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Abstract Let R be a 2-torsion free prime ring, d1 a nonzero derivation, γ a generalized derivation

associated with a nonzero derivation d2, U a square closed Lie ideal of R. In the present paper,

we prove that if [d2

1(u), u] ∈ Z(R) or γ acts as a homomorphism (or an antihomomorphism) on

U , then U ⊆ Z(R).
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1. Introduction

Throughout the present paper R will denote an associative ring with center Z(R). For any

x, y ∈ R, the symbol [x, y] stands for the commutator xy− yx. Given two subsets A and B of R,

[A, B] will denote the additive subgroup of R generated by all elements of the form [a, b] where

a ∈ A, b ∈ B. For a nonempty subset S of R, we put CR(S) = {x ∈ R|[x, s] = 0 for all s ∈ S}.

Recall that R is prime if aRb = 0 implies a = 0 or b = 0, and is semiprime if aRa = 0 implies

a = 0. A ring R is called 2-torsion free, if whenever 2x = 0, with x ∈ R, then x = 0. An additive

mapping d : R −→ R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R.

An additive mapping δ : R −→ R is called a generalized derivation if there exists a derivation

d : R −→ R such that δ(xy) = δ(x)y + xd(y) holds for all x, y ∈ R. Let S be a nonempty subset

of R and δ a generalized derivation of R. If δ(xy) = δ(x)δ(y) or δ(xy) = δ(y)δ(x) for all x, y ∈ S,

then δ is called a generalized derivation which acts as a homomorphism or antihomomorphism

on S respectively. A mapping F : R −→ R is said to be commuting on a subset S of R if

[F (x), x] = 0 for all x ∈ S, and is said to be centralizing on S if [F (x), x] ∈ Z(R) for all x ∈ S.

An additive subgroup U of R is said to be a Lie ideal of R if [u, r] ∈ U for all u ∈ U and r ∈ R,

a Lie ideal U is called square closed if u2 ∈ U for all u ∈ U . There is a particular interest in

square closed Lie ideals. Such a distinction already appears in several papers involving usual

derivations and Lie ideals. By the definition of Lie ideal, we can see that every ideal I in a ring
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R is a Lie ideal of R. However it is not the case on the contrary. Though a square closed Lie

ideal seems close to be an ideal, there exist such Lie ideals which are not ideals. For example,

let R be any ring and U the additive subgroup of R generated by the idempotents of R. If e is

an idempotent in R, and x ∈ R, then it is easy to see that u = e+ ex− exe and v = e+xe− exe

are idempotents. Hence, ex − xe = u − v ∈ U , namely, U is a square closed Lie ideal of R.

There has been considerable interest in commuting, centralizing, and related mappings in

prime and semiprime rings. It is well known that the theory of commuting and centralizing

mapping on prime rings was initiated by E.C. Posner, who asserts that the set {[d(x), x] | x ∈ R}

does not lie in the center of a noncommutative prime ring R, where d is a nonzero derivation of

R. In 1982, Chung and Jiang [1] proved that if d is a nonzero derivation of a 2-torsion free prime

ring R such that d2(x) ∈ Z(R) for all x ∈ R, then R is commutative. Afterward Vukman [2]

extended E.C. Posner’s theorem by showing that if d is a nonzero derivation of a 2-torsion free

prime ring R such that [[d(x), x], x] = 0 for all x ∈ R, then R is commutative. Recently, Wong [3]

obtained more information about the structure {[d(x), x] | x ∈ R} of a noncommutative prime

ring R. It is interesting to investigate the identity d[d(x), x] = [d2(x), x] ∈ Z(R) if we combine

E.C. Posner’s with Chung and Jiang’s result. Bell and Kappe [4] proved that if d is a derivation

of a prime ring R which acts as a homomorphism on a nonzero right ideal I of R, then d = 0.

Asma, Rehman and Shakir [5] extended this result to Lie ideals. At the same time, Albaş and

Argaç [6] extended H.E.Bell’s result to generalized derivations. For more other related results

of commutative ring, one can see [7]. Motivated by these observations, we extend the above

mentioned results to a more general case.

2. Preliminaries

The following results will be used to prove our theorems.

Lemma 2.1 If U is a square closed Lie ideal of R, then 2uv ∈ U for all u, v ∈ U .

Proof For all u, v ∈ U , on the one hand

uv + vu = (u + v)2 − u2 − v2 ∈ U.

On the other hand,

uv − vu ∈ U.

Adding two expressions, we have 2uv ∈ U for all u, v ∈ U . 2

Lemma 2.2 Let R be a 2-torsion free prime ring and V = {u ∈ U | d(u) ∈ U}, where U is a Lie

ideal of R. If U 6⊆ Z(R), then V 6⊆ Z(R).

Proof Assume that V ⊆ Z(R). It is clear that [U, U ] ⊆ U and d([U, U ]) ⊆ U , so we have

[U, U ] ⊆ V ⊆ Z(R). Hence CR([U, U ]) = R. From [8, Lemma 2], CR(U) = Z(R). But by [8,

Lemma 3], CR([U, U ]) = CR(U). And hence R = Z(R), a contradiction. 2

Lemma 2.3 Let R be a 2-torsion free prime ring. If d1 and d2 are nonzero derivations of R such
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that d1(u)d2(u) = 0 for all u ∈ U , where U is a square closed Lie ideal of R, then U ⊆ Z(R).

Proof Set V = {u ∈ U | d(u) ∈ U}. Suppose on the contrary that U 6⊆ Z(R). Then V 6⊆ Z(R) by

Lemma 2.2. The linearization of d1(u)d2(u) = 0 gives d1(u)d2(v)+d1(v)d2(u) = 0 for all u, v ∈ U .

In particular, it is true for all u, v ∈ V . Now replace v by 2vd2(u) in the last equation. By Lemma

2.1 and using that R is 2-torsion free, we have the equation (d1(u)d2(v) + d1(v)d2(u))d2(u) +

d1(u)vd2

2
(u) + vd1d2(u)d2(u) = 0, which reduces to d1(u)vd2

2
(u) + vd1d2(u)d2(u) = 0 for all

u, v ∈ V . Replacing v by 2wv in the above equation and using that R is 2-torsion free, we have

0 = d1(u)wvd2

2
(u) + wvd1d2(u)d2(u)

= [d1(u), w]vd2

2
(u) + wd1(u)vd2

2
(u) + (wv)d1d2(u)d2(u)

= [d1(u), w]vd2

2
(u) + w(d1(u)vd2

2
(u) + vd1d2(u)d2(u))

= [d1(u), w]vd2

2
(u).

In other words, we have [d1(u), w]V d2

2
(u) = 0 and hence either [d1(u), w] = 0 or d2

2
(u) = 0 by [8,

Lemma 4].

Now let V1 = {u ∈ V | [d1(u), w] = 0} and V2 = {u ∈ V | d2

2
(u) = 0}. Then V1, V2

are both additive subgroups of V and V1

⋃
V2 = V . But a group cannot be a union of its

two proper subgroups, and hence V1 = V or V2 = V . On the one hand, if V1 = V , then

d1(V ) ⊆ CR(V ) = Z(R). We have V ⊆ Z(R) by [8, Lemma 5], a contradiction. On the other

hand, if V2 = V , then d2

2
(V ) = 0 and hence V ⊆ Z(R) by [10, Theorem 4], again a contradiction.

3. The main results

Now we are in a position to prove our main theorems.

Theorem 3.1 Let R be a 2-torsion free prime ring and d a nonzero derivation of R. Suppose

that U is a square closed Lie ideal of R. If [d2(u), u] ∈ Z(R) for all u ∈ U , then U ⊆ Z(R).

Proof Set V = {u ∈ U | d(u) ∈ U}. Suppose on the contrary that U 6⊆ Z(R). Then V 6⊆ Z(R)

by Lemma 2.2. First of all, we claim that if [d2(u), u] = 0 for all u ∈ U , then U ⊆ Z(R). In fact,

the linearization of [d2(u), u] = 0 gives

[d2(u), v] + [d2(v), u] = 0. (1)

Replace v by 2vu in (1). By Lemma 2.1 and using that R is 2-torsion free, we have the equation

([d2(u), v] + [d2(v), u])u + [v, u]d2(u) + 2[d(v)d(u), u] + 2v[d2(u), u] = 0. Using [d2(u), u] = 0 and

[d2(u), v] + [d2(v), u] = 0, the above equation reduces to

[v, u]d2(u) + 2[d(v)d(u), u] = 0. (2)

Replacing v by 2uv in (2) leads to u([v, u]d2(u) + 2[d(v)d(u), u]) + 2[d(u)vd(u), u] = 0 for all

u, v ∈ U . In other words, we obtain the relation

[d(u)vd(u), u] = 0. (3)
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Replacing u by w + u and w − u in (3), respectively, we have the following relations

[d(u)vd(u) + d(u)vd(w) + d(w)vd(u), w] + [d(u)vd(w) + d(w)vd(u) + d(w)vd(w), u] = 0, (4)

and

[d(u)vd(u) − d(u)vd(w) − d(w)vd(u), w] + [d(u)vd(w) + d(w)vd(u) − d(w)vd(w), u] = 0. (5)

Combining (4) with (5), we find that

[d(u)vd(u), w] + [d(u)vd(w), u] + [d(w)vd(u), u] = 0. (6)

Replacing w by 2wu in (6) and using (3), we can get the following

([d(u)vd(u), w] + [d(u)vd(w), u] + [d(w)vd(u), u])u + [[d(w)[vd(u)], u] + [w, u]d(u)vd(u) = 0.

Making use of (6), we have

[[d(w)[vd(u)], u] + [w, u]d(u)vd(u) = 0. (7)

In particular, the above relation is true for all u, v, w ∈ V . Replacing v by 2d(u)v in (7) and

making use of (3), we conclude that [w, u]d(u)d(u)vd(u) = 0 for all u, v, w ∈ V . Then [8, Lemma

4] gives either [w, u]d(u)d(u) = 0 or d(u) = 0. In either case we find that

[w, u]d(u)d(u) = 0. (8)

Replacing w by 2wv in (8) and using (8), we get [w, u]vd(u)d(u) = 0 for all u, v, w ∈ V .

Therefore, [w, u] = 0 or d(u)d(u) = 0 by [8, Lemma 4].

Now let V1 = {u ∈ V | [w, u] = 0} and V2 = {u ∈ V | d(u)d(u) = 0}. Then V1, V2 are both

additive subgroups of V and V1

⋃
V2 = V . But a group cannot be a union of its two proper

subgroups, and hence V1 = V or V2 = V . On the one hand, if V1 = V , then V ⊆ CR(V ) = Z(R),

a contradiction. On the other hand, if V2 = V , then d(u)d(u) = 0 and hence V ⊆ Z(R) by

Lemma 2.3, again a contradiction.

Now we begin with our main result. By hypothesis we have [d2(u), u] ∈ Z(R) for all u ∈ U .

We have two cases in this situation.

Suppose first that Z(R)
⋂

U = 0, then [d2(u), u] ∈ Z(R)
⋂

U = 0, and hence [d2(u), u] = 0,

as required.

Suppose next that Z(R)
⋂

U 6= 0.

The linearization of [d2(u), u] ∈ Z(R) gives

[d2(u), v] + [d2(v), u] ∈ Z(R). (9)

Now we can choose 0 6= w ∈ Z(R)
⋂

U . Replacing v by 2wv in (9) and using (9), we get

[v, u]d2(w) + 2[d(v), u]d(w) ∈ Z(R). (10)

Replacing v by 2wv in (10) and using (10), we have [v, u]d(w)d(w) ∈ Z(R) for all u, v ∈ U and

w ∈ Z(R)
⋂

U . Since d(w) ∈ Z(R), [11, Lemma 4] leads to d(w)d(w) = 0 or [v, u] = 0. On the

one hand, d(w)d(w) = 0 implies that d(w) = 0. Replacing w by 2wv and using that d(w) = 0,

we get wd(v) = 0 for all v ∈ U and w ∈ Z(R)
⋂

U . This is a contradiction by [8, Lemma 7].
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On the other hand, [v, u] = 0 (i.e., [U, U ] = 0) for all u, v ∈ U . According to [9, Lemma 1], we

conclude that U ⊆ Z(R), again a contradiction. The proof of the theorem is completed. 2

Theorem 3.2 Let R be a 2-torsion free prime ring and U a square closed Lie ideal of R.

If γ is a generalized derivation associated with d 6= 0, and γ acts as a homomorphism or an

antihomomorphism on U , then U ⊆ Z(R).

Proof Assume that U 6⊆ Z(R). By hypothesis, for all x, y ∈ U , we have

γ(xy) = γ(x)γ(y) = γ(x)y + xd(y). (11)

Replacing y by 2yz according to Lemma 2.1 in (11) and using that R is 2-torsion free, we arrive

at γ(x)γ(yz) = γ(x)yz + xd(yz), namely, γ(x)γ(y)z + γ(x)yd(z) = γ(x)yz + xd(y)z + xyd(z)

for all x, y, z ∈ U . It follows from (11) that γ(x)γ(y)z = γ(x)yz + xd(y)z. Hence we get

(γ(x)−x)Ud(z) = 0 for all x, z ∈ U . Thus, we have γ(x)−x = 0 or d(z) = 0 by [8, Lemma 4]. If

γ(x) − x = 0, then we have xy = xy + xd(y), namely, xd(y) = 0. Therefore, [8, Lemma 7] yields

that x = 0 for all x ∈ U , a contradiction. On the other hand, if d(z) = 0, then we have U ⊆ Z(R)

by [8, Lemma 5], again a contradiction. Now assume that γ acts as antihomomorphism on U , so

that

γ(xy) = γ(y)γ(x) = γ(x)y + xd(y). (12)

Replacing y by 2xy in (12) and using (12), we get γ(y)γ(xy) = γ(xy)y + xyd(y) for all x, y ∈ U ,

namely, γ(y)γ(x)y+γ(y)xd(y) = γ(x)y2+xd(y)y+xyd(y). It follows from (12) that γ(y)γ(x)y =

γ(x)y2 + xyd(y)y. Therefore, we obtain that

γ(y)xd(y) = xyd(y). (13)

Again replacing x by 2zx in (13) yields

γ(y)zxd(y) = zxyd(y). (14)

On the other hand, multiplying (13) from the left by z, we find that

zγ(y)xd(y) = zxyd(y). (15)

Combining (14) and (15), we have γ(y)zxd(y) = zγ(y)xd(y) and hence [γ(y), z]xd(y) = 0 for all

x, y, z ∈ U . Thus, we get either [γ(y), z] = 0 or d(y) = 0 by [8, Lemma 4].

Now let U1 = {y ∈ U | [γ(y), z] = 0} and U2 = {y ∈ U | d(y) = 0}. Then U1, U2 are both

additive subgroups of U and U1

⋃
U2 = U . Thus either U = U1 or U = U2 since a group cannot

be a union of two of its proper subgroups. If U = U2, then d(u) = 0 for all u ∈ U . Thus, by [8,

Lemma 5] we get U ⊆ Z(R), a contradiction. On the other hand, if U = U1, then [γ(x), x] = 0

for all x ∈ U . Now the linearization of [x, γ(x)] = 0 gives us

[x, y]d(x) + y[x, d(x)] = 0. (16)

Replacing y by 2yz in (16) and using (16), we arrive at [x, y]zd(x) = 0 (i.e., [x, y]Ud(x) = 0)

for all x, y, z ∈ U . Thus we have either [x, y] = 0 or d(x) = 0 by [8, Lemma 4]. Now let

A = {x ∈ U | [x, y] = 0} and B = {x ∈ U | d(x) = 0}. Then A, B are both additive subgroups of
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U and A
⋃

B = U . Thus either A = U or B = U . On the one hand, if A = U (i.e., [U, U ] = 0),

then we get U ⊆ Z(R) by [9, Lemma 1], a contradiction. On the other hand, if B = U(i.e.,

d(U) = 0), then we have d = 0 by [8, Lemma 5], again a contradiction. The proof of the theorem

is completed. 2
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