Jordan Maps on Standard Operator Algebras

Pei Sheng JI*, Shu Juan ZHOU
School of Mathematical Sciences, Qingdao University, Shandong 266071, P. R. China

Abstract

Let A be a standard operator algebra on a Banach space of dimension >1 and B be an arbitrary algebra over Q the field of rational numbers. Suppose that $M: A \longrightarrow B$ and $M^{*}: B \longrightarrow A$ are surjective maps such that $$
\left\{\begin{array}{l} M\left(r\left(a M^{*}(x)+M^{*}(x) a\right)\right)=r(M(a) x+x M(a)) \\ M^{*}(r(M(a) x+x M(a)))=r\left(a M^{*}(x)+M^{*}(x) a\right) \end{array}\right.
$$ for all $a \in A, x \in B$, where r is a fixed nonzero rational number. Then both M and M^{*} are additive.

Keywords Jordan maps; standard operator algebras; additivity.
Document code A
MR(2000) Subject Classification 47A11; 47B49
Chinese Library Classification O177.1

Let A and B be two associative algebras over the field Q of rational numbers, and let r be a fixed nonzero rational number. Let $M: A \longrightarrow B$ and $M^{*}: B \longrightarrow A$ be two maps. The ordered pair $\left(M, M^{*}\right)$ is called an r-Jordan map of $A \times B$ if

$$
\left\{\begin{array}{l}
M\left(r\left(a M^{*}(x)+M^{*}(x) a\right)\right)=r(M(a) x+x M(a)) \tag{1}\\
M^{*}(r(M(a) x+x M(a)))=r\left(a M^{*}(x)+M^{*}(x) a\right)
\end{array}\right.
$$

for all $a \in A, x \in B$. Obviously, if $\phi: A \longrightarrow B$ is an r-Jordan map, that is, ϕ is a bijective map which satisfies that $\phi(r(a b+b a))=r(\phi(a) \phi(b)+\phi(b) \phi(a))$ for all $a, b \in A$, then the pair $\left(\phi, \phi^{-1}\right)$ is an r-Jordan map of $A \times B$.

It is an interesting problem to study the interrelation between the multiplicative and the additive structure of a ring. It is Martindale who first established a condition on a ring R_{1} such that every multiplicative bijective map on R_{1} is additive [8, Theorem]. Recently, the question of whether a Jordan map is additive is studied by many mathematicians [1-7]. In particular, in [6], Lu showed that every r-Jordan map on a standard operator algebra is additive. In this paper, we will extend this result to these mild r-Jordan maps.

[^0]Throughout, X is a Banach space of dimension >1. Denote by $B(X)$ the algebra of all linear bounded operators on X. A subalgebra of $B(X)$ is called a standard operator algebra if it contains all finite rank operators in $B(X)$. Our result in this paper is the following.

Theorem Let X be a Banach space, $\operatorname{dim} X>1$, and let $A \subset B(X)$ be a standard operator algebra. Let B be algebra over Q and $r \in Q$ be non-zero. Suppose (M, M^{*}) is an arbitrary r-Jordan map of $A \times B$, and both M and M^{*} are surjective. Then both M and M^{*} are additive.

The proof will be organized in a series of lemmas. We begin with the following trivial one.
Lemma 1 If $\left(M, M^{*}\right)$ is an arbitrary r-Jordan map of $A \times B$, then $M(0)=0$ and $M^{*}(0)=0$.
Proof Since $\left(M, M^{*}\right)$ is an arbitrary r-Jordan map of $A \times B$, we have that $M(0)=M\left(r\left(0 M^{*}(0)+\right.\right.$ $\left.\left.M^{*}(0) 0\right)\right)=r(M(0) 0+0 M(0))=0$. Similarly, $M^{*}(0)=M^{*}(r(0 M(0)+M(0) 0))=r\left(M^{*}(0) 0+\right.$ $\left.0 M^{*}(0)\right)=0$.

In the following, let $e_{1} \in A$ be a fixed non-trivial idempotent operator and let $e_{2}=1-e_{1}$, where 1 is the identity operator on X. Set $A_{i j}=e_{i} A e_{j}, i, j=1,2$. Then we can write $A=$ $A_{11} \oplus A_{12} \oplus A_{21} \oplus A_{22}$. It should be mentioned that this idea is from Martindale [8]. In what follows, when we write $a_{i j}$, it indicates $a_{i j} \in A_{i j}$.

The following lemma can be found in [5].
Lemma 2 Let $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$.
(i) For $t_{i j} \in A_{i j}(1 \leq i, j \leq 2)$, we have that

$$
t_{i j} s+s t_{i j}=t_{i j} s_{j 1}+t_{i j} s_{j 2}+s_{1 i} t_{i j}+s_{2 i} t_{i j}
$$

(ii) If $t_{i j} s_{j k}=0$ for every $t_{i j} \in A_{i j}(1 \leq i, j, k \leq 2)$, then $s_{j k}=0$. Dually, if $s_{k i} t_{i j}=0$ for every $t_{i j} \in A_{i j}(1 \leq i, j, k \leq 2)$, then $s_{k i}=0$.
(iii) If $t_{i j} s+s t_{i j} \in A_{i j}$ for every $t_{i j} \in A_{i j}(1 \leq i \neq j \leq 2)$, then $s_{j i}=0$.
(iv) If $s_{i i} t_{i i}+t_{i i} s_{i i}=0$ for every $t_{i i} \in A_{i i}(i=1,2)$, then $s_{i i}=0$.
(v) If $t_{j j} s+s t_{j j} \in A_{i j}$ for every $t_{j j} \in A_{j j}(1 \leq i \neq j \leq 2)$, then $s_{j i}=0$ and $s_{j j}=0$. Dually, if $t_{j j} s+s t_{j j} \in A_{j i}$ for every $t_{j j} \in A_{j j}(1 \leq i \neq j \leq 2)$, then $s_{i j}=0$ and $s_{j j}=0$.

Lemma 3 Both M and M^{*} are bijective.
Proof It suffices to prove that M and M^{*} are injective. First we show that M is injective. Let $x, y \in A$ and suppose $M(x)=M(y)$. Note that A is dense in $B(X)$ under the strong operator topology. We can take a net $\left\{t_{\alpha}\right\} \subset A$ such that sot- $\lim _{\alpha} t_{\alpha}=1$. For every t_{α}, by surjectivity of M^{*} there is $b_{\alpha} \in B$ such that $M^{*}\left(b_{\alpha}\right)=t_{\alpha}$ and we have by (1)

$$
\begin{aligned}
& r\left(t_{\alpha} x+x t_{\alpha}\right)=r M^{*}\left(b_{\alpha}\right) x+x M^{*}\left(b_{\alpha}\right)=M^{*}\left(r\left(b_{\alpha} M(x)+M(x) b_{\alpha}\right)\right. \\
& \quad=M^{*}\left(r\left(b_{\alpha} M(y)+M(y) b_{\alpha}\right)=r\left(t_{\alpha} y+y t_{\alpha}\right)\right.
\end{aligned}
$$

Taking the limit in $r\left(t_{\alpha} x+x t_{\alpha}\right)=r\left(t_{\alpha} y+y t_{\alpha}\right)$, we get $2 x=2 y$. That is, $x=y$.
Now we turn to proving the injectivity of M^{*}. Let $x, y \in B$ such that $M^{*}(x)=M^{*}(y)$. Since $M^{*} M$ is also surjective, we can choose $s_{\alpha} \in A$ such that $M^{*} M\left(s_{\alpha}\right)=t_{\alpha}$ for all α. Then we have
by (1)

$$
\begin{aligned}
& r\left(t_{\alpha} M^{-1}(x)+M^{-1}(x) t_{\alpha}\right)=r\left(M^{*} M\left(s_{\alpha}\right) M^{-1}(x)+M^{-1}(x) M^{*} M\left(s_{\alpha}\right)\right) \\
& \quad=M^{*}\left(r\left(M\left(s_{\alpha}\right) M M^{-1}(x)+M M^{-1}(x) M\left(s_{\alpha}\right)\right)\right)=M^{*}\left(r\left(M\left(s_{\alpha}\right) x+x M\left(s_{\alpha}\right)\right)\right) \\
& \quad=r\left(s_{\alpha} M^{*}(x)+M^{*}(x) s_{\alpha}\right)=r\left(s_{\alpha} M^{*}(y)+M^{*}(y) s_{\alpha}\right) \\
& \quad=M^{*}\left(r\left(M\left(s_{\alpha}\right) y+y M\left(s_{\alpha}\right)\right)\right)=M^{*}\left(r\left(M\left(s_{\alpha}\right) M M^{-1}(y)+M M^{-1}(y) M\left(s_{\alpha}\right)\right)\right) \\
& \quad=r\left(M^{*} M\left(s_{\alpha}\right) M^{-1}(y)+M^{-1}(y) M^{*} M\left(s_{\alpha}\right)\right)=r\left(t_{\alpha} M^{-1}(y)+M^{-1}(y) t_{\alpha}\right) .
\end{aligned}
$$

Taking the limit in $t_{\alpha} M^{-1}(x)+M^{-1}(x) t_{\alpha}=t_{\alpha} M^{-1}(y)+M^{-1}(y) t_{\alpha}$, we get $2 M^{-1}(x)=2 M^{-1}(y)$ and so $x=y$.

Lemma 4 The pair $\left(M^{*-1}, M^{-1}\right)$ is an r-Jordan map of $A \times B$, that is, the maps $M^{*-1}: A \longrightarrow B$ and $M^{-1}: B \longrightarrow A$ satisfy

$$
\left\{\begin{array}{c}
M^{*-1}\left(r\left(a M^{-1}(x)+M^{-1}(x) a\right)\right)=r\left(M^{*-1}(a) x+x M^{*-1}(a)\right) \tag{2}\\
M^{-1}\left(r\left(M^{*-1}(a) x+x M^{*-1}(a)\right)\right)=r\left(a M^{-1}(x)+M^{-1}(x) a\right)
\end{array}\right.
$$

for all $a \in A, x \in B$.
Proof The first equality can follow from

$$
\begin{aligned}
& M^{*}\left(r\left(M^{*-1}(a) x+x M^{*-1}(a)\right)\right)=M^{*}\left(r\left(M^{*-1}(a) M M^{-1}(x)+M M^{-1}(x) M^{*-1}(a)\right)\right) \\
& \quad=r\left(M^{*}\left(M^{*-1}(a)\right) M^{-1}(x)+M^{-1}(x) M^{*}\left(M^{*-1}(a)\right)\right) \\
& \quad=r\left(a M^{-1}(x)+M^{-1}(x) a\right)=M^{*}\left(r\left(M^{*-1}\left(a M^{-1}(x)+M^{-1}(x) a\right)\right)\right)
\end{aligned}
$$

and the second equality follows in a similar way.
Lemma 5 If $s, a, b \in A$ such that $M(s)=M(a)+M(b)$, then for all $t \in A$
(i) $M(r(t s+s t))=M(r(t a+a t))+M(r(t b+b t))$;
(ii) $M^{*-1}(r(t s+s t))=M^{*-1}(r(t a+a t))+M^{*-1}(r(t b+b t))$.

Proof Let $t \in A$. Then by (1)

$$
\begin{aligned}
& M(r(t s+s t))=M\left(r\left(M^{*} M^{*-1}(t) s+s M^{*} M^{*-1}(t)\right)\right)=r\left(M^{*-1}(t) M(s)+M(s) M^{*-1}(t)\right) \\
& \quad=r\left(M^{*-1}(t)(M(a)+M(b))+(M(a)+M(b)) M^{*-1}(t)\right) \\
& \quad=r\left(M^{*-1}(t) M(a)+M(a) M^{*-1}(t)\right)+r\left(M^{*-1}(t) M(b)+M(b) M^{*-1}(t)\right) \\
& \quad=M\left(r\left(M^{*} M^{*-1}(t) a+a M^{*} M^{*-1}(t)\right)\right)+M\left(r\left(M^{*} M^{*-1}(t) b+b M^{*} M^{*-1}(t)\right)\right) \\
& \quad=M(r(t a+a t))+M(r(t b+b t)) .
\end{aligned}
$$

This proves (i).
Similarly to the above, it follows from the first equality of (2) that (ii) holds, completing the proof.

Lemma 6 For any $a_{i j} \in A_{i j}(1 \leq i, j \leq 2)$, we have the following equalities:
(i) $M\left(a_{11}+a_{i j}\right)=M\left(a_{11}\right)+M\left(a_{i j}\right), 1 \leq i \neq j \leq 2$;
(ii) $M\left(a_{22}+a_{i j}\right)=M\left(a_{22}\right)+M\left(a_{i j}\right), 1 \leq i \neq j \leq 2$;
(iii) $M^{*-1}\left(a_{11}+a_{i j}\right)=M^{*-1}\left(a_{11}\right)+M^{*-1}\left(a_{i j}\right), 1 \leq i \neq j \leq 2$;
(iv) $M^{*-1}\left(a_{22}+a_{i j}\right)=M^{*-1}\left(a_{22}\right)+M^{*-1}\left(a_{i j}\right), 1 \leq i \neq j \leq 2$.

Proof By Lemma 4, we only prove (i) and (ii).
Suppose that $i=1$ and $j=2$. Since M is surjective, we can find an element $s=s_{11}+s_{12}+$ $s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{11}\right)+M\left(a_{12}\right) .
$$

For $t_{22} \in A_{22}$, we see that from Lemma 5 (i)

$$
\begin{aligned}
M\left(r\left(t_{22} s+s t_{22}\right)\right) & =M\left(r\left(t_{22} a_{11}+a_{11} t_{22}\right)\right)+M\left(r\left(t_{22} a_{12}+a_{12} t_{22}\right)\right) \\
& =M(0)+M\left(r\left(a_{12} t_{22}\right)\right)=M\left(r\left(a_{12} t_{22}\right)\right) .
\end{aligned}
$$

It follows that $t_{22} s+s t_{22}=a_{12} t_{22}$ for every $t_{22} \in A_{22}$. Hence $t_{22} s+s t_{22} \in A_{12}$ for every $t_{22} \in A_{22}$. Thus by Lemma 2(v), we get $s_{21}=0$ and $s_{22}=0$. Hence we have $s_{12} t_{22}=a_{12} t_{22}$. By Lemma 2(i), we get $s_{12}=a_{12}$. Thus $s=s_{11}+a_{12}$.

For $t_{12} \in A_{12}$, we see that from Lemma 5 (i)

$$
\begin{aligned}
M\left(r\left(t_{12} s+s t_{12}\right)\right) & =M\left(r\left(t_{12} a_{11}+a_{11} t_{12}\right)\right)+M\left(r\left(t_{12} a_{12}+a_{12} t_{12}\right)\right) \\
& =M(0)+M\left(r\left(a_{11} t_{12}\right)\right)=M\left(r\left(a_{11} t_{12}\right)\right) .
\end{aligned}
$$

It follows that $t_{12} s+s t_{12}=a_{11} t_{12}$ for every $t_{12} \in A_{12}$. Since $s=s_{11}+a_{12}$, we have $s_{11} t_{12}=a_{11} t_{12}$ for every $t_{12} \in A_{12}$. Thus by Lemma 2(i), we have $s_{11}=a_{11}$. Consequently, $s=a_{11}+a_{12}$. This proves the first equality. The second can be proved similarly.

Lemma 7 For any $a_{i j}, b_{i j} \in A_{i j}(1 \leq i, j \leq 2)$, we have the following equalities:
(i) $M\left(r\left(a_{12}+b_{12} a_{22}\right)\right)=M\left(r a_{12}\right)+M\left(r b_{12} a_{22}\right)$;
(ii) $\left.M^{*-1}\left(r\left(a_{12}+b_{12} a_{22}\right)\right)=M^{*-1}\left(r a_{12}\right)+M^{*-1}\left(r b_{12} a_{22}\right)\right)$.

Proof (i) Compute

$$
a_{12}+b_{12} a_{22}=\left(e_{1}+b_{12}\right)\left(a_{12}+a_{22}\right)=\left(e_{1}+b_{12}\right)\left(a_{12}+a_{22}\right)+\left(a_{12}+a_{22}\right)\left(e_{1}+b_{12}\right) .
$$

Then using (1) and Lemma 6, we have that

$$
\begin{aligned}
M & \left(r\left(a_{12}+b_{12} a_{22}\right)\right)=M\left(r\left(\left(e_{1}+b_{12}\right)\left(a_{12}+a_{22}\right)+\left(a_{12}+a_{22}\right)\left(e_{1}+b_{12}\right)\right)\right) \\
= & M\left(r\left(\left(e_{1}+b_{12}\right) M^{*}\left(M^{*-1}\left(a_{12}+a_{22}\right)\right)+M^{*}\left(M^{*-1}\left(a_{12}+a_{22}\right)\right)\left(e_{1}+b_{12}\right)\right)\right) \\
= & r\left(M\left(e_{1}+b_{12}\right) M^{*-1}\left(a_{12}+a_{22}\right)+M^{*-1}\left(a_{12}+a_{22}\right) M\left(e_{1}+b_{12}\right)\right) \\
= & r\left(\left(M\left(e_{1}\right)+M\left(b_{12}\right)\right)\left(M^{*-1}\left(a_{12}\right)+M^{*-1}\left(a_{22}\right)\right)+\left(M^{*-1}\left(a_{12}\right)+M^{*-1}\left(a_{22}\right)\right)\left(M\left(e_{1}\right)+\left(b_{12}\right)\right)\right) \\
= & r\left(\left(M\left(e_{1}\right) M^{*-1}\left(a_{12}\right)+M^{*-1}\left(a_{12}\right) M\left(e_{1}\right)\right)+r\left(M\left(e_{1}\right) M^{*-1}\left(a_{22}\right)+M^{*-1}\left(a_{22}\right) M\left(e_{1}\right)\right)+\right. \\
& r\left(M\left(b_{12}\right) M^{*-1}\left(a_{12}\right)+M^{*-1}\left(a_{12}\right) M\left(b_{12}\right)\right)+r\left(M\left(b_{12}\right) M^{*-1}\left(a_{22}\right)+M^{*-1}\left(a_{22}\right) M\left(b_{12}\right)\right) \\
= & M\left(r\left(e_{1} M^{*} M^{*-1}\left(a_{12}\right)+M^{*} M^{*-1}\left(a_{12}\right) e_{1}\right)\right)+M\left(r\left(e_{1} M^{*} M^{*-1}\left(a_{22}\right)+M^{*} M^{*-1}\left(a_{22}\right) e_{1}\right)\right)+ \\
& M\left(r\left(b_{12} M^{*} M^{*-1}\left(a_{12}\right)+M^{*} M^{*-1}\left(a_{12}\right) b_{12}\right)\right)+M\left(r\left(b_{12} M^{*} M^{*-1}\left(a_{22}\right)+M^{*} M^{*-1}\left(a_{22}\right) b_{12}\right)\right) \\
= & M\left(r\left(e_{1} a_{12}+a_{12} e_{1}\right)\right)+M\left(r\left(e_{1} a_{22}+a_{22} e_{1}\right)+M\left(r\left(b_{12} a_{12}+a_{12} b_{12}\right)\right)+M\left(r\left(b_{12} a_{22}+a_{22} b_{12}\right)\right)\right. \\
= & M\left(r a_{12}\right)+2 M(0)+M\left(r b_{12} a_{22}\right)=M\left(r a_{12}\right)+M\left(r b_{12} a_{22}\right) .
\end{aligned}
$$

(ii) Lemma 4 tells us that the pair $\left(M^{*-1}, M^{-1}\right)$ is also an r-Jordan map of $A \times B$. Therefore (ii) holds.

Lemma 8 For any $a_{i j} \in A_{i j}(1 \leq i, j \leq 2)$, we have the following equalities:
(i) $M\left(r\left(a_{21}+a_{22} b_{21}\right)\right)=M\left(r a_{21}\right)+M\left(r a_{22} b_{21}\right)$;
(ii) $\left.M^{*-1}\left(r\left(a_{12}+a_{22} b_{21}\right)\right)=M^{*-1}\left(r a_{12}\right)+M^{*-1}\left(r a_{22} b_{21}\right)\right)$.

Proof (i) Compute

$$
a_{12}+a_{22} b_{21}=\left(a_{12}+a_{22}\right)\left(e_{1}+b_{21}\right)=\left(e_{1}+b_{21}\right)\left(a_{12}+a_{22}\right)+\left(a_{12}+a_{22}\right)\left(e_{1}+b_{21}\right)
$$

Then we can complete the proof using a computation similar to that in the proof of Lemma 7 .
Lemma $9 M$ and M^{*-1} are additive on $A_{i j}(1 \leq i \neq j \leq 2)$.
Proof By Lemma 4, we only prove that M is additive on $A_{i j}(1 \leq i \neq j \leq 2)$.
Let $a_{12}, b_{12} \in A_{12}$ and choose $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{12}\right)+M\left(b_{12}\right)
$$

For $t_{22} \in A_{22}$, we see that from Lemma $5(\mathrm{i})$ and Lemma 7

$$
\begin{aligned}
M\left(r\left(t_{22} s+s t_{22}\right)\right) & =M\left(r\left(t_{22} a_{12}+a_{12} t_{22}\right)\right)+M\left(r\left(t_{22} b_{12}+b_{12} t_{22}\right)\right) \\
& =M\left(r a_{12} t_{22}\right)+M\left(r b_{12} t_{22}\right)=M\left(r\left(a_{12} t_{22}+b_{12} t_{22}\right)\right)
\end{aligned}
$$

Hence $t_{22} s+s t_{22}=\left(a_{12}+b_{12}\right) t_{22}$ for every $t_{22} \in A_{22}$. It follows from Lemma 2(v) and (i) that $s_{22}=s_{21}=0$ and $s_{12}=a_{12}+b_{12}$.

Now there remains to prove that $s_{11}=0$. For $t_{12} \in A_{12}$, applying Lemma 5 (i) and Lemma 7 to $M(s)=M\left(a_{12}\right)+M\left(b_{12}\right)$ again, we get that $t_{12} s+s t_{12}=0$. Since we have shown that $s_{22}=s_{21}=0$, we have that $s_{11} t_{12}=0$ for every $t_{12} \in A_{12}$. Hence from Lemma 2(ii) we get $s_{11}=0$. Therefore M is additive on A_{12}.

It can be proved similarly that M is additive on A_{21}.
Lemma $10 M$ and M^{*-1} are additive on $A_{i i}(i=1,2)$.
Proof By Lemma 4, we only prove that M is additive on $A_{i i}(i=1,2)$.
Let $a_{i i}, b_{i i} \in A_{i i}$ and choose $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{11}\right)+M\left(b_{11}\right)
$$

Let $j \neq i$. For $t_{j j} \in A_{j j}$, we see that from Lemma 5 (i)

$$
M\left(r\left(t_{j j} s+s t_{j j}\right)\right)=M\left(r\left(t_{j j} a_{i i}+a_{i i} t_{j j}\right)\right)+M\left(r\left(t_{j j} b_{i i}+b_{i i} t_{j j}\right)\right)=0 .
$$

Hence, we have $t_{j j} s+s t_{j j}=0$ for every $t_{j j} \in A_{j j}$. It follows from Lemma $2(\mathrm{v})$ that $s_{j i}=s_{i j}=$ $s_{j j}=0$.

Now there remains to prove that $s_{i i}=a_{i i}+b_{i i}$. For $t_{i j} \in A_{i j}$, we see that from Lemma 5 (i) and Lemma 9

$$
M\left(r\left(t_{i j} s+s t_{i j}\right)\right)=M\left(r\left(t_{i j} a_{i i}+a_{i i} t_{i j}\right)\right)+M\left(r\left(t_{i j} b_{i i}+b_{i i} t_{i j}\right)\right)
$$

$$
=M\left(r\left(a_{i i} t_{i j}\right)\right)+M\left(r\left(b_{i i} t_{i j}\right)\right)=M\left(r\left(a_{i i} t_{i j}+b_{i i} t_{i j}\right)\right)
$$

Hence, we have $t_{i j} s+s t_{i j}=a_{i i} t_{i j}+b_{i i} t_{i j}$ for every $t_{i j} \in A_{i j}$. Since $s_{j i}=s_{i j}=s_{j j}=0$, it follows that $s_{11} t_{12}=\left(a_{11}+b_{11}\right) t_{12}$ for every $t_{i j} \in A_{i j}$. Hence by Lemma 2(ii), we have that $s_{i i}=a_{i i}+b_{i i}$.

Remark 11 We have shown that M and M^{*-1} are additive on $A_{i j}$ for $1 \leq i, j \leq 2$. Therefore, for $a_{i j} \in A_{i j}$, we have that $M\left(r\left(a_{i j}\right)\right)=r M\left(a_{i j}\right)$ and $M^{*-1}\left(r\left(a_{i j}\right)\right)=r M^{*-1}\left(a_{i j}\right)$.

Lemma $12 M$ and M^{*} are additive on $e_{1} A=A_{11}+A_{12}$.
Proof Let $a_{11}, b_{11} \in A_{11}$ and let $a_{12}, b_{12} \in A_{12}$. Then by Lemmas 6,9 , and 10 , we see that

$$
\begin{aligned}
& M\left(\left(a_{11}+a_{12}\right)+\left(b_{11}+b_{12}\right)\right)=M\left(\left(a_{11}+b_{11}\right)+\left(a_{12}+b_{12}\right)\right) \\
& \quad=M\left(a_{11}+b_{11}\right)+M\left(a_{12}+b_{12}\right)=M\left(a_{11}\right)+M\left(b_{11}\right)+M\left(a_{12}\right)+M\left(b_{12}\right) \\
& \quad=M\left(a_{11}+a_{12}\right)+M\left(b_{11}+b_{12}\right) .
\end{aligned}
$$

Similarly, we can get that $M^{*-1}\left(\left(a_{11}+a_{12}\right)+\left(b_{11}+b_{12}\right)\right)=M^{*-1}\left(a_{11}+a_{12}\right)+M^{*-1}\left(b_{11}+b_{12}\right)$.

Lemma 13 For any $a_{11} \in A_{11}, a_{22} \in A_{22}$, we get that
(i) $M\left(a_{11}+a_{22}\right)=M\left(a_{11}\right)+M\left(a_{22}\right)$;
(ii) $M^{*-1}\left(a_{11}+a_{22}\right)=M^{*-1}\left(a_{11}\right)+M^{*-1}\left(a_{22}\right)$.

Proof By Lemma 4, we only prove (i). Since M is surjective, we can find an element $s=$ $s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{11}\right)+M\left(a_{22}\right)
$$

We see that from Lemma 5(i)

$$
M\left(r\left(e_{1} s+s e_{1}\right)\right)=M\left(r\left(e_{1} a_{11}+a_{11} e_{1}\right)\right)+M\left(r\left(e_{1} a_{22}+a_{22} e_{1}\right)\right)=M(0)+M\left(2 r a_{11}\right)=M\left(2 r a_{11}\right)
$$

It follows that $2 s_{11}+s_{12}+21=2 a_{11}$. Hence we have that $s_{12}=s_{21}=0$ and $s_{11}=a_{11}$.
For $t_{22} \in A_{22}$, we see that from Lemma 5(i)

$$
\begin{aligned}
M\left(r\left(t_{22} s+s t_{22}\right)\right) & =M\left(r\left(t_{22} a_{11}+a_{11} t_{22}\right)\right)+M\left(r\left(t_{22} a_{22}+a_{22} t_{22}\right)\right) \\
& =M\left(r\left(t_{22} a_{22}+a_{22} t_{22}\right)\right)
\end{aligned}
$$

It follows that $t_{22} s+s t_{22}=t_{22} a_{22}+a_{22} t_{22}$ for every $t_{22} \in A_{22}$. Since $s_{12}=s_{21}=0$, we have that $t_{22} s+s t_{22}=t_{22} a_{22}+a_{22} t_{22}$ for every $t_{22} \in A_{22}$. Thus by Lemma 2(iv), we get that $s_{22}=a_{22}$. Consequently, $s=a_{11}+a_{22}$.

It should be mentioned that the idea of the proof of the following lemma is from [6].
Lemma 14 If a is a finite rank operator on X, then $M(r a)=r M(a)$.
Proof If $\operatorname{dim} X<\infty$, then A must contain the identity operator 1 in $B(X)$. By Lemma 13 and Remark 11, we have that

$$
M^{*-1}(r 1)=M^{*-1}\left(r e_{1}+r e_{2}\right)=M^{*-1}\left(r e_{1}\right)+M^{*-1}\left(r e_{2}\right)
$$

$$
=r M^{*-1}\left(e_{1}\right)+r M^{*-1}\left(e_{2}\right)=r M^{*-1}\left(e_{1}+e_{2}\right)=r M^{*-1}(1) .
$$

Further, for every $a \in A$, we have that

$$
\begin{aligned}
M(r a) & =M\left(r\left(\frac{a}{2 r} M^{*} M^{*-1}(r 1)+M^{*} M^{*-1}(r 1) \frac{a}{2 r}\right)\right) \\
& =r\left(M\left(\frac{a}{2 r}\right) M^{*-1}(r 1)+M^{*-1}(r 1) M\left(\frac{a}{2 r}\right)\right) \\
& =r^{2}\left(M\left(\frac{a}{2 r}\right) M^{*-1}(1)+M^{*-1}(1) M\left(\frac{a}{2 r}\right)\right) \\
& =r\left(M\left(r\left(\frac{a}{2 r}\right) M^{*} M^{*-1}(1)+M^{*} M^{*-1}(1)\left(\frac{a}{2 r}\right)\right)\right)=r M(a)
\end{aligned}
$$

We now assume that $\operatorname{dim} X=\infty$.
For every non-trivial idempotent operator $q \in A$, set $e_{1}=q$. By Lemma $12, M$ and M^{*-1} are additive on $q A$. Therefore, for every $a \in q A$, we have that $M(r a)=r M(a)$.

Let a be a finite rank operator of X. Suppose that the range of a is $\operatorname{sp}\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}(n<$ $\infty)$, where h_{1}, \ldots, h_{n} are linearly independent. By the Hahn-Banach Extension Theorem, there are $f_{1}, \ldots, f_{n} \in X^{*}$, the dual Banach space of X, such that $f_{j}\left(h_{i}\right)=\delta_{i j}$ (Kronecker delta). Let $q=h_{1} \otimes f_{1}+\cdots h_{n} \otimes f_{n}$. Then q is a finite rank idempotent operator in A. Clearly, $q a=a$. Thus, we have that $M(r a)=M(r q a)=r M(q a)=r M(a)$.

Lemma 15 Let $a_{12} \in A_{12}$ and $a_{21} \in A_{21}$. Then $M\left(a_{12}+a_{21}\right)=M\left(a_{12}\right)+M\left(a_{21}\right)$.
Proof Choose $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
\begin{equation*}
M(s)=M\left(a_{12}\right)+M\left(a_{21}\right) \tag{3}
\end{equation*}
$$

For $t_{12} \in A_{12}$, we see that from Lemma $5(\mathrm{i})$

$$
M\left(r\left(t_{12} s+s t_{12}\right)\right)=M\left(r\left(t_{12} a_{12}+a_{12} t_{12}\right)\right)+M\left(r\left(t_{12} a_{21}+a_{21} t_{12}\right)\right)=M\left(r\left(t_{12} a_{21}+a_{21} t_{12}\right)\right)
$$

Hence, by Lemma 3, we have that $t_{12} s+s t_{12}=t_{12} a_{21}+a_{21} t_{12}$ for every $t_{12} \in A_{12}$. Multiplying this equality by e_{1} from the right, we have that $t_{12} s_{21}=t_{12} a_{21}$ for every $t_{12} \in A_{12}$. It follows from Lemma 2(ii) that $s_{21}=a_{21}$. Hence by Lemma 2(i), we get that $t_{12} s_{22}+s_{11} t_{12}=0$ for every $t_{12} \in A_{12}$. An argument similar to what has led to the equality $s_{21}=a_{21}$ proves that $s_{12}=a_{12}$ also holds.

By Lemma 5(i), from (3), we get that

$$
\begin{aligned}
M\left(r\left(e_{1} s+s e_{1}\right)\right) & =M\left(r\left(e_{1} a_{12}+a_{12} e_{1}\right)\right)+M\left(r\left(e_{1} a_{21}+a_{21} e_{1}\right)\right) \\
& =M\left(r a_{12}\right)+M\left(r a_{21}\right)
\end{aligned}
$$

Hence we deduce from Lemma 14 that

$$
r M\left(e_{1} s+s e_{1}\right)=r M\left(a_{12}\right)+r M\left(a_{21}\right)=r M(s)
$$

By the injectivity of M, we have that $e_{1} s+s e_{1}=s$. Thus $s_{11}=s_{22}=0$. Consequently $s=a_{12}+a_{21}$.

Lemma 16 Let $a_{11} \in A_{11}, a_{12} \in A_{12}$ and $a_{21} \in A_{21}$. Then $M\left(a_{11}+a_{12}+a_{21}\right)=M\left(a_{11}\right)+$ $M\left(a_{12}\right)+M\left(a_{21}\right)$.

Proof Choose $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{11}\right)+M\left(a_{12}\right)+M\left(a_{21}\right)
$$

Then by Lemma 6, we have that

$$
\begin{align*}
& M(s)=M\left(a_{11}+a_{12}\right)+M\left(a_{21}\right) \tag{4}\\
& M(s)=M\left(a_{11}+a_{21}\right)+M\left(a_{12}\right) \tag{5}
\end{align*}
$$

For $t_{21} \in A_{21}$, we see that from Lemma 5 (i)

$$
\begin{aligned}
& M\left(r\left(t_{21} s+s t_{21}\right)\right)=M\left(r\left(t_{21}\left(a_{11}+a_{12}\right)+\left(a_{11}+a_{12}\right) t_{21}\right)\right)+M\left(r\left(t_{21} a_{21}+a_{21} t_{21}\right)\right) \\
& \quad=M\left(r\left(t_{21} a_{11}+t_{21} a_{12}+a_{12} t_{21}\right)\right)
\end{aligned}
$$

By Lemma 3, we have that

$$
\begin{equation*}
t_{21} s+s t_{21}=t_{21} a_{11}+t_{21} a_{12}+a_{12} t_{21} \tag{6}
\end{equation*}
$$

for every $t_{21} \in A_{21}$. Multiplying this equality by e_{1} from the left, we get that $s_{12} t_{21}=a_{12} t_{21}$ for every $t_{21} \in A_{21}$. By Lemma 2(ii), it follows that $s_{12}=a_{12}$. Multiplying (6) by e_{1} from the right, we get that

$$
\begin{equation*}
t_{21} s_{11}+s_{22} t_{21}=t_{21} a_{11} \tag{7}
\end{equation*}
$$

for every $t_{21} \in A_{21}$. Similarly, for $t_{12} \in A_{12}$, by Lemma $5(\mathrm{i})$, we get $s_{21}=a_{21}$ from (5).
For $t_{22} \in A_{22}$, by Lemma 5 (i) and Lemma 15, we get from (4)

$$
M\left(r\left(t_{22} s+s t_{22}\right)\right)=M\left(r a_{12} t_{22}\right)+M\left(r t_{22} a_{21}\right)=M\left(r\left(a_{12} t_{22}+t_{22} a_{21}\right)\right)
$$

Therefore, $t_{22} s+s t_{22}=a_{12} t_{22}+t_{22} a_{21}$ for every $t_{22} \in A_{22}$. Since $s_{12}=a_{12}$ and $s_{21}=a_{21}$, it follows that $t_{22} s_{22}+s_{22} t_{22}=0$ for every $t_{22} \in A_{22}$. It follows from Lemma 2(iv) that $s_{22}=0$. Hence, from (7), we have $s_{11}=a_{11}$. Consequently, $s=a_{11}+a_{12}+a_{21}$.

Lemma 17 If $a_{i j} \in A_{i j}(1 \leq i, j \leq 2)$, then $M\left(a_{11}+a_{12}+a_{21}+a_{22}\right)=M\left(a_{11}\right)+M\left(a_{12}\right)+$ $M\left(a_{21}\right)+M\left(a_{22}\right)$.

Proof Choose $s=s_{11}+s_{12}+s_{21}+s_{22} \in A$ such that

$$
M(s)=M\left(a_{11}\right)+M\left(a_{12}\right)+M\left(a_{21}\right)+M\left(a_{22}\right)
$$

Then, by Lemma 5(i) and Lemma 16, we have that

$$
\left.M\left(r\left(e_{1} s+s e_{1}\right)\right)=M\left(2 r a_{11}\right)+M\left(r a_{12}\right)+M\left(r a_{21}\right)=M\left(r\left(2 a_{11}+a_{21}\right)+a_{12}\right)\right)
$$

By Lemma 3, it follows that $e_{1} s+s e_{1}=2 a_{11}+a_{21}+a_{12}$. By a simple computation, we get that $s_{11}=a_{11}, s_{12}=a_{12}$ and $s_{21}=a_{21}$. For $t_{12} \in A_{12}$, we see that from Lemma $5(\mathrm{i})$

$$
M\left(r\left(t_{12} s+s t_{12}\right)\right)=M\left(r a_{11} t_{12}\right)+M\left(r\left(t_{12} a_{21}+a_{21} t_{12}\right)\right)+M\left(r t_{12} a_{22}\right)
$$

Making a use of Lemma 5(i) and Lemma 12 to the above equality, we have that

$$
\begin{aligned}
& M\left(r^{2}\left(e_{1} t_{12} s+e_{1} s t_{12}+t_{12} s e_{1}\right)\right)=M\left(r^{2} a_{11} t_{12}\right)+M\left(2 r^{2} t_{12} a_{21}\right)+M\left(r^{2} t_{12} a_{22}\right) \\
& \quad=M\left(r^{2}\left(a_{11} t_{12}+2 t_{12} a_{21}+t_{12} a_{22}\right)\right)
\end{aligned}
$$

Hence we have that

$$
t_{12} s_{21}+t_{12} s_{22}+s_{11} t_{12}+t_{12} s_{21}=a_{11} t_{12}+2 t_{12} a_{21}+t_{12} a_{22}
$$

for every $t_{12} \in A_{12}$. Since we have shown that $s_{11}=a_{11}, s_{12}=a_{12}$ and $s_{21}=a_{21}$, it follows that $t_{12} s_{22}=t_{12} a_{22}$ for every $t_{12} \in A_{12}$ and hence $s_{22}=a_{22}$. Consequently, $s=a_{11}+a_{12}+a_{21}+a_{22}$.

Proof of Theorem Let $a=a_{11}+a_{12}+a_{21}+a_{22}, b=b_{11}+b_{12}+b_{21}+b_{22} \in A$. Then Lemmas 17,9 , and 10 are all used in seeing the equalities

$$
\begin{aligned}
& M(a+b)=M\left(\left(a_{11}+b_{11}\right)+\left(a_{12}+b_{12}\right)+\left(a_{21}+b_{21}\right)+\left(a_{22}+b_{22}\right)\right) \\
& \quad=M\left(a_{11}+b_{11}\right)+M\left(a_{12}+b_{12}\right)+M\left(a_{21}+b_{21}\right)+M\left(a_{22}+b_{22}\right) \\
& \quad=M\left(a_{11}\right)+M\left(b_{11}\right)+M\left(a_{12}\right)+M\left(b_{12}\right)+M\left(a_{21}\right)+M\left(b_{21}\right)+M\left(a_{22}\right)+M\left(b_{22}\right) \\
& \quad=M\left(a_{11}+a_{12}+a_{21}+a_{22}\right)+M\left(b_{11}+b_{12}+b_{21}+b_{22}\right)=M(a)+M(b)
\end{aligned}
$$

hold true. That is, M is additive on A.
Now let us show that M^{*} is additive on B. Let $x, y \in B$. For every $t \in A$, by using the additivity of M, we have

$$
\begin{aligned}
M & \left(r\left(t\left(M^{*}(x)+M^{*}(y)\right)+\left(M^{*}(x)+M^{*}(y)\right) t\right)\right) \\
& =M\left(r\left(t M^{*}(x)+M^{*}(x) t\right)\right)+M\left(r\left(t M^{*}(y)+M^{*}(y) t\right)\right) \\
& =r(M(t) x+x M(t))+r(M(t) y+y M(t))=r(M(t)(x+y)+(x+y) M(t)) \\
& =M\left(r\left(t M^{*}(x+y)+M^{*}(x+y) t\right)\right) .
\end{aligned}
$$

Since M is injective, it follows that

$$
t\left(M^{*}(x)+M^{*}(y)\right)+\left(M^{*}(x)+M^{*}(y)\right) t=t M^{*}(x+y)+M^{*}(x+y) t
$$

Since A is dense in $B(X)$ under the strong operator topology, we have that $2\left(M^{*}(x)+M^{*}(y)\right)=$ $2 M^{*}(x+y)$. Therefore $M^{*}(x+y)=M^{*}(x)+M^{*}(y)$. This completes the proof.

References

[1] HAKEDA J. Additivity of Jordan*-maps on AW*-algebras [J]. Proc. Amer. Math. Soc., 1986, 96(3): 413-420.
[2] HAKEDA J, SAITO K. Additivity of Jordan*-maps on operators [J]. J. Math. Soc. Japan, 1986, 38(3): 403-408.
[3] LING Zhengchu, LU Fangyan. Jordan maps of nest algebras [J]. Linear Algebra Appl., 2004, 387: 361-368.
[4] JI Peisheng. Jordan maps on triangular Algebras [J]. Linear Algebra Appl., 2007, 426(1): 190-198.
[5] LU Fangyan. Additivity of Jordan maps on standard operator algebras [J]. Linear Algebra Appl., 2002, 357 : 123-131.
[6] LU Fangyan. Jordan maps on associative algebras [J]. Comm. Algebra, 2003, 31(5): 2273-2286.
[7] LU Fangyan. Multiplicative mappings of operator algebras [J]. Linear Algebra Appl., 2002, 347: 283-291.
[8] MARTINDALE W S. When are multiplicative mappings additive? [J]. Proc. Amer. Math. Soc., 1969, 21: 695-698.
[9] MOLNÁR L. Jordan Maps on Standard Operator Algebras [M]. Kluwer Acad. Publ., Dordrecht, 2002.

[^0]: Received January 6, 2008; Accepted April 16, 2008
 Supported by the National Natural Science Foundation of China (Grant Nos. 10675086; 10971117) and the Natural Science Foundation of Shandong Province (Grant No. Y2006A03).

 * Corresponding author

 E-mail address: jipeish@yahoo.com (P. S. JI)

