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Abstract Let A be a standard operator algebra on a Banach space of dimension > 1 and B

be an arbitrary algebra over Q the field of rational numbers. Suppose that M : A −→ B and

M∗ : B −→ A are surjective maps such that

{

M(r(aM∗(x) + M∗(x)a)) = r(M(a)x + xM(a)),

M∗(r(M(a)x + xM(a))) = r(aM∗(x) + M∗(x)a)

for all a ∈ A,x ∈ B, where r is a fixed nonzero rational number. Then both M and M∗ are

additive.
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Let A and B be two associative algebras over the field Q of rational numbers, and let r be a

fixed nonzero rational number. Let M : A −→ B and M∗ : B −→ A be two maps. The ordered

pair (M, M∗) is called an r-Jordan map of A × B if
{

M(r(aM∗(x) + M∗(x)a)) = r(M(a)x + xM(a)),

M∗(r(M(a)x + xM(a))) = r(aM∗(x) + M∗(x)a)
(1)

for all a ∈ A, x ∈ B. Obviously, if φ : A −→ B is an r-Jordan map, that is, φ is a bijective map

which satisfies that φ(r(ab+ ba)) = r(φ(a)φ(b)+φ(b)φ(a)) for all a, b ∈ A, then the pair (φ, φ−1)

is an r-Jordan map of A × B.

It is an interesting problem to study the interrelation between the multiplicative and the

additive structure of a ring. It is Martindale who first established a condition on a ring R1 such

that every multiplicative bijective map on R1 is additive [8, Theorem]. Recently, the question of

whether a Jordan map is additive is studied by many mathematicians [1-7]. In particular, in [6],

Lu showed that every r-Jordan map on a standard operator algebra is additive. In this paper,

we will extend this result to these mild r-Jordan maps.
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Throughout, X is a Banach space of dimension > 1. Denote by B(X) the algebra of all

linear bounded operators on X . A subalgebra of B(X) is called a standard operator algebra if

it contains all finite rank operators in B(X). Our result in this paper is the following.

Theorem Let X be a Banach space, dimX > 1, and let A ⊂ B(X) be a standard operator

algebra. Let B be algebra over Q and r ∈ Q be non-zero. Suppose (M, M∗) is an arbitrary

r-Jordan map of A×B, and both M and M∗ are surjective. Then both M and M∗ are additive.

The proof will be organized in a series of lemmas. We begin with the following trivial one.

Lemma 1 If (M, M∗) is an arbitrary r-Jordan map of A × B, then M(0) = 0 and M∗(0) = 0.

Proof Since (M, M∗) is an arbitrary r-Jordan map of A×B, we have that M(0) = M(r(0M∗(0)+

M∗(0)0)) = r(M(0)0 + 0M(0)) = 0. Similarly, M∗(0) = M∗(r(0M(0) + M(0)0)) = r(M∗(0)0 +

0M∗(0)) = 0. 2

In the following, let e1 ∈ A be a fixed non-trivial idempotent operator and let e2 = 1 − e1,

where 1 is the identity operator on X . Set Aij = eiAej , i, j = 1, 2. Then we can write A =

A11 ⊕ A12 ⊕ A21 ⊕ A22. It should be mentioned that this idea is from Martindale [8]. In what

follows, when we write aij , it indicates aij ∈ Aij .

The following lemma can be found in [5].

Lemma 2 Let s = s11 + s12 + s21 + s22 ∈ A.

(i) For tij ∈ Aij (1 ≤ i, j ≤ 2), we have that

tijs + stij = tijsj1 + tijsj2 + s1itij + s2itij .

(ii) If tijsjk = 0 for every tij ∈ Aij (1 ≤ i, j, k ≤ 2), then sjk = 0. Dually, if skitij = 0 for

every tij ∈ Aij (1 ≤ i, j, k ≤ 2), then ski = 0.

(iii) If tijs + stij ∈ Aij for every tij ∈ Aij (1 ≤ i 6= j ≤ 2), then sji = 0.

(iv) If siitii + tiisii = 0 for every tii ∈ Aii (i = 1, 2), then sii = 0.

(v) If tjjs + stjj ∈ Aij for every tjj ∈ Ajj (1 ≤ i 6= j ≤ 2), then sji = 0 and sjj = 0. Dually,

if tjjs + stjj ∈ Aji for every tjj ∈ Ajj (1 ≤ i 6= j ≤ 2), then sij = 0 and sjj = 0.

Lemma 3 Both M and M∗ are bijective.

Proof It suffices to prove that M and M∗ are injective. First we show that M is injective. Let

x, y ∈ A and suppose M(x) = M(y). Note that A is dense in B(X) under the strong operator

topology. We can take a net {tα} ⊂ A such that sot-limα tα = 1. For every tα, by surjectivity of

M∗ there is bα ∈ B such that M∗(bα) = tα and we have by (1)

r(tαx + xtα) = rM∗(bα)x + xM∗(bα) = M∗(r(bαM(x) + M(x)bα)

= M∗(r(bαM(y) + M(y)bα) = r(tαy + ytα).

Taking the limit in r(tαx + xtα) = r(tαy + ytα), we get 2x = 2y. That is, x = y.

Now we turn to proving the injectivity of M∗. Let x, y ∈ B such that M∗(x) = M∗(y). Since

M∗M is also surjective, we can choose sα ∈ A such that M∗M(sα) = tα for all α. Then we have
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by (1)

r(tαM−1(x) + M−1(x)tα) = r(M∗M(sα)M−1(x) + M−1(x)M∗M(sα))

= M∗(r(M(sα)MM−1(x) + MM−1(x)M(sα))) = M∗(r(M(sα)x + xM(sα)))

= r(sαM∗(x) + M∗(x)sα) = r(sαM∗(y) + M∗(y)sα)

= M∗(r(M(sα)y + yM(sα))) = M∗(r(M(sα)MM−1(y) + MM−1(y)M(sα)))

= r(M∗M(sα)M−1(y) + M−1(y)M∗M(sα)) = r(tαM−1(y) + M−1(y)tα).

Taking the limit in tαM−1(x)+M−1(x)tα = tαM−1(y)+M−1(y)tα, we get 2M−1(x) = 2M−1(y)

and so x = y. 2

Lemma 4 The pair (M∗−1, M−1) is an r-Jordan map of A×B, that is, the maps M∗−1 : A −→ B

and M−1 : B −→ A satisfy
{

M∗−1(r(aM−1(x) + M−1(x)a)) = r(M∗−1(a)x + xM∗−1(a)),

M−1(r(M∗−1(a)x + xM∗−1(a))) = r(aM−1(x) + M−1(x)a)
(2)

for all a ∈ A, x ∈ B.

Proof The first equality can follow from

M∗(r(M∗−1(a)x + xM∗−1(a))) = M∗(r(M∗−1(a)MM−1(x) + MM−1(x)M∗−1(a)))

= r(M∗(M∗−1(a))M−1(x) + M−1(x)M∗(M∗−1(a)))

= r(aM−1(x) + M−1(x)a) = M∗(r(M∗−1(aM−1(x) + M−1(x)a)))

and the second equality follows in a similar way. 2

Lemma 5 If s, a, b ∈ A such that M(s) = M(a) + M(b), then for all t ∈ A

(i) M(r(ts + st)) = M(r(ta + at)) + M(r(tb + bt));

(ii) M∗−1(r(ts + st)) = M∗−1(r(ta + at)) + M∗−1(r(tb + bt)).

Proof Let t ∈ A. Then by (1)

M(r(ts + st)) = M(r(M∗M∗−1(t)s + sM∗M∗−1(t))) = r(M∗−1(t)M(s) + M(s)M∗−1(t))

= r(M∗−1(t)(M(a) + M(b)) + (M(a) + M(b))M∗−1(t))

= r(M∗−1(t)M(a) + M(a)M∗−1(t)) + r(M∗−1(t)M(b) + M(b)M∗−1(t))

= M(r(M∗M∗−1(t)a + aM∗M∗−1(t))) + M(r(M∗M∗−1(t)b + bM∗M∗−1(t)))

= M(r(ta + at)) + M(r(tb + bt)).

This proves (i).

Similarly to the above, it follows from the first equality of (2) that (ii) holds, completing the

proof. 2

Lemma 6 For any aij ∈ Aij (1 ≤ i, j ≤ 2), we have the following equalities:

(i) M(a11 + aij) = M(a11) + M(aij), 1 ≤ i 6= j ≤ 2;

(ii) M(a22 + aij) = M(a22) + M(aij), 1 ≤ i 6= j ≤ 2;
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(iii) M∗−1(a11 + aij) = M∗−1(a11) + M∗−1(aij), 1 ≤ i 6= j ≤ 2;

(iv) M∗−1(a22 + aij) = M∗−1(a22) + M∗−1(aij), 1 ≤ i 6= j ≤ 2.

Proof By Lemma 4, we only prove (i) and (ii).

Suppose that i = 1 and j = 2. Since M is surjective, we can find an element s = s11 + s12 +

s21 + s22 ∈ A such that

M(s) = M(a11) + M(a12).

For t22 ∈ A22, we see that from Lemma 5(i)

M(r(t22s + st22)) = M(r(t22a11 + a11t22)) + M(r(t22a12 + a12t22))

= M(0) + M(r(a12t22)) = M(r(a12t22)).

It follows that t22s + st22 = a12t22 for every t22 ∈ A22. Hence t22s + st22 ∈ A12 for every

t22 ∈ A22. Thus by Lemma 2(v), we get s21 = 0 and s22 = 0. Hence we have s12t22 = a12t22.

By Lemma 2(i), we get s12 = a12. Thus s = s11 + a12.

For t12 ∈ A12, we see that from Lemma 5(i)

M(r(t12s + st12)) = M(r(t12a11 + a11t12)) + M(r(t12a12 + a12t12))

= M(0) + M(r(a11t12)) = M(r(a11t12)).

It follows that t12s+st12 = a11t12 for every t12 ∈ A12. Since s = s11+a12, we have s11t12 = a11t12

for every t12 ∈ A12. Thus by Lemma 2(i), we have s11 = a11. Consequently, s = a11 + a12. This

proves the first equality. The second can be proved similarly. 2

Lemma 7 For any aij , bij ∈ Aij (1 ≤ i, j ≤ 2), we have the following equalities:

(i) M(r(a12 + b12a22)) = M(ra12) + M(rb12a22);

(ii) M∗−1(r(a12 + b12a22)) = M∗−1(ra12) + M∗−1(rb12a22)).

Proof (i) Compute

a12 + b12a22 = (e1 + b12)(a12 + a22) = (e1 + b12)(a12 + a22) + (a12 + a22)(e1 + b12).

Then using (1) and Lemma 6, we have that

M(r(a12 + b12a22)) = M(r((e1 + b12)(a12 + a22) + (a12 + a22)(e1 + b12)))

= M(r((e1 + b12)M
∗(M∗−1(a12 + a22)) + M∗(M∗−1(a12 + a22))(e1 + b12)))

= r(M(e1 + b12)M
∗−1(a12 + a22) + M∗−1(a12 + a22)M(e1 + b12))

= r((M(e1) + M(b12))(M
∗−1(a12) + M∗−1(a22)) + (M∗−1(a12) + M∗−1(a22))(M(e1) + (b12)))

= r((M(e1)M
∗−1(a12) + M∗−1(a12)M(e1)) + r(M(e1)M

∗−1(a22) + M∗−1(a22)M(e1))+

r(M(b12)M
∗−1(a12) + M∗−1(a12)M(b12)) + r(M(b12)M

∗−1(a22) + M∗−1(a22)M(b12))

= M(r(e1M
∗M∗−1(a12) + M∗M∗−1(a12)e1)) + M(r(e1M

∗M∗−1(a22) + M∗M∗−1(a22)e1))+

M(r(b12M
∗M∗−1(a12) + M∗M∗−1(a12)b12)) + M(r(b12M

∗M∗−1(a22) + M∗M∗−1(a22)b12))

= M(r(e1a12 + a12e1)) + M(r(e1a22 + a22e1) + M(r(b12a12 + a12b12)) + M(r(b12a22 + a22b12))

= M(ra12) + 2M(0) + M(rb12a22) = M(ra12) + M(rb12a22).
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(ii) Lemma 4 tells us that the pair (M∗−1, M−1) is also an r-Jordan map of A×B. Therefore

(ii) holds. 2

Lemma 8 For any aij ∈ Aij (1 ≤ i, j ≤ 2), we have the following equalities:

(i) M(r(a21 + a22b21)) = M(ra21) + M(ra22b21);

(ii) M∗−1(r(a12 + a22b21)) = M∗−1(ra12) + M∗−1(ra22b21)).

Proof (i) Compute

a12 + a22b21 = (a12 + a22)(e1 + b21) = (e1 + b21)(a12 + a22) + (a12 + a22)(e1 + b21).

Then we can complete the proof using a computation similar to that in the proof of Lemma 7.2

Lemma 9 M and M∗−1 are additive on Aij (1 ≤ i 6= j ≤ 2).

Proof By Lemma 4, we only prove that M is additive on Aij (1 ≤ i 6= j ≤ 2).

Let a12, b12 ∈ A12 and choose s = s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a12) + M(b12).

For t22 ∈ A22, we see that from Lemma 5(i) and Lemma 7

M(r(t22s + st22)) = M(r(t22a12 + a12t22)) + M(r(t22b12 + b12t22))

= M(ra12t22) + M(rb12t22) = M(r(a12t22 + b12t22)).

Hence t22s + st22 = (a12 + b12)t22 for every t22 ∈ A22. It follows from Lemma 2(v) and (i) that

s22 = s21 = 0 and s12 = a12 + b12.

Now there remains to prove that s11 = 0. For t12 ∈ A12, applying Lemma 5(i) and Lemma

7 to M(s) = M(a12) + M(b12) again, we get that t12s + st12 = 0. Since we have shown that

s22 = s21 = 0, we have that s11t12 = 0 for every t12 ∈ A12. Hence from Lemma 2(ii) we get

s11 = 0. Therefore M is additive on A12.

It can be proved similarly that M is additive on A21. 2

Lemma 10 M and M∗−1 are additive on Aii (i = 1, 2).

Proof By Lemma 4, we only prove that M is additive on Aii (i = 1, 2).

Let aii, bii ∈ Aii and choose s = s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a11) + M(b11).

Let j 6= i. For tjj ∈ Ajj , we see that from Lemma 5(i)

M(r(tjjs + stjj)) = M(r(tjjaii + aiitjj)) + M(r(tjjbii + biitjj)) = 0.

Hence, we have tjjs + stjj = 0 for every tjj ∈ Ajj . It follows from Lemma 2(v) that sji = sij =

sjj = 0.

Now there remains to prove that sii = aii + bii. For tij ∈ Aij , we see that from Lemma 5(i)

and Lemma 9

M(r(tijs + stij)) = M(r(tijaii + aiitij)) + M(r(tijbii + biitij))
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= M(r(aiitij)) + M(r(biitij)) = M(r(aiitij + biitij)).

Hence, we have tijs + stij = aiitij + biitij for every tij ∈ Aij . Since sji = sij = sjj = 0, it

follows that s11t12 = (a11 + b11)t12 for every tij ∈ Aij . Hence by Lemma 2(ii), we have that

sii = aii + bii. 2

Remark 11 We have shown that M and M∗−1 are additive on Aij for 1 ≤ i, j ≤ 2. Therefore,

for aij ∈ Aij , we have that M(r(aij)) = rM(aij) and M∗−1(r(aij)) = rM∗−1(aij).

Lemma 12 M and M∗ are additive on e1A = A11 + A12.

Proof Let a11, b11 ∈ A11 and let a12, b12 ∈ A12. Then by Lemmas 6, 9, and 10, we see that

M((a11 + a12) + (b11 + b12)) = M((a11 + b11) + (a12 + b12))

= M(a11 + b11) + M(a12 + b12) = M(a11) + M(b11) + M(a12) + M(b12)

= M(a11 + a12) + M(b11 + b12).

Similarly, we can get that M∗−1((a11 + a12)+ (b11 + b12)) = M∗−1(a11 + a12)+M∗−1(b11 + b12).

2

Lemma 13 For any a11 ∈ A11, a22 ∈ A22, we get that

(i) M(a11 + a22) = M(a11) + M(a22);

(ii) M∗−1(a11 + a22) = M∗−1(a11) + M∗−1(a22).

Proof By Lemma 4, we only prove (i). Since M is surjective, we can find an element s =

s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a11) + M(a22).

We see that from Lemma 5(i)

M(r(e1s+ se1)) = M(r(e1a11 + a11e1))+M(r(e1a22 + a22e1)) = M(0)+M(2ra11) = M(2ra11).

It follows that 2s11 + s12+21 = 2a11. Hence we have that s12 = s21 = 0 and s11 = a11.

For t22 ∈ A22, we see that from Lemma 5(i)

M(r(t22s + st22)) = M(r(t22a11 + a11t22)) + M(r(t22a22 + a22t22))

= M(r(t22a22 + a22t22)).

It follows that t22s+st22 = t22a22 +a22t22 for every t22 ∈ A22. Since s12 = s21 = 0, we have that

t22s + st22 = t22a22 + a22t22 for every t22 ∈ A22. Thus by Lemma 2(iv), we get that s22 = a22.

Consequently, s = a11 + a22. 2

It should be mentioned that the idea of the proof of the following lemma is from [6].

Lemma 14 If a is a finite rank operator on X , then M(ra) = rM(a).

Proof If dimX < ∞, then A must contain the identity operator 1 in B(X). By Lemma 13 and

Remark 11, we have that

M∗−1(r1) = M∗−1(re1 + re2) = M∗−1(re1) + M∗−1(re2)
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= rM∗−1(e1) + rM∗−1(e2) = rM∗−1(e1 + e2) = rM∗−1(1).

Further, for every a ∈ A, we have that

M(ra) = M(r(
a

2r
M∗M∗−1(r1) + M∗M∗−1(r1)

a

2r
))

= r(M(
a

2r
)M∗−1(r1) + M∗−1(r1)M(

a

2r
))

= r2(M(
a

2r
)M∗−1(1) + M∗−1(1)M(

a

2r
))

= r(M(r(
a

2r
)M∗M∗−1(1) + M∗M∗−1(1)(

a

2r
))) = rM(a).

We now assume that dimX = ∞.

For every non-trivial idempotent operator q ∈ A, set e1 = q. By Lemma 12, M and M∗−1

are additive on qA. Therefore, for every a ∈ qA, we have that M(ra) = rM(a).

Let a be a finite rank operator of X . Suppose that the range of a is sp{h1, h2, . . . , hn} (n <

∞), where h1, . . . , hn are linearly independent. By the Hahn-Banach Extension Theorem, there

are f1, . . . , fn ∈ X∗, the dual Banach space of X , such that fj(hi) = δij (Kronecker delta). Let

q = h1 ⊗ f1 + · · ·hn ⊗ fn. Then q is a finite rank idempotent operator in A. Clearly, qa = a.

Thus, we have that M(ra) = M(rqa) = rM(qa) = rM(a). 2

Lemma 15 Let a12 ∈ A12 and a21 ∈ A21. Then M(a12 + a21) = M(a12) + M(a21).

Proof Choose s = s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a12) + M(a21). (3)

For t12 ∈ A12, we see that from Lemma 5(i)

M(r(t12s + st12)) = M(r(t12a12 + a12t12)) + M(r(t12a21 + a21t12)) = M(r(t12a21 + a21t12)).

Hence, by Lemma 3, we have that t12s + st12 = t12a21 + a21t12 for every t12 ∈ A12. Multiplying

this equality by e1 from the right, we have that t12s21 = t12a21 for every t12 ∈ A12. It follows

from Lemma 2(ii) that s21 = a21. Hence by Lemma 2(i), we get that t12s22 +s11t12 = 0 for every

t12 ∈ A12. An argument similar to what has led to the equality s21 = a21 proves that s12 = a12

also holds.

By Lemma 5(i), from (3), we get that

M(r(e1s + se1)) = M(r(e1a12 + a12e1)) + M(r(e1a21 + a21e1))

= M(ra12) + M(ra21).

Hence we deduce from Lemma 14 that

rM(e1s + se1) = rM(a12) + rM(a21) = rM(s).

By the injectivity of M , we have that e1s + se1 = s. Thus s11 = s22 = 0. Consequently

s = a12 + a21. 2

Lemma 16 Let a11 ∈ A11, a12 ∈ A12 and a21 ∈ A21. Then M(a11 + a12 + a21) = M(a11) +

M(a12) + M(a21).
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Proof Choose s = s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a11) + M(a12) + M(a21).

Then by Lemma 6, we have that

M(s) = M(a11 + a12) + M(a21), (4)

M(s) = M(a11 + a21) + M(a12). (5)

For t21 ∈ A21, we see that from Lemma 5(i)

M(r(t21s + st21)) = M(r(t21(a11 + a12) + (a11 + a12)t21)) + M(r(t21a21 + a21t21))

= M(r(t21a11 + t21a12 + a12t21)).

By Lemma 3, we have that

t21s + st21 = t21a11 + t21a12 + a12t21 (6)

for every t21 ∈ A21. Multiplying this equality by e1 from the left, we get that s12t21 = a12t21

for every t21 ∈ A21. By Lemma 2(ii), it follows that s12 = a12. Multiplying (6) by e1 from the

right, we get that

t21s11 + s22t21 = t21a11 (7)

for every t21 ∈ A21. Similarly, for t12 ∈ A12, by Lemma 5(i), we get s21 = a21 from (5).

For t22 ∈ A22, by Lemma 5(i) and Lemma 15, we get from (4)

M(r(t22s + st22)) = M(ra12t22) + M(rt22a21) = M(r(a12t22 + t22a21)).

Therefore, t22s + st22 = a12t22 + t22a21 for every t22 ∈ A22. Since s12 = a12 and s21 = a21, it

follows that t22s22 + s22t22 = 0 for every t22 ∈ A22. It follows from Lemma 2(iv) that s22 = 0.

Hence, from (7), we have s11 = a11. Consequently, s = a11 + a12 + a21. 2

Lemma 17 If aij ∈ Aij (1 ≤ i, j ≤ 2), then M(a11 + a12 + a21 + a22) = M(a11) + M(a12) +

M(a21) + M(a22).

Proof Choose s = s11 + s12 + s21 + s22 ∈ A such that

M(s) = M(a11) + M(a12) + M(a21) + M(a22).

Then, by Lemma 5(i) and Lemma 16, we have that

M(r(e1s + se1)) = M(2ra11) + M(ra12) + M(ra21) = M(r(2a11 + a21) + a12)).

By Lemma 3, it follows that e1s + se1 = 2a11 + a21 + a12. By a simple computation, we get that

s11 = a11, s12 = a12 and s21 = a21. For t12 ∈ A12, we see that from Lemma 5(i)

M(r(t12s + st12)) = M(ra11t12) + M(r(t12a21 + a21t12)) + M(rt12a22).

Making a use of Lemma 5(i) and Lemma 12 to the above equality, we have that

M(r2(e1t12s + e1st12 + t12se1)) = M(r2a11t12) + M(2r2t12a21) + M(r2t12a22)

= M(r2(a11t12 + 2t12a21 + t12a22)).



118 P. S. JI and S. J. ZHOU

Hence we have that

t12s21 + t12s22 + s11t12 + t12s21 = a11t12 + 2t12a21 + t12a22

for every t12 ∈ A12. Since we have shown that s11 = a11, s12 = a12 and s21 = a21, it follows that

t12s22 = t12a22 for every t12 ∈ A12 and hence s22 = a22. Consequently, s = a11+a12+a21+a22. 2

Proof of Theorem Let a = a11 + a12 + a21 + a22, b = b11 + b12 + b21 + b22 ∈ A. Then Lemmas

17, 9, and 10 are all used in seeing the equalities

M(a + b) = M((a11 + b11) + (a12 + b12) + (a21 + b21) + (a22 + b22))

= M(a11 + b11) + M(a12 + b12) + M(a21 + b21) + M(a22 + b22)

= M(a11) + M(b11) + M(a12) + M(b12) + M(a21) + M(b21) + M(a22) + M(b22)

= M(a11 + a12 + a21 + a22) + M(b11 + b12 + b21 + b22) = M(a) + M(b)

hold true. That is, M is additive on A.

Now let us show that M∗ is additive on B. Let x, y ∈ B. For every t ∈ A, by using the

additivity of M , we have

M(r(t(M∗(x) + M∗(y)) + (M∗(x) + M∗(y))t))

= M(r(tM∗(x) + M∗(x)t)) + M(r(tM∗(y) + M∗(y)t))

= r(M(t)x + xM(t)) + r(M(t)y + yM(t)) = r(M(t)(x + y) + (x + y)M(t))

= M(r(tM∗(x + y) + M∗(x + y)t)).

Since M is injective, it follows that

t(M∗(x) + M∗(y)) + (M∗(x) + M∗(y))t = tM∗(x + y) + M∗(x + y)t.

Since A is dense in B(X) under the strong operator topology, we have that 2(M∗(x)+M∗(y)) =

2M∗(x + y). Therefore M∗(x + y) = M∗(x) + M∗(y). This completes the proof. 2
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