Paired Domination of Cartesian Products of Graphs

Xin Min HOU*, Fan JIANG
Department of Mathematics, University of Science and Technology of China, Anhui 230026, P. R. China

Abstract

Let $\gamma_{p r}(G)$ denote the paired domination number and $G \square H$ denote the Cartesian product of graphs G and H. In this paper we show that for all graphs G and H without isolated vertex, $\gamma_{p r}(G) \gamma_{p r}(H) \leq 7 \gamma_{p r}(G \square H)$.

Keywords domination; paired domination; Cartesian product.
Document code A
MR(2000) Subject Classification 05C69
Chinese Library Classification O157.5

1. Introduction

Let $G=(V, E)$ be a simple graph with vertex set V and edge set E. The open neighborhood of a vertex $v \in V$ is $N_{G}(v)=\{u \in V \mid u v \in E\}$, the set of vertices adjacent to v. The closed neighborhood of v is $N_{G}[v]=N_{G}(v) \cup\{v\}$. For $S \subseteq V$, the open neighborhood of S is defined by $N_{G}(S)=\cup_{v \in S} N_{G}(v)$, and the closed neighborhood of S by $N_{G}[S]=N_{G}(S) \cup S$. The subgraph of G induced by the vertices in S is denoted by $G[S]$.

A set of vertices or a set of edges is independent if no two of its elements are adjacent. A matching in a graph G is a set of independent edges in G. A perfect matching M in G is a matching such that every vertex of G is incident with an edge of M. The ends of an edge in M are called paired vertices (with respect to M). Let $S \subseteq V(G)$. We say that S contains a perfect matching in G if $G[S]$ has a perfect matching.

For $S \subseteq V(G)$, the set S is a dominating set if $N[S]=V$, a total dominating set, denoted TDS, if $N(S)=V$, and a paired dominating set, denoted PDS, if $N(S)=V$ and S contains a perfect matching in G. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. The paired domination number $\gamma_{p r}(G)$ and the total domination number $\gamma_{t}(G)$ can be defined similarly. By the definitions, we can easily have

$$
\gamma(G) \leq \gamma_{t}(G) \leq \gamma_{p r}(G) \leq 2 \gamma(G)
$$

for each graph G without isolated vertex. For a detailed treatment of total domination and paired domination in graphs, the reader can refer to [2] and [7].

[^0]A set $S \subseteq V(G)$ is a k-packing if the vertices in S are pairwise at distance at least $k+1$ apart in G, i.e., if $u, v \in S$, then $d_{G}(u, v) \geq k+1$. The k-packing number $\rho_{k}(G)$ is the maximum cardinality of a k-packing. In [1], the authors proved that $\gamma_{p r}(G)$ is at least twice its 3-packing number $\rho_{3}(G)$. And they defined a graph G to be a $\left(\gamma_{p r}, \rho_{3}\right)$-graph if $\gamma_{p r}(G)=2 \rho_{3}(G)$.

For graphs G and H, the Cartesian product $G \square H$ is the graph with vertex set $V(G) \times V(H)$, where two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent if and only if either $u_{1}=u_{2}$ and $v_{1} v_{2} \in E(H)$ or $v_{1}=v_{2}$ and $u_{1} u_{2} \in E(G)$.

In 1968, Vizing [9] conjectured that for any graphs G and H,

$$
\gamma(G) \gamma(H) \leq \gamma(G \square H)
$$

The best general upper bound to date on $\gamma(G) \gamma(H)$ in terms of $\gamma(G \square H)$ is the following theorem due to Clark and Suen [3].

Theorem 1 ([3]) For any graphs G and $H, \gamma(G) \gamma(H) \leq 2 \gamma(G \square H)$.
The inability to resolve Vizing's conjecture has lead authors to pose different variations of the original problem. Several such variations were studied by Nowakowski and Rall in [8]. The total domination version has been studied by Henning and Rall [4]. They proved that for any graphs G and H without isolated vertices, $\gamma_{t}(G) \gamma_{t}(H) \leq 6 \gamma_{t}(G \square H)$. The bound has been improved by Hou [6]. Recently, Pak Tung Ho in [5] proved that $\gamma_{t}(G) \gamma_{t}(H) \leq 2 \gamma_{t}(G \square H)$, which resolved the conjecture proposed by Henning and Rall in [4]. The paired domination version was studied by Bres̆ar, Henning, and Rall [1]. They proved that for any graphs G and H without isolated vertices,

$$
\gamma_{p r}(G \square H) \geq \max \left\{\gamma_{p r}(G) \rho_{3}(H), \gamma_{p r}(H) \rho_{3}(G)\right\}
$$

As a corollary, they deduced that for any graphs G and H without isolated vertices, at least one of which is a $\left(\gamma_{p r}, \rho_{3}\right)$-graph,

$$
\gamma_{p r}(G) \gamma_{p r}(H) \leq 2 \gamma_{p r}(G \square H)
$$

and this bound is sharp. But they did not give a general bound of $\gamma_{p r}(G) \gamma_{p r}(H)$ in terms of $\gamma_{p r}(G \square H)$ for any graphs G and H without isolated vertices as given in [4-6].

In this paper, we give a general bound as follows.
Theorem 2 For any graphs G and H without isolated vertices,

$$
\gamma_{p r}(G) \gamma_{p r}(H) \leq 7 \gamma_{p r}(G \square H)
$$

By Theorem 1 and $\gamma(G) \leq \gamma_{p r}(G) \leq 2 \gamma(G)$, we have a trivial bound $\gamma_{p r}(G) \gamma_{p r}(H) \leq 8 \gamma_{p r}(G \square$ $H)$. Then Theorem 2 improves the trivial bound. Some known results imply that for any graphs G and H without isolated vertices, $\gamma_{p r}(G) \gamma_{p r}(H) \leq 2 \gamma_{p r}(G \square H)$. We leave this as an open question.

2. Proof of Theorem 2

We first give some notation which will be used in our proofs. Let G be a graph without isolated
vertices and T a subgraph of G. We say that $S \subseteq V(G)$ dominates T in G if $N_{G}[S] \supseteq V(T)$, and S is called a dominating set of T in G. And S is called a paired dominating set (denoted PDS) of T in G if $N_{G}[S] \supseteq V(T)$ and S contains a perfect matching in G. In the product $G \square H$, we define H_{x} to be the subgraph induced by $\{x\} \times V(H)$, for any $x \in V(G), G_{y}$ can be defined similarly for any $y \in V(H)$.

For any vertex (x, u) of $G \square H$, the vertex u of H is the H-projection of (x, u), denoted $u=\phi_{H}(x, u)$. For any subset $A=\left\{\left(x_{1}, u_{1}\right), \ldots,\left(x_{k}, u_{k}\right)\right\}$ of $V(G \square H)$, the H-projection of A, denoted $\phi_{H}(A)$, is defined by $\phi_{H}(A)=\bigcup_{i=1}^{k}\left\{\phi_{H}\left(x_{i}, u_{i}\right)\right\}=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$, which is a subset of $V(H)$. For a vertex $(x, u) \in V(G \square H)$, an edge joining (x, u) and $(y, u)\left(y \in N_{G}(x)\right)$ is called a G-edge of $G \square H$. Similarly, an edge joining (x, u) and $(x, v)\left(v \in N_{H}(u)\right)$ is called an H-edge of $G \square H$. The following is a useful lemma to prove the main theorem.

Lemma 1 Let H be a graph without isolated vertex. Suppose G is a graph and D is a set of vertices in $G \square H$ such that $\phi_{H}(D)$ dominates H, and $D=D_{1} \cup D_{2}$ where D_{1} has a perfect matching in $G \square H$. Then $\gamma_{p r}(H) \leq\left|D_{1}\right|+2\left|D_{2}\right|$.

Proof Let M_{1} be a perfect matching of D_{1} in $G \square H$. If M_{1} contains no H-edge, then $\phi_{H}\left(D_{1}\right) \leq$ $\frac{1}{2}\left|D_{1}\right|$. Hence $\gamma_{p r}(H) \leq 2 \gamma(H) \leq 2\left|\phi_{H}(D)\right| \leq 2\left(\left|\phi_{H}\left(D_{1}\right)\right|+\left|\phi_{H}\left(D_{2}\right)\right|\right) \leq\left|D_{1}\right|+2\left|D_{2}\right|$.

Now, assume that M_{1} contains H-edges. Let M_{11} be a maximum subset of M_{1} such that $\phi_{H}\left(V\left(M_{11}\right)\right)$ has a perfect matching M_{11}^{\prime} in H and $\left|M_{11}\right|=\left|M_{11}^{\prime}\right|$. Let $D_{11}=V\left(M_{11}\right)$ and $D_{12}=D_{1}-D_{11}$. Then, by the maximal of D_{11}, for any vertex $\alpha \in D_{12}$, there exists either a vertex $\beta \in D_{12}$ such that $\phi_{H}(\beta)=\phi_{H}(\alpha)$ or a vertex $\beta \in D_{11}$ such that $\phi_{H}(\beta)=\phi_{H}(\alpha)$ or $\phi_{H}(\beta)=\phi_{H}(p(\alpha))$, where $p(\alpha)$ denotes the paired vertex of α (with respect to M_{1}). Hence $\left|\phi_{H}\left(D_{1}\right)\right|=\left|\phi_{H}\left(D_{11}\right)\right|+\left|\phi_{H}\left(D_{12}\right)\right|-\left|\phi_{H}\left(D_{11}\right) \cap \phi_{H}\left(D_{12}\right)\right| \leq\left|D_{11}\right|+\frac{1}{2}\left|D_{12}\right|$.

Let M be a maximum matching of the subgraph of H induced by $\phi_{H}(D)$ and S be the set of vertices saturated by M. Then $|S| \geq\left|\phi_{H}\left(D_{11}\right)\right|=\left|D_{11}\right|$. Let $\bar{S}=\phi_{H}(D)-S$. Let M^{\prime} be a maximum matching of the bipartite subgraph of H with partite sets \bar{S} and $N_{H}(\bar{S})-S$ and with edge set all the edges of H connecting vertices in \bar{S} and vertices in $N_{H}(\bar{S})-S$. Let S^{\prime} be the set of all vertices saturated by M^{\prime}. If the bipartite subgraph defined above has isolated vertices, let S_{1} denote the isolated vertex set (then $S_{1} \subseteq \bar{S}$ and, for each vertex $u \in S_{1}, N_{H}(u) \subseteq S$ by the above definition), and $S_{2}=\bar{S}-S_{1}$. Then S^{\prime} is a PDS of $S_{2} \cup\left(N_{H}(\bar{S})-S\right)$ in H and $\left|S^{\prime}\right| \leq 2|\bar{S}|$. Note that S_{1} does not contribute to the domination of H and $\phi_{H}(D)$ dominates $H, S \cup S^{\prime}$ is a PDS of H. Hence

$$
\begin{aligned}
\gamma_{p r}(H) & \leq|S|+2|\bar{S}| \leq 2\left|\phi_{H}(D)\right|-|S| \leq 2\left(\left|\phi_{H}\left(D_{1}\right)\right|+\left|\phi_{H}\left(D_{2}\right)\right|\right)-\left|D_{11}\right| \\
& \leq 2\left|D_{11}\right|+\left|D_{12}\right|+2\left|D_{2}\right|-\left|D_{11}\right|=\left|D_{1}\right|+2\left|D_{2}\right| .
\end{aligned}
$$

In the following proof, we will use $N(S)$ instead of $N_{G \square H}(S)$ if the index is clear.
Theorem 3 For any graphs G and H without isolated vertices,

$$
\gamma_{p r}(G) \gamma_{p r}(H) \leq 7 \gamma_{p r}(G \square H)
$$

Proof Let D be a minimum PDS of $G \square H$. Then the subgraph induced by D in $G \square H$ contains
a perfect matching M. Let $M=M_{G} \cup M_{H}$, where M_{G} is the set of all G-edges in M and M_{H} is the set of all H-edges in M. By the symmetry of the graphs G and H in $G \square H$, we may assume that $\left|M_{G}\right| \leq\left|M_{H}\right|$. Let $D_{G}=V\left(M_{G}\right)$ and $D_{H}=V\left(M_{H}\right)$. Then $D=D_{G} \cup D_{H}$ and $\left|D_{G}\right| \leq\left|D_{H}\right|$. So $\left|D_{G}\right| \leq \frac{1}{2}|D|$.

Let $A=\left\{x_{1}, y_{1}, \ldots, x_{k}, y_{k}\right\}$ be a minimum PDS of G where for each i, x_{i} is adjacent to y_{i} in G, and so $\gamma_{p r}(G)=2 k$. Let $\left\{\Pi_{1}, \Pi_{2}, \ldots, \Pi_{k}\right\}$ be a partition of $V(G)$ such that $\left\{x_{i}, y_{i}\right\} \subseteq$ $\Pi_{i} \subseteq N\left(\left\{x_{i}, y_{i}\right\}\right)$ for each $i, 1 \leq i \leq k$. For each $i=1,2, \ldots, k$, we introduce the following notations: $D_{i}=D \cap\left(\Pi_{i} \times V(H)\right), D_{G_{i}}=D_{G} \cap D_{i}$. Let $M_{H_{i}}=M_{H} \cap E\left(G \square H\left[D_{i}\right]\right)$, where $E\left(G \square H\left[D_{i}\right]\right)$ is the edge set of the subgraph of $G \square H$ induced by D_{i}, and $D_{H_{i}}=V\left(M_{H_{i}}\right)$ (note that $D_{H_{i}}=D_{i}-D_{G_{i}}$.

Let $F_{i}=\left\{\left(x_{i}, w\right) \mid w \in V(H)\right.$ and $\left.\left(\Pi_{i} \times\{w\}\right) \cap N\left(D_{i}\right)=\emptyset\right\}$, and denote $l_{i}=\left|F_{i}\right|, F_{i}^{\prime}=$ $\phi_{H}\left(F_{i}\right)=\left\{w \in V(H) \mid\left(x_{i}, w\right) \in F_{i}\right\}$. Then $\phi_{H}\left(D_{i}\right) \cup F_{i}^{\prime}$ dominates H. Note that $D_{i}=D_{H_{i}} \cup D_{G_{i}}$ and $D_{H_{i}}$ has a perfect matching in $G \square H$. By Lemma 1,

$$
\gamma_{p r}(H) \leq\left|D_{H_{i}}\right|+2\left|D_{G_{i}}\right|+2\left|F_{i}\right|=\left|D_{i}\right|+\left|D_{G_{i}}\right|+2 l_{i} .
$$

So,

$$
\begin{align*}
\frac{1}{2} \gamma_{p r}(G) \gamma_{p r}(H) & =\sum_{i=1}^{k} \gamma_{p r}(H) \leq \sum_{i=1}^{k}\left|D_{i}\right|+\sum_{i=1}^{k}\left|D_{G_{i}}\right|+2 \sum_{i=1}^{k} l_{i} \\
& =|D|+\left|D_{G}\right|+2 \sum_{i=1}^{k} l_{i} \leq \frac{3}{2}|D|+2 \sum_{i=1}^{k} l_{i} \tag{1}
\end{align*}
$$

The set $\Pi_{i} \times\{w\}$ is called a cell and we say the cell $\Pi_{i} \times\{w\}$ is vertically undominated if $\left(\Pi_{i} \times\{w\}\right) \cap N\left(D_{i}\right)=\emptyset$, and vertically dominated otherwise. Let $D_{w}=D \cap G_{w}$ for any $w \in V(H)$. If a cell $\Pi_{i} \times\{w\}$ is vertically undominated, then, since D is a PDS of $G \square H$, $\Pi_{i} \times\{w\} \subseteq N\left(D_{w}\right)$. Hence each vertex in a vertically undominated cell $\Pi_{i} \times\{w\}$ is dominated by D_{w}. Each vertex in a cell (in particular, in a vertically dominated cell) $\Pi_{j} \times\{w\}$ is paired dominated by $\left\{x_{j}, y_{j}\right\} \times\{w\}$.

Let $C_{w}=\bigcup_{j}\left(\left\{x_{j}, y_{j}\right\} \times\{w\}\right)$, where j is taken over all vertically dominated cells $\Pi_{j} \times\{w\}$. Then $C_{w} \cup D_{w}$ dominates G_{w} and C_{w} contains a perfect matching. Let m_{w} denote the number of vertically undominated cells in G_{w}. Note that G_{w} is isomorphic to G, by Lemma 1,

$$
\gamma_{p r}(G) \leq 2\left(k-m_{w}\right)+2\left|D_{w}\right|
$$

Hence $m_{w} \leq\left|D_{w}\right|$. Therefore,

$$
\sum_{i=1}^{k} l_{i}=\sum_{w \in V(H)} m_{w} \leq \sum_{w \in V(H)}\left|D_{w}\right|=|D|
$$

Thus, by inequation (1), we have

$$
\gamma_{p r}(G) \gamma_{p r}(H) \leq 7|D|=7 \gamma_{p r}(G \square H)
$$

References

[1] BREŠAR B, HENNING M A, RALL D F. Paired-domination of Cartesian products of graphs [J]. Util. Math., 2007, 73: 255-265.
[2] COCKAYNE E J, DAWES R M, HEDETNIEMI S T. Total domination in graphs [J]. Networks, 1980, 10(3): 211-219.
[3] CLARK W E, SUEN S. An inequality related to Vizing's conjecture [J]. Electron. J. Combin., 2000, 7(4): 3.
[4] HENNING M A, RALL D F. On the total domination number of Cartesian products of graphs [J]. Graphs Combin., 2005, 21(1): 63-69.
[5] HO P T. A note on the total domination number [J]. Util. Math., 2008, 77: 97-100.
[6] HOU Xinmin. Total domination of Cartesian products of graphs [J]. Discuss. Math. Graph Theory, 2007, 27(1): 175-178.
[7] HAYNES T W, SLATER P J. Paired-domination in graphs [J]. Networks, 1998, 32(3): 199-206.
[8] NOWAKOWSKI R J, RALL D F. Associative graph products and their independence, domination and coloring numbers [J]. Discuss. Math. Graph Theory, 1996, 16(1): 53-79.
[9] VIZING V G. Some unsolved problems in graph theory [J]. Uspehi Mat. Nauk, 1968, 6(144): 117-134. (in Russian)
[10] PELEG D, ULLMAN J D. An optimal synchronizer for the hypercube [J]. SIAM J. Comput., 1989, 18(4): 740-747.

[^0]: Received February 13, 2008; Accepted July 7, 2008
 Supported by the National Natural Science Foundation of China (Grant Nos. 10701068; 10671191).

 * Corresponding author

 E-mail address: xmhou@ust.edu.cn (X. M. HOU)

