Paired Domination of Cartesian Products of Graphs

Xin Min HOU*, Fan JIANG

Department of Mathematics, University of Science and Technology of China, Anhui 230026, P. R. China

Abstract Let $\gamma_{pr}(G)$ denote the paired domination number and $G \Box H$ denote the Cartesian product of graphs G and H. In this paper we show that for all graphs G and H without isolated vertex, $\gamma_{pr}(G)\gamma_{pr}(H) \leq 7\gamma_{pr}(G \Box H)$.

Keywords domination; paired domination; Cartesian product.

Document code A MR(2000) Subject Classification 05C69 Chinese Library Classification 0157.5

1. Introduction

Let G = (V, E) be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex $v \in V$ is $N_G(v) = \{u \in V \mid uv \in E\}$, the set of vertices adjacent to v. The closed neighborhood of v is $N_G[v] = N_G(v) \cup \{v\}$. For $S \subseteq V$, the open neighborhood of S is defined by $N_G(S) = \bigcup_{v \in S} N_G(v)$, and the closed neighborhood of S by $N_G[S] = N_G(S) \cup S$. The subgraph of G induced by the vertices in S is denoted by G[S].

A set of vertices or a set of edges is independent if no two of its elements are adjacent. A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching such that every vertex of G is incident with an edge of M. The ends of an edge in M are called paired vertices (with respect to M). Let $S \subseteq V(G)$. We say that S contains a perfect matching in G if G[S] has a perfect matching.

For $S \subseteq V(G)$, the set S is a dominating set if N[S] = V, a total dominating set, denoted TDS, if N(S) = V, and a paired dominating set, denoted PDS, if N(S) = V and S contains a perfect matching in G. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. The paired domination number $\gamma_{pr}(G)$ and the total domination number $\gamma_t(G)$ can be defined similarly. By the definitions, we can easily have

$$\gamma(G) \le \gamma_t(G) \le \gamma_{pr}(G) \le 2\gamma(G),$$

for each graph G without isolated vertex. For a detailed treatment of total domination and paired domination in graphs, the reader can refer to [2] and [7].

Received February 13, 2008; Accepted July 7, 2008

Supported by the National Natural Science Foundation of China (Grant Nos. 10701068; 10671191).

* Corresponding author

E-mail address: xmhou@ust.edu.cn (X. M. HOU)

A set $S \subseteq V(G)$ is a k-packing if the vertices in S are pairwise at distance at least k + 1apart in G, i.e., if $u, v \in S$, then $d_G(u, v) \ge k + 1$. The k-packing number $\rho_k(G)$ is the maximum cardinality of a k-packing. In [1], the authors proved that $\gamma_{pr}(G)$ is at least twice its 3-packing number $\rho_3(G)$. And they defined a graph G to be a (γ_{pr}, ρ_3) -graph if $\gamma_{pr}(G) = 2\rho_3(G)$.

For graphs G and H, the Cartesian product $G \Box H$ is the graph with vertex set $V(G) \times V(H)$, where two vertices (u_1, v_1) and (u_2, v_2) are adjacent if and only if either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $v_1 = v_2$ and $u_1u_2 \in E(G)$.

In 1968, Vizing [9] conjectured that for any graphs G and H,

$$\gamma(G)\gamma(H) \le \gamma(G \square H).$$

The best general upper bound to date on $\gamma(G)\gamma(H)$ in terms of $\gamma(G \Box H)$ is the following theorem due to Clark and Suen [3].

Theorem 1 ([3]) For any graphs G and H, $\gamma(G)\gamma(H) \leq 2\gamma(G \Box H)$.

The inability to resolve Vizing's conjecture has lead authors to pose different variations of the original problem. Several such variations were studied by Nowakowski and Rall in [8]. The total domination version has been studied by Henning and Rall [4]. They proved that for any graphs G and H without isolated vertices, $\gamma_t(G)\gamma_t(H) \leq 6\gamma_t(G \Box H)$. The bound has been improved by Hou [6]. Recently, Pak Tung Ho in [5] proved that $\gamma_t(G)\gamma_t(H) \leq 2\gamma_t(G \Box H)$, which resolved the conjecture proposed by Henning and Rall in [4]. The paired domination version was studied by Brešar, Henning, and Rall [1]. They proved that for any graphs G and H without isolated vertices,

$$\gamma_{pr}(G \Box H) \ge \max\{\gamma_{pr}(G)\rho_3(H), \gamma_{pr}(H)\rho_3(G)\}.$$

As a corollary, they deduced that for any graphs G and H without isolated vertices, at least one of which is a (γ_{pr}, ρ_3) -graph,

$$\gamma_{pr}(G)\gamma_{pr}(H) \le 2\gamma_{pr}(G \square H)$$

and this bound is sharp. But they did not give a general bound of $\gamma_{pr}(G)\gamma_{pr}(H)$ in terms of $\gamma_{pr}(G \Box H)$ for any graphs G and H without isolated vertices as given in [4–6].

In this paper, we give a general bound as follows.

Theorem 2 For any graphs G and H without isolated vertices,

$$\gamma_{pr}(G)\gamma_{pr}(H) \le 7\gamma_{pr}(G \square H).$$

By Theorem 1 and $\gamma(G) \leq \gamma_{pr}(G) \leq 2\gamma(G)$, we have a trivial bound $\gamma_{pr}(G)\gamma_{pr}(H) \leq 8\gamma_{pr}(G \square H)$. *H*). Then Theorem 2 improves the trivial bound. Some known results imply that for any graphs *G* and *H* without isolated vertices, $\gamma_{pr}(G)\gamma_{pr}(H) \leq 2\gamma_{pr}(G \square H)$. We leave this as an open question.

2. Proof of Theorem 2

We first give some notation which will be used in our proofs. Let G be a graph without isolated

vertices and T a subgraph of G. We say that $S \subseteq V(G)$ dominates T in G if $N_G[S] \supseteq V(T)$, and S is called a dominating set of T in G. And S is called a paired dominating set (denoted PDS) of T in G if $N_G[S] \supseteq V(T)$ and S contains a perfect matching in G. In the product $G \square H$, we define H_x to be the subgraph induced by $\{x\} \times V(H)$, for any $x \in V(G)$, G_y can be defined similarly for any $y \in V(H)$.

For any vertex (x, u) of $G \square H$, the vertex u of H is the H-projection of (x, u), denoted $u = \phi_H(x, u)$. For any subset $A = \{(x_1, u_1), \ldots, (x_k, u_k)\}$ of $V(G \square H)$, the H-projection of A, denoted $\phi_H(A)$, is defined by $\phi_H(A) = \bigcup_{i=1}^k \{\phi_H(x_i, u_i)\} = \{u_1, u_2, \ldots, u_k\}$, which is a subset of V(H). For a vertex $(x, u) \in V(G \square H)$, an edge joining (x, u) and $(y, u)(y \in N_G(x))$ is called a G-edge of $G \square H$. Similarly, an edge joining (x, u) and $(x, v)(v \in N_H(u))$ is called an H-edge of $G \square H$. The following is a useful lemma to prove the main theorem.

Lemma 1 Let H be a graph without isolated vertex. Suppose G is a graph and D is a set of vertices in $G \square H$ such that $\phi_H(D)$ dominates H, and $D = D_1 \cup D_2$ where D_1 has a perfect matching in $G \square H$. Then $\gamma_{pr}(H) \leq |D_1| + 2|D_2|$.

Proof Let M_1 be a perfect matching of D_1 in $G \Box H$. If M_1 contains no H-edge, then $\phi_H(D_1) \leq \frac{1}{2}|D_1|$. Hence $\gamma_{pr}(H) \leq 2\gamma(H) \leq 2|\phi_H(D)| \leq 2(|\phi_H(D_1)| + |\phi_H(D_2)|) \leq |D_1| + 2|D_2|$.

Now, assume that M_1 contains H-edges. Let M_{11} be a maximum subset of M_1 such that $\phi_H(V(M_{11}))$ has a perfect matching M'_{11} in H and $|M_{11}| = |M'_{11}|$. Let $D_{11} = V(M_{11})$ and $D_{12} = D_1 - D_{11}$. Then, by the maximal of D_{11} , for any vertex $\alpha \in D_{12}$, there exists either a vertex $\beta \in D_{12}$ such that $\phi_H(\beta) = \phi_H(\alpha)$ or a vertex $\beta \in D_{11}$ such that $\phi_H(\beta) = \phi_H(\alpha)$ or $\phi_H(\beta) = \phi_H(p(\alpha))$, where $p(\alpha)$ denotes the paired vertex of α (with respect to M_1). Hence $|\phi_H(D_1)| = |\phi_H(D_{11})| + |\phi_H(D_{12})| - |\phi_H(D_{11}) \cap \phi_H(D_{12})| \le |D_{11}| + \frac{1}{2}|D_{12}|$.

Let M be a maximum matching of the subgraph of H induced by $\phi_H(D)$ and S be the set of vertices saturated by M. Then $|S| \ge |\phi_H(D_{11})| = |D_{11}|$. Let $\bar{S} = \phi_H(D) - S$. Let M' be a maximum matching of the bipartite subgraph of H with partite sets \bar{S} and $N_H(\bar{S}) - S$ and with edge set all the edges of H connecting vertices in \bar{S} and vertices in $N_H(\bar{S}) - S$. Let S' be the set of all vertices saturated by M'. If the bipartite subgraph defined above has isolated vertices, let S_1 denote the isolated vertex set (then $S_1 \subseteq \bar{S}$ and, for each vertex $u \in S_1$, $N_H(u) \subseteq S$ by the above definition), and $S_2 = \bar{S} - S_1$. Then S' is a PDS of $S_2 \cup (N_H(\bar{S}) - S)$ in H and $|S'| \le 2|\bar{S}|$. Note that S_1 does not contribute to the domination of H and $\phi_H(D)$ dominates $H, S \cup S'$ is a PDS of H. Hence

$$\begin{split} \gamma_{pr}(H) &\leq |S| + 2|\bar{S}| \leq 2|\phi_H(D)| - |S| \leq 2(|\phi_H(D_1)| + |\phi_H(D_2)|) - |D_{11}| \\ &\leq 2|D_{11}| + |D_{12}| + 2|D_2| - |D_{11}| = |D_1| + 2|D_2|. \quad \Box \end{split}$$

In the following proof, we will use N(S) instead of $N_{G \square H}(S)$ if the index is clear.

Theorem 3 For any graphs G and H without isolated vertices,

$$\gamma_{pr}(G)\gamma_{pr}(H) \le 7\gamma_{pr}(G \square H).$$

Proof Let D be a minimum PDS of $G \square H$. Then the subgraph induced by D in $G \square H$ contains

a perfect matching M. Let $M = M_G \cup M_H$, where M_G is the set of all G-edges in M and M_H is the set of all H-edges in M. By the symmetry of the graphs G and H in $G \square H$, we may assume that $|M_G| \leq |M_H|$. Let $D_G = V(M_G)$ and $D_H = V(M_H)$. Then $D = D_G \cup D_H$ and $|D_G| \leq |D_H|$. So $|D_G| \leq \frac{1}{2}|D|$.

Let $A = \{x_1, y_1, \ldots, x_k, y_k\}$ be a minimum PDS of G where for each i, x_i is adjacent to y_i in G, and so $\gamma_{pr}(G) = 2k$. Let $\{\Pi_1, \Pi_2, \ldots, \Pi_k\}$ be a partition of V(G) such that $\{x_i, y_i\} \subseteq \Pi_i \subseteq N(\{x_i, y_i\})$ for each $i, 1 \leq i \leq k$. For each $i = 1, 2, \ldots, k$, we introduce the following notations: $D_i = D \cap (\Pi_i \times V(H)), D_{G_i} = D_G \cap D_i$. Let $M_{H_i} = M_H \cap E(G \square H[D_i])$, where $E(G \square H[D_i])$ is the edge set of the subgraph of $G \square H$ induced by D_i , and $D_{H_i} = V(M_{H_i})$ (note that $D_{H_i} = D_i - D_{G_i}$).

Let $F_i = \{(x_i, w) | w \in V(H) \text{ and } (\Pi_i \times \{w\}) \cap N(D_i) = \emptyset\}$, and denote $l_i = |F_i|, F'_i = \phi_H(F_i) = \{w \in V(H) | (x_i, w) \in F_i\}$. Then $\phi_H(D_i) \cup F'_i$ dominates H. Note that $D_i = D_{H_i} \cup D_{G_i}$ and D_{H_i} has a perfect matching in $G \square H$. By Lemma 1,

$$\gamma_{pr}(H) \le |D_{H_i}| + 2|D_{G_i}| + 2|F_i| = |D_i| + |D_{G_i}| + 2l_i.$$

So,

$$\frac{1}{2}\gamma_{pr}(G)\gamma_{pr}(H) = \sum_{i=1}^{k}\gamma_{pr}(H) \le \sum_{i=1}^{k}|D_i| + \sum_{i=1}^{k}|D_{G_i}| + 2\sum_{i=1}^{k}l_i$$
$$= |D| + |D_G| + 2\sum_{i=1}^{k}l_i \le \frac{3}{2}|D| + 2\sum_{i=1}^{k}l_i.$$
(1)

The set $\Pi_i \times \{w\}$ is called a cell and we say the cell $\Pi_i \times \{w\}$ is vertically undominated if $(\Pi_i \times \{w\}) \cap N(D_i) = \emptyset$, and vertically dominated otherwise. Let $D_w = D \cap G_w$ for any $w \in V(H)$. If a cell $\Pi_i \times \{w\}$ is vertically undominated, then, since D is a PDS of $G \square H$, $\Pi_i \times \{w\} \subseteq N(D_w)$. Hence each vertex in a vertically undominated cell $\Pi_i \times \{w\}$ is dominated by D_w . Each vertex in a cell (in particular, in a vertically dominated cell) $\Pi_j \times \{w\}$ is paired dominated by $\{x_i, y_i\} \times \{w\}$.

Let $C_w = \bigcup_j (\{x_j, y_j\} \times \{w\})$, where j is taken over all vertically dominated cells $\Pi_j \times \{w\}$. Then $C_w \cup D_w$ dominates G_w and C_w contains a perfect matching. Let m_w denote the number of vertically undominated cells in G_w . Note that G_w is isomorphic to G, by Lemma 1,

$$\gamma_{pr}(G) \le 2(k - m_w) + 2|D_w|$$

Hence $m_w \leq |D_w|$. Therefore,

$$\sum_{i=1}^{\kappa} l_i = \sum_{w \in V(H)} m_w \le \sum_{w \in V(H)} |D_w| = |D|.$$

Thus, by inequation (1), we have

$$\gamma_{pr}(G)\gamma_{pr}(H) \leq 7|D| = 7\gamma_{pr}(G \Box H). \Box$$

References

- BREŠAR B, HENNING M A, RALL D F. Paired-domination of Cartesian products of graphs [J]. Util. Math., 2007, 73: 255–265.
- [2] COCKAYNE E J, DAWES R M, HEDETNIEMI S T. Total domination in graphs [J]. Networks, 1980, 10(3): 211–219.
- [3] CLARK W E, SUEN S. An inequality related to Vizing's conjecture [J]. Electron. J. Combin., 2000, 7(4): 3.
- [4] HENNING M A, RALL D F. On the total domination number of Cartesian products of graphs [J]. Graphs Combin., 2005, 21(1): 63–69.
- [5] HO P T. A note on the total domination number [J]. Util. Math., 2008, 77: 97-100.
- [6] HOU Xinmin. Total domination of Cartesian products of graphs [J]. Discuss. Math. Graph Theory, 2007, 27(1): 175–178.
- [7] HAYNES T W, SLATER P J. Paired-domination in graphs [J]. Networks, 1998, 32(3): 199–206.
- [8] NOWAKOWSKI R J, RALL D F. Associative graph products and their independence, domination and coloring numbers [J]. Discuss. Math. Graph Theory, 1996, 16(1): 53–79.
- [9] VIZING V G. Some unsolved problems in graph theory [J]. Uspehi Mat. Nauk, 1968, 6(144): 117–134. (in Russian)
- [10] PELEG D, ULLMAN J D. An optimal synchronizer for the hypercube [J]. SIAM J. Comput., 1989, 18(4): 740–747.