathéodory’s conditions such that the mapping u ∈ Ls(Ω) → g(x, u(x)) ∈ Ls(Ω) is defined.

Suppose that there is a function T (x) ∈ Ls(Ω) such that g(x, t)t ≥ 0, for |t| ≥ T (x) and x ∈ Ω.

3.2 Main ideas of the discussion of Equation(1.1)

First, we shall construct a mapping As and prove that it is m-accretive and boundedly-

inversely-compact. Then, we shall construct two mappings C1 and C2 and show that these

mappings satisfy the conditions of Theorem 2.1. Next, we shall find conditions when f ∈

int[R(As) + R(C1)], so that we can use Theorem 2.1 to prove that f ∈ intR(As + C1 + C2).

Finally, we will show that if f ∈ intR(As +C1 +C2), then Equation (1.1) has solutions in Ls(Ω).

3.3 Details

Lemma 3.1 ([6]) Define the mapping Bp : W 1,p(Ω) → (W 1,p(Ω))∗ by

(v,Bpu) =

∫

Ω

〈α(gradu), gradv〉dx +

∫

Ω

|u(x)|p−2u(x)v(x)dx

for any u, v ∈W 1,p(Ω). Then, Bp is everywhere defined, monotone, hemi-continuous and coercive.

Lemma 3.2 ([6]) The mapping Φp : W 1,p(Ω) → R defined by Φp(u) =
∫

Γ
ϕx(u|Γ(x))dΓ(x), for

any u ∈ W 1,p(Ω), is proper, convex and lower-semi-continuous on W 1,p(Ω).

Lemma 3.3 ([6]) Define a mapping A : L2(Ω) → 2L2(Ω) as follows:

D(A) = {u ∈ L2(Ω)| there exists an f ∈ L2(Ω) such that f ∈ Bpu+ ∂Φp(u)}.

For u ∈ D(A), Au = {f ∈ L2(Ω)|f ∈ Bpu+ ∂Φp(u)}. Then A is an m-accretive mapping.

Definition 3.1 Define a mapping As : Ls(Ω) → 2Ls(Ω) as follows:

(i) If s ≥ 2, then

D(As) = {u ∈ Ls(Ω)| there exists an f ∈ Ls(Ω) such that f ∈ Bpu+ ∂Φp(u)}.

For u ∈ D(As), we set Asu = {f ∈ Ls(Ω)|f ∈ Bpu+ ∂Φp(u)};

(ii) If 1 < s < 2, then define As : Ls(Ω) → 2Ls(Ω) as the Ls-closure of A : L2(Ω) → 2L2(Ω)

defined in Lemma 3.3.

Remark 3.1 Compared to our previous work, a new definition of As is given in the case of

1 < s < 2 to prove our main results.

Lemma 3.4 If f, g ∈ L2(Ω), and there exist u, v ∈ L2(Ω) such that u+ λAu = f , v+ λAv = g,

for λ > 0. Then
∫

Ω |u− v|sdx ≤
∫

Ω |f − g|sdx, where 1 < s < +∞.

Proof Similar to the proof of Lemma 2.5 in [4], the result is true. 2

Lemma 3.5 If 2N
N+1 < p ≤ s ≤ 2, then R(I + λAs) = Ls(Ω), ∀λ > 0.

Proof For ∀f ∈ Ls(Ω), we can choose a sequence fn ∈ L2(Ω), such that fn → f in Ls(Ω), as
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n→ ∞. By Lemma 3.3, fn = un + λAun, for n ≥ 1. Then Lemma 3.4 implies that
∫

Ω

|un − um|sdx ≤

∫

Ω

|fn − fm|sdx.

Therefore, there exists a u ∈ Ls(Ω), such that un → u in Ls(Ω), and then f = u+ λAsu. Hence

R(I + λAs) = Ls(Ω), ∀λ > 0. 2

Lemma 3.6 The mapping As : Ls(Ω) → 2Ls(Ω) is accretive if 2N
N+1 < p ≤ s ≤ 2, for N ≥ 1.

Proof To show that As is accretive, it suffices to prove that (I + λAs)
−1 : Ls(Ω) → Ls(Ω) is

non-expansive.

To this end, let f = u+ λAsu and g = v+ λAsv. Then there exist un, vn ∈ L2(Ω), such that

un → u, vn → v in Ls(Ω), and there exist fn, gn ∈ L2(Ω), such that fn → f, gn → g in Ls(Ω), as

n→ ∞. Moreover, fn = un + λAun and gn = vn + λAvn, for ∀n ≥ 1.

Then from Lemma 3.4, we know that ‖u− v‖s ≤ ‖f − g‖s. So As is accretive. 2

Proposition 3.1 The mapping As is m-accretive.

Proof Lemmas 3.5 and 3.6 imply that As is m-accretive if 2N
N+1 < p ≤ s ≤ 2, for N ≥ 1.

Similarly to the proof of Proposition 2.1 in [4], As is also m-accretive if s ≥ 2. 2

Proposition 3.2 (i) If 2N
N+1 < p ≤ s < 2, then As : Ls(Ω) → 2Ls(Ω) has a compact resolvent;

(ii) If s ≥ 2 and 2N
N+1 < p ≤ 2, then As : Ls(Ω) → 2Ls(Ω) has a compact resolvent.

Proof (i) It suffices to prove that if f ∈ L2(Ω), u + λAu = f (λ > 0), u ∈ L2(Ω) and {f}

is bounded in Ls(Ω), then {u} is relatively compact in Ls(Ω). For this, we define functions

χn, ξn : R → R by

χn(t) =

{

|t|p−1sgn t, if |t| ≥ 1/n

(1/n)p−2t, if |t| ≤ 1/n

and

ξn(t) =

{

|t|2−(2/p)sgn t, if |t| ≥ 1/n

(1/n)1−(2/p)t, if |t| ≤ 1/n.

Now as in the proof of Lemma 2.6 in [5], it follows that {|u|2−(2/p)sgnu} is bounded in W 1,p(Ω).

Next notice that W 1,p(Ω) →֒→֒ L
ps

2(p−1) (Ω) when N ≥ 2 and W 1,p(Ω) →֒→֒ CB(Ω) when N = 1,

hence {|u|2−(2/p)sgnu} is relatively compact in L
ps

2(p−1) (Ω). Therefore, {u} is relatively compact

in Ls(Ω) since the Nemytskii mapping u ∈ L
ps

2(p−1) (Ω) → |u|
p

2(p−1) sgnu ∈ Ls(Ω) is continuous.

(ii) Similarly to the proof of Lemma 2.8 in [4], the result holds. 2

Proposition 3.3 ([8]) Define g+(x) = lim inft→+∞ g(x, t) and g−(x) = lim supt→−∞ g(x, t).

Further, define a function g1 : Ω ×R → R by

g1(x, t) =











(infs≥t g(x, s))
∧

(t− T (x)), ∀t ≥ T (x)

0, ∀t ∈ [−T (x), T (x)]

(sups≤t g(x, s))
∨

(t+ T (x)), ∀t ≤ −T (x).
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Then, the mapping C1 : Ls(Ω) → Ls(Ω) defined by (C1u)(x) = g1(x, u(x)) for any u ∈ Ls(Ω)

and x ∈ Ω, is bounded, continuous and m-accretive. Also C2 : Ls(Ω) → Ls(Ω) defined by

(C2u)(x) = g2(x, u(x)) = g(x, u(x)) − g1(x, u(x)) satisfies the condition

(C2(u+ y), Jsu) ≥ −C(y), (3.1)

for any u, y ∈ Ls(Ω), where C(y) is a constant depending on y and Js : Ls(Ω) → Ls′

(Ω) denotes

the duality mapping.

Remark 3.2 ([5]) If βx ≡ 0, ∀x ∈ Γ, then ∂Φp(u) ≡ 0, ∀u ∈ W 1,p(Ω).

Lemma 3.7 ([10]) Let X0 denote the closed subspace of the all constant functions in W 1,p(Ω).

Let X be the quotient space W 1,p(Ω)/X0. For u ∈W 1,p(Ω), define the mapping P : W 1,p(Ω) →

X0 by Pu = 1
meas(Ω)

∫

Ω
udx. Then, there is a constant C > 0, such that ∀u ∈W 1,p(Ω),

‖u− Pu‖p ≤ C‖∇u‖(Lp(Ω))N .

Lemma 3.8 If βx ≡ 0, ∀x ∈ Γ, then we have

(i) {f ∈ L2(Ω)|
∫

Ω
fdx = 0} ⊂ R(A), for 2N

N+1 < p < +∞ and N ≥ 1 (see [6]);

(ii) {f ∈ Ls(Ω)|
∫

Ω
fdx = 0} ⊂ R(As), for s ≥ 2 and 2N

N+1 < p ≤ 2 where N ≥ 1;

(iii) {f ∈ Ls(Ω)|
∫

Ω fdx = 0} ⊂ R(As), for 2 ≤ p ≤ s < +∞;

(iv) {f ∈ Ls(Ω)|
∫

Ω
fdx = 0} ⊂ R(As), for 2N

N+1 < p ≤ s < 2 and N ≥ 1.

Proof (ii) Similarly to the proof of Proposition 2.3 in [4], the result is true.

(iii) For f ∈ Ls(Ω) with
∫

Ω fdx = 0, from (i) we know that there exists u ∈ L2(Ω) such

that f = Bpu + ∂Φp(u). Therefore, if u ∈ Ls(Ω), from the definition of As, it will follow that

f = Asu. To show u ∈ Ls(Ω), let 2 ≤ p ≤ r ≤ s. For k > 0, define a function χk : R → R by

χk(t) = |(t
∧

k)
∨

(−k)|r−1sgn t.

Then, we have

‖f‖s‖u‖
r−1
p+r−2 ≥ ‖f‖s‖u‖

r−1
r ≥ ‖f‖s‖u‖

r−1
(r−1)s′

≥ (|u|r−1sgnu, f) ≥ (|u|r−1sgnu,Bpu) ≥ (r − 1)k3

∫

Ω

|∇u|p|u|r−2dx

≥ const

∫

Ω

∣

∣

∣
grad(|u|1+

r−2
p sgnu)

∣

∣

∣

p

dx, (3.2)

where 1
s + 1

s′
= 1. Thus if u ∈ Lp+r−2(Ω), from (3.2), we have |u|1+

r−2
p sgnu ∈ W 1,p(Ω).

Therefore, in view of Lemma 3.7, it follows from (3.2) that

‖f‖s‖u‖
r−1
p+r−2 ≥ const

∥

∥

∥
|u|1+

r−2
p sgnu−

1

meas(Ω)

∫

Ω

|u|1+
r−2

p sgnudx
∥

∥

∥

p

1,p
. (3.3)

Now we need to discuss the following four cases:

Case 1 If N ≥ 3 and 2 ≤ p < N , then in view of Lemma 2.2, we have W 1,p(Ω) →֒ L
Np

N−p (Ω).
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Thus from (3.3), it follows that

‖f‖s‖u‖
r−1
p+r−2 ≥ const

(

∫

Ω

∣

∣

∣
|u|1+

r−2
p sgnu−

1

meas(Ω)

∫

Ω

|u|1+
r−2

p sgnudx
∣

∣

∣

Np

N−p

dx
)

N−p

N

.

Therefore, u ∈ Lp+r−2(Ω) implies that u ∈ L(1+ r−2
p

) Np

N−p (Ω). Hence, if u ∈ L2(Ω), after finite

steps we find that u ∈ Ls(Ω).

Case 2 If p > N ≥ 3, then in view of Lemma 2.2 we have W 1,p(Ω) →֒ CB(Ω). Thus from (3.3),

it follows that

‖f‖s‖u‖
r−1
p+r−2 ≥ const

∥

∥

∥
|u|1+

r−2
p sgnu−

1

meas(Ω)

∫

Ω

|u|1+
r−2

p sgnudx
∥

∥

∥

p

2pr

p+r−2

.

Therefore, u ∈ Lp+r−2(Ω) implies that u ∈ L2r(Ω).

Case 3 If p = N ≥ 3, then in view of Lemma 2.2 we have W 1,p(Ω) →֒ L
2pr

p+r−2 (Ω). The rest of

the proof is the same as that in Case 2. Hence after finite steps we find that u ∈ Ls(Ω). Then

the result is true.

Case 4 If N = 1 or N = 2, then p ≥ N, repeating the proof of Case 2, the result holds.

(iv) Let f ∈ Ls(Ω) with
∫

Ω
fdx = 0. Choose a sequence {fn} in L2(Ω) such that

∫

Ω
fndx = 0,

for every n and fn → f in Ls(Ω), as n → ∞. Now by (i), there exists un ∈ L2(Ω) such that

Aun = fn, for each n. We now define functions χ : R→ R and ξ : R→ R by

χ(t) =

{

|t|p−1sgn t, if |t| ≥ 1

t, if |t| ≤ 1

and

ξ(t) =

{

|t|2−
2
p sgn t, if |t| ≥ 1

t, if |t| ≤ 1.

Note that for u ∈ L2(Ω), the function t ∈ R →
∫

Ω
χ(u + t)dx ∈ R is continuous on R and

limt→±∞

∫

Ω χ(u + t)dx = ±∞. So ∃tu ∈ R such that
∫

Ω χ(u + tu)dx = 0. Using this, we can

assume that un ∈ L2(Ω) are such that
∫

Ω
χ(un)dx = 0 and Aun = fn for each n. Since, now

χ′(t) ≥ c[ξ′(t)]p for every t ∈ R, where c is a positive constant, we have from Aun = fn on

multiplication by χ(un) that

‖fn‖p

(

∫

|un|≤1

|un|
p′

dx+

∫

|un|≥1

|un|
2dx

)

p−1
p

≥ ‖fn‖p

(

∫

|un|≤1

|un|
p′

dx+

∫

|un|≥1

|un|
pdx

)

p−1
p

≥ ‖fn‖p‖χ(un)‖p′ ≥ (χ(un), fn) = (χ(un), Aun)

≥ (χ(un), Bpun) ≥ const

∫

Ω

|∇un|
pχ′(un)dx

≥ const

∫

Ω

|grad(ξ(un))|pdx. (3.4)
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From Lemma 3.7, we know that
∫

Ω

|grad(ξ(un))|pdx ≥ const‖ξ(un)‖p
1,p. (3.5)

From Lemma 2.3, we have

‖ξ(un)‖p
1,p ≥ const‖ξ(un)‖p

p′ = const
(

∫

|un|≤1

|un|
p′

dx+

∫

|un|≥1

|un|
(2− 2

p
)p′

dx
)

p

p′

= const
(

∫

|un|≤1

|un|
p′

dx+

∫

|un|≥1

|un|
2dx

)

p

p′

. (3.6)

From (3.4), (3.5) and (3.6), we obtain

‖fn‖p ≥ const
(

∫

|un|≤1

|un|
p′

dx+

∫

|un|≥1

|un|
2dx

)

p−1
p′

.

Since fn → f in Ls(Ω), {ξ(un)} is bounded in W 1,p(Ω) and hence compact in Lp′

(Ω).

Notice that the Nemytskii mapping u ∈ Lp′

(Ω) → ξ−1(u) ∈ Ls(Ω) is continuous. We see that

{un} is a compact sequence in Ls(Ω). This immediately gives that f ∈ R(As) from the definition

of As. This completes the proof. 2

Remark 3.3 Some new techniques are employed in proving Lemma 3.8.

From Lemma 3.8, the following result is immediate.

Proposition 3.4 If βx ≡ 0 for any x ∈ Γ, then {f ∈ Ls(Ω)|
∫

Ω
fdx = 0} ⊂ R(As), for

2N
N+1 < p ≤ s < +∞ and N ≥ 1.

Definition 3.2 ([8]) For t ∈ R and x ∈ Γ, let β0
x(t) ∈ βx(t) be the element with least absolute

value if βx(t) 6= ∅ and β0
x(t) = ±∞, where t > 0 or < 0, respectively, in case βx(t) = ∅. Finally,

let β±(x) = limt→±∞ β0
x(t) (in the extended sense) for x ∈ Γ. Then, β±(x) define measurable

functions on Γ.

Lemma 3.9 ([6]) Assume that f ∈ L2(Ω) satisfies
∫

Γ

β−(x)dΓ(x) <

∫

Ω

fdx <

∫

Γ

β+(x)dΓ(x). (3.7)

Then, f ∈ intR(A), for 2N
N+1 < p < +∞ and N ≥ 1.

Lemma 3.10 Let f ∈ Ls(Ω) satisfy (3.7). Then, the following results hold:

(i) If s ≥ 2 and 2N
N+1 < p ≤ 2 for N ≥ 1, then we have f ∈ intR(As);

(ii) If 2 ≤ p ≤ s < +∞, then we have f ∈ intR(As);

(iii) If 2N
N+1 < p ≤ s < 2 for N ≥ 1, then we have f ∈ intR(As).

Proof (i) Similarly to the proof of Proposition 2.4 in [4], the result holds.

(ii) Let f ∈ Ls(Ω) satisfy (3.7). Then, by Lemma 3.9, we have f ∈ intR(A). Now using the

similar arguments to that of (iii) in Lemma 3.8, we find that f ∈ intR(As).

(iii) Now f ∈ Ls(Ω) implies that there is a sequence {fn} in L2(Ω) such that fn → f

in Ls(Ω), as n → ∞. By Proposition 3.1, there exists un ∈ L2(Ω), such that for each n ≥
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1, fn = 1
nun + Aun. Now , it suffices to show that ‖un‖s ≤ const, for ∀n ≥ 1. Indeed, suppose

to the contrary that 1 ≤ ‖un‖s → ∞, as n → ∞. Let vn = un/‖un‖s. And, let ψ : R → R be

defined by ψ(t) = |t|p, ∂ψ : R → R be its subdifferential, and for µ > 0, ∂ψµ : R → R be the

Yosida-approximation of ∂ψ. Further, let θµ : R→ R be the indefinite integral of [(∂ψµ)′]
1
p with

θµ(0) = 0 so that (θ′µ)p = (∂ψµ)′. By using similar arguments to those for Proposition 2.4 in [1],

we have
∫

Ω

|grad(θµ(vn))|pdx ≤
C

‖un‖
p−1
s

, for µ > 0 and n ≥ 1, (3.8)

where C is a constant which does not depend on n or µ. Now since (θ′µ)p = (∂ψµ)′ → (∂ψ)′, as

µ→ 0, a.e., on R. Letting µ→ 0, we see from Fatou’s lemma and (3.8) that
∫

Ω

|grad(|vn|
2−(2/p)sgn vn)|pdx ≤

C

‖un‖
p−1
s

. (3.9)

From (3.9), it follows that |vn|
2−(2/p)sgn vn → k (a constant) in Lp(Ω), as n → +∞. Next,

we will prove that k 6= 0 in Lp(Ω). Since 2N/(N + 1) < p ≤ s ≤ 2, ‖|vn|2−(2/p)sgn vn‖p =

‖vn‖
2−(2/p)
2p−2 ≤ ‖vn‖

2−(2/p)
s = 1, and hence {|vn|2−(2/p)sgn vn} is bounded in W 1,p(Ω). By Lemma

2.3, W 1,p(Ω) →֒→֒ CB(Ω) when N = 1 and W 1,p(Ω) →֒→֒ L
ps

2(p−1) (Ω) when N ≥ 2. Thus

{|vn|2−(2/p)sgn vn} is relatively compact in L
ps

2(p−1) (Ω). Therefore, there exists a subsequence of

{|vn|2−(2/p)sgn vn}. For simplicity, we denote it by {|vn|2−(2/p)sgn vn}, satisfying |vn|2−(2/p)sgn vn →

g in L
ps

2(p−1) (Ω). Noticing that p ≤ ps
2(p−1) when 2N

N+1 < p ≤ s ≤ 2 for N ≥ 1, it follows that

k = g, a.e., on Ω. Finally, since

1 = ‖vn‖
s
s =

∫

Ω

||vn|
2−(2/p)sgn vn|

ps

2(p−1) dx

≤ const

∫

Ω

||vn|
2−(2/p)sgn vn − g|

ps

2(p−1) dx+ const‖g‖
ps

2(p−1)
ps

2(p−1)
,

it follows that g 6= 0 in L
ps

2(p−1) (Ω), and hence k 6= 0 in Lp(Ω). The following argument is the

same as Proposition2.4 in [1]. 2

From Lemma 3.10, the following result is immediate.

Proposition 3.5 Let f ∈ Ls(Ω) satisfy (3.7). Then f ∈ intR(As), where 2N
N+1 < p ≤ s < +∞

for N ≥ 1.

Remark 3.4 Since Φp(u+α) = Φp(u) for any u ∈ D(As) and α ∈ C∞
0 (Ω), we find f ∈ Asu (s ≥

2) implies that f = Bpu in the sense of distributions.

Lemma 3.11 If f ∈ L2(Ω) and u ∈ L2(Ω) are such that f ∈ Au, then the following results hold

(a) −div(α(gradu)) + |u|p−2u = f(x), a.e., x ∈ Ω;

(b) −〈ϑ, α(gradu)〉 ∈ βx(u(x)), a.e., x ∈ Γ.

Proof Similarly to the proof of Proposition 2.2 in [6], the result is valid. 2

Lemma 3.12 If 2N
N+1 < p ≤ s < 2, let f ∈ Ls(Ω) and u ∈ Ls(Ω) be such that f ∈ Asu. Then,

the results of (a) and (b) in Lemma 3.11 are also true.
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Proof (a) For 2N
N+1 < p ≤ s < 2, we see that u ∈ Ls(Ω) and f ∈ Asu imply the existence of

sequences {un}, {fn} in L2(Ω) such that un → u, fn → f in Ls(Ω), as n→ ∞, and fn ∈ Aun for

all n.

Lemma 3.11 implies that fn = −div(α(gradun))+ |un|p−2un, a.e. in Ω. From the fact that α

is continuous, we know that f = −div(α(gradu)) + |u|p−2u, a.e. in Ω. This completes the proof

of (a).

(b) From (a) we know that for f ∈ Asu, f = −div(α(gradu)), a.e. in Ω and there exist

sequences {un}, {fn} in L2(Ω) such that un → u, fn → f in Ls(Ω) and fn = Aun.

Now from Lemma 3.11, we get that

−〈ϑ, α(gradun)〉 = βx(un(x))

a.e. on Γ. Then the continuity of both α and βx implies that −〈ϑ, α(gradu)〉 = βx(u(x)) a.e. on

Γ. 2

Lemma 3.13 If 2N
N+1 < p ≤ 2 ≤ s, or s ≥ p ≥ 2, and f, u ∈ Ls(Ω) satisfy f ∈ Asu. Then, the

results of Lemma 3.11 are still true.

Proof Similarly to the proofs of Proposition 2.2 in [4] and Propostion 2.2 in [7], the result is

valid.

Lemmas 3.12 and 3.13 imply the following result:

Proposition 3.6 Let f ∈ Ls(Ω), u ∈ Ls(Ω) be such that f ∈ Asu. Then, the results of Lemma

3.11 are true.

Theorem 3.1 Let f ∈ Ls(Ω) satisfy
∫

Γ

β−(x)dΓ(x) +

∫

Ω

g−(x)dx <

∫

Ω

f(x)dx <

∫

Γ

β+(x)dΓ(x) +

∫

Ω

g+(x)dx.

Then, Equation (1.1) has a solution in Ls(Ω).

Proof Let As be the m-accretive mapping as in Definition 3.1 and Ci : Ls(Ω) → Ls(Ω) be as

in Proposition 3.3, i.e., (Ciu)(x) = gi(x, u(x)) for x ∈ Ω, and i = 1, 2. We need to prove that

As + C1 is boundedly-inversely-compact. In fact, we only need to show that if w ∈ Asu + C1u

with {w} and {u} being bounded in Ls(Ω), then {u} is relatively compact in Ls(Ω). For this,

we need to discuss the following two cases:

(i) If 2N
N+1 < p ≤ s < 2, or s ≥ 2 and 2N

N+1 < p ≤ 2, for N ≥ 1, then the relative compactness

of {u} in Ls(Ω) follows from Proposition 3.2.

(ii) If 2 ≤ p ≤ s, define a function χk : R → R by χk(t) = |(t ∧ k) ∨ (−k)|s−p+1sgn t. Then,

we have

const ≥ ‖w‖s‖u‖
s−p+1
s ≥ ‖w‖s‖u‖

s−p+1
(s−p+1)s′

≥ (|u|s−p+1sgnu,w) ≥ (|u|s−p+1sgnu,Bpu) + lim
k→+∞

(χk(u), ∂Φp(u))

≥ (|u|s−p+1sgnu,Bpu) ≥ const

∫

Ω

|grad(|u|1+
s−p

p sgnu)|pdx,
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where 1
s + 1

s′
= 1. Moreover,

∫

Ω

∣

∣

∣
|u|1+

s−p

p sgnu
∣

∣

∣

p

dx = ‖u‖s
s.

Therefore, {|u|1+
s−p

p sgnu} is bounded in W 1,p(Ω), and hence {|u|1+
s−p

p sgnu} is relatively com-

pact in Lp(Ω). This implies that {u} is relatively compact in Ls(Ω) since the Nemytskii mapping

u ∈ Lp(Ω) → |u|
p

s sgnu ∈ Ls(Ω) is continuous.

Now by using methods similar to those employed in [1–7], it is easy to show that all the

conditions of Theorem 2.1 are satisfied. Further, from Propositions 3.4 and 3.5, we have

f ∈ int[R(As) + R(C1)]. Then Theorem 2.1 implies that f ∈ intR(As + C1 + C2). Therefore,

Proposition 3.6 implies that the Theorem 3.1 holds. 2
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