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Abstract Let γpr(G) denote the paired domination number and G � H denote the Cartesian

product of graphs G and H . In this paper we show that for all graphs G and H without isolated

vertex, γpr(G)γpr(H) ≤ 7γpr(G � H).
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1. Introduction

Let G = (V, E) be a simple graph with vertex set V and edge set E. The open neighborhood

of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E}, the set of vertices adjacent to v. The closed

neighborhood of v is NG[v] = NG(v)∪{v}. For S ⊆ V , the open neighborhood of S is defined by

NG(S) = ∪v∈SNG(v), and the closed neighborhood of S by NG[S] = NG(S) ∪ S. The subgraph

of G induced by the vertices in S is denoted by G[S].

A set of vertices or a set of edges is independent if no two of its elements are adjacent. A

matching in a graph G is a set of independent edges in G. A perfect matching M in G is a

matching such that every vertex of G is incident with an edge of M . The ends of an edge in M

are called paired vertices (with respect to M). Let S ⊆ V (G). We say that S contains a perfect

matching in G if G[S] has a perfect matching.

For S ⊆ V (G), the set S is a dominating set if N [S] = V , a total dominating set, denoted

TDS, if N(S) = V , and a paired dominating set, denoted PDS, if N(S) = V and S contains a

perfect matching in G. The domination number γ(G) is the minimum cardinality of a dominating

set of G. The paired domination number γpr(G) and the total domination number γt(G) can be

defined similarly. By the definitions, we can easily have

γ(G) ≤ γt(G) ≤ γpr(G) ≤ 2γ(G),

for each graph G without isolated vertex. For a detailed treatment of total domination and

paired domination in graphs, the reader can refer to [2] and [7].
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A set S ⊆ V (G) is a k-packing if the vertices in S are pairwise at distance at least k + 1

apart in G, i.e., if u, v ∈ S, then dG(u, v) ≥ k + 1. The k-packing number ρk(G) is the maximum

cardinality of a k-packing. In [1], the authors proved that γpr(G) is at least twice its 3-packing

number ρ3(G). And they defined a graph G to be a (γpr, ρ3)-graph if γpr(G) = 2ρ3(G).

For graphs G and H , the Cartesian product G�H is the graph with vertex set V (G)×V (H),

where two vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H)

or v1 = v2 and u1u2 ∈ E(G).

In 1968, Vizing [9] conjectured that for any graphs G and H ,

γ(G)γ(H) ≤ γ(G � H).

The best general upper bound to date on γ(G)γ(H) in terms of γ(G � H) is the following

theorem due to Clark and Suen [3].

Theorem 1 ([3]) For any graphs G and H , γ(G)γ(H) ≤ 2γ(G � H).

The inability to resolve Vizing’s conjecture has lead authors to pose different variations of the

original problem. Several such variations were studied by Nowakowski and Rall in [8]. The total

domination version has been studied by Henning and Rall [4]. They proved that for any graphs

G and H without isolated vertices, γt(G)γt(H) ≤ 6γt(G � H). The bound has been improved

by Hou [6]. Recently, Pak Tung Ho in [5] proved that γt(G)γt(H) ≤ 2γt(G � H), which resolved

the conjecture proposed by Henning and Rall in [4]. The paired domination version was studied

by Bres̆ar, Henning, and Rall [1]. They proved that for any graphs G and H without isolated

vertices,

γpr(G � H) ≥ max{γpr(G)ρ3(H), γpr(H)ρ3(G)}.

As a corollary, they deduced that for any graphs G and H without isolated vertices, at least one

of which is a (γpr, ρ3)-graph,

γpr(G)γpr(H) ≤ 2γpr(G � H),

and this bound is sharp. But they did not give a general bound of γpr(G)γpr(H) in terms of

γpr(G � H) for any graphs G and H without isolated vertices as given in [4–6].

In this paper, we give a general bound as follows.

Theorem 2 For any graphs G and H without isolated vertices,

γpr(G)γpr(H) ≤ 7γpr(G � H).

By Theorem 1 and γ(G) ≤ γpr(G) ≤ 2γ(G), we have a trivial bound γpr(G)γpr(H) ≤ 8γpr(G �

H). Then Theorem 2 improves the trivial bound. Some known results imply that for any graphs

G and H without isolated vertices, γpr(G)γpr(H) ≤ 2γpr(G � H). We leave this as an open

question.

2. Proof of Theorem 2

We first give some notation which will be used in our proofs. Let G be a graph without isolated
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vertices and T a subgraph of G. We say that S ⊆ V (G) dominates T in G if NG[S] ⊇ V (T ),

and S is called a dominating set of T in G. And S is called a paired dominating set (denoted

PDS) of T in G if NG[S] ⊇ V (T ) and S contains a perfect matching in G. In the product G�H ,

we define Hx to be the subgraph induced by {x} × V (H), for any x ∈ V (G), Gy can be defined

similarly for any y ∈ V (H).

For any vertex (x, u) of G � H , the vertex u of H is the H-projection of (x, u), denoted

u = φH(x, u). For any subset A = {(x1, u1), . . . , (xk, uk)} of V (G � H), the H-projection of A,

denoted φH(A), is defined by φH(A) =
⋃k

i=1{φH(xi, ui)} = {u1, u2, . . . , uk}, which is a subset

of V (H). For a vertex (x, u) ∈ V (G � H), an edge joining (x, u) and (y, u)(y ∈ NG(x)) is called

a G-edge of G � H . Similarly, an edge joining (x, u) and (x, v)(v ∈ NH(u)) is called an H-edge

of G � H . The following is a useful lemma to prove the main theorem.

Lemma 1 Let H be a graph without isolated vertex. Suppose G is a graph and D is a set of

vertices in G � H such that φH(D) dominates H , and D = D1 ∪ D2 where D1 has a perfect

matching in G � H . Then γpr(H) ≤ |D1| + 2|D2|.

Proof Let M1 be a perfect matching of D1 in G�H . If M1 contains no H-edge, then φH(D1) ≤
1
2 |D1|. Hence γpr(H) ≤ 2γ(H) ≤ 2|φH(D)| ≤ 2(|φH(D1)| + |φH(D2)|) ≤ |D1| + 2|D2|.

Now, assume that M1 contains H-edges. Let M11 be a maximum subset of M1 such that

φH(V (M11)) has a perfect matching M ′

11 in H and |M11| = |M ′

11|. Let D11 = V (M11) and

D12 = D1 − D11. Then, by the maximal of D11, for any vertex α ∈ D12, there exists either

a vertex β ∈ D12 such that φH(β) = φH(α) or a vertex β ∈ D11 such that φH(β) = φH(α)

or φH(β) = φH(p(α)), where p(α) denotes the paired vertex of α (with respect to M1). Hence

|φH(D1)| = |φH(D11)| + |φH(D12)| − |φH(D11) ∩ φH(D12)| ≤ |D11| +
1
2 |D12|.

Let M be a maximum matching of the subgraph of H induced by φH(D) and S be the set

of vertices saturated by M . Then |S| ≥ |φH(D11)| = |D11|. Let S̄ = φH(D) − S. Let M ′ be a

maximum matching of the bipartite subgraph of H with partite sets S̄ and NH(S̄)−S and with

edge set all the edges of H connecting vertices in S̄ and vertices in NH(S̄)−S. Let S′ be the set

of all vertices saturated by M ′. If the bipartite subgraph defined above has isolated vertices, let

S1 denote the isolated vertex set (then S1 ⊆ S̄ and, for each vertex u ∈ S1, NH(u) ⊆ S by the

above definition), and S2 = S̄ −S1. Then S′ is a PDS of S2 ∪ (NH(S̄)−S) in H and |S′| ≤ 2|S̄|.

Note that S1 does not contribute to the domination of H and φH(D) dominates H , S ∪ S′ is a

PDS of H . Hence

γpr(H) ≤ |S| + 2|S̄| ≤ 2|φH(D)| − |S| ≤ 2(|φH(D1)| + |φH(D2)|) − |D11|

≤ 2|D11| + |D12| + 2|D2| − |D11| = |D1| + 2|D2|. 2

In the following proof, we will use N(S) instead of NG�H(S) if the index is clear.

Theorem 3 For any graphs G and H without isolated vertices,

γpr(G)γpr(H) ≤ 7γpr(G � H).

Proof Let D be a minimum PDS of G�H . Then the subgraph induced by D in G�H contains
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a perfect matching M . Let M = MG ∪ MH , where MG is the set of all G-edges in M and MH

is the set of all H-edges in M . By the symmetry of the graphs G and H in G � H , we may

assume that |MG| ≤ |MH |. Let DG = V (MG) and DH = V (MH). Then D = DG ∪ DH and

|DG| ≤ |DH |. So |DG| ≤
1
2 |D|.

Let A = {x1, y1, . . . , xk, yk} be a minimum PDS of G where for each i, xi is adjacent to yi

in G, and so γpr(G) = 2k. Let {Π1, Π2, . . . , Πk} be a partition of V (G) such that {xi, yi} ⊆

Πi ⊆ N({xi, yi}) for each i, 1 ≤ i ≤ k. For each i = 1, 2, . . . , k, we introduce the following

notations: Di = D ∩ (Πi × V (H)), DGi
= DG ∩ Di. Let MHi

= MH ∩ E(G � H [Di]), where

E(G�H [Di]) is the edge set of the subgraph of G�H induced by Di, and DHi
= V (MHi

) (note

that DHi
= Di − DGi

).

Let Fi = {(xi, w) |w ∈ V (H) and (Πi × {w}) ∩ N(Di) = ∅}, and denote li = |Fi|, F ′

i =

φH(Fi) = {w ∈ V (H) | (xi, w) ∈ Fi}. Then φH(Di)∪F ′

i dominates H . Note that Di = DHi
∪DGi

and DHi
has a perfect matching in G � H . By Lemma 1,

γpr(H) ≤ |DHi
| + 2|DGi

| + 2|Fi| = |Di| + |DGi
| + 2li.

So,

1

2
γpr(G)γpr(H) =

k∑

i=1

γpr(H) ≤
k∑

i=1

|Di| +
k∑

i=1

|DGi
| + 2

k∑

i=1

li

= |D| + |DG| + 2

k∑

i=1

li ≤
3

2
|D| + 2

k∑

i=1

li. (1)

The set Πi × {w} is called a cell and we say the cell Πi × {w} is vertically undominated

if (Πi × {w}) ∩ N(Di) = ∅, and vertically dominated otherwise. Let Dw = D ∩ Gw for any

w ∈ V (H). If a cell Πi × {w} is vertically undominated, then, since D is a PDS of G � H ,

Πi × {w} ⊆ N(Dw). Hence each vertex in a vertically undominated cell Πi × {w} is dominated

by Dw. Each vertex in a cell (in particular, in a vertically dominated cell) Πj × {w} is paired

dominated by {xj , yj} × {w}.

Let Cw =
⋃

j({xj , yj} × {w}), where j is taken over all vertically dominated cells Πj × {w}.

Then Cw ∪ Dw dominates Gw and Cw contains a perfect matching. Let mw denote the number

of vertically undominated cells in Gw. Note that Gw is isomorphic to G, by Lemma 1,

γpr(G) ≤ 2(k − mw) + 2|Dw|.

Hence mw ≤ |Dw|. Therefore,

k∑

i=1

li =
∑

w∈V (H)

mw ≤
∑

w∈V (H)

|Dw| = |D|.

Thus, by inequation (1), we have

γpr(G)γpr(H) ≤ 7|D| = 7γpr(G � H). 2
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