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1. Introduction and main conclusion

Callaham [1] presented a result about Mean Value Theorem.

Suppose f(x) is differentiable on (−∞, +∞), and there exist p, q satisfying p > 0, q > 0,

p + q = 1 such that for every u, v,

f(v) − f(u)

v − u
= f ′(pu + qv), u 6= v, (1)

then f(x) is a linear function or quadratic function.

As the author knows, the conclusion has not been studied further by anyone yet. This result

will be generalized in this paper, i.e., we have the following theorem:

Theorem 1 Suppose f(x) has n-th derivative in (−∞, +∞), and there exist αi > 0 (i =

0, 1, 2, . . . , n),
∑n

i=0 αi = 1, such that for any xi (i = 0, 1, 2, . . . , n) different from each other, the

following equality is valid:

n
∑

i=0

f(xi)
∏n

j=0

j 6=i

(xi − xj)
=

1

n!
f (n)

(

n
∑

i=0

αixi

)

, (2)

then f(x) is a polynomial of degree not greater than n + 1.

2. The proof of the main conclusion

From (2) it is known that f(x) ∈ C∞(−∞, +∞). Because the left side of (2) denotes the n-th

difference quotient of function f(x) at points x0, x1, . . . , xn, by using the symbol of difference
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quotient, (2) can be written as

f [x0, x1, . . . , xn] =
1

n!
f (n)

(

n
∑

i=0

αixi

)

. (2)

We shall discuss the following two cases of αi (i = 0, 1, . . . , n):

(i) αi (i = 0, 1, . . . , n) are not all equal, i.e., at least two of them are not equal to each other.

We might as well let α0 6= α1;

(ii) α0 = α1 = · · · = αn = 1
n+1 .

For the Case (i):

Since difference quotient is independent of the order of the points x0, x1, . . . , xn, exchanging

the positions of x0 and x1 in (2) gives

f (n)(α0x0 + α1x1 +

n
∑

i=2

αixi) = f (n)(α0x1 + α1x0 +

n
∑

i=2

αixi). (3)

Differentiating both sides of (3) with respect to x0 and x1 respectively gives

α0f
(n+1)(α0x0 + α1x1 +

n
∑

i=2

αixi) = α1f
(n+1)(α0x1 + α1x0 +

n
∑

i=2

αixi), (4)

α1f
(n+1)(α0x0 + α1x1 +

n
∑

i=2

αixi) = α0f
(n+1)(α0x1 + α1x0 +

n
∑

i=2

αixi). (5)

It follows from (4) and (5) that

(α0 − α1)[f
(n+1)(α0x0 + α1x1 +

n
∑

i=2

αixi) − f (n+1)(α0x1 + α1x0 +

n
∑

i=2

αixi)] = 0.

Since α0 6= α1, we have

f (n+1)(α0x0 + α1x1 +

n
∑

i=2

αixi) = f (n+1)(α0x1 + α1x0 +

n
∑

i=2

αixi).

Then from the arbitrariness of x0, x1, . . . , xn, we know that for any x ∈ (−∞, +∞), f (n+1)(x) ≡

C (C is a constant), which implies that f(x) is a polynomial of degree not greater than n + 1.

For the Case (ii), the equality (2) gives

f [x0, x1, . . . , xn] =
1

n!
f (n)

( 1

n + 1

n
∑

i=0

xi

)

. (6)

Then it will be proved with induction that f(x) is a polynomial of degree not greater than

n + 1 while (6) is valid.

From [1] we know that the proposition is true when n = 1. Suppose it is true for n, i.e.,

f [x0, x1, . . . , xn] =
1

n!
f (n)

( 1

n + 1

n
∑

i=0

xi

)

or

f [x1, x2, . . . , xn+1] =
1

n!
f (n)

( 1

n + 1

n+1
∑

i=1

xi

)

(7)
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is true, f(x) is a polynomial of degree not greater than n + 1.

For n + 1,

f [x0, x1, x2, . . . , xn+1] =
1

(n + 1)!
f (n+1)

( 1

n + 2

n+1
∑

i=0

xi

)

. (8)

From the definition of difference quotient,

f [x0, x1, x2, . . . , xn+1] =
f [x1, x2, . . . , xn+1] − f [x0, x1, . . . , xn]

xn+1 − x0
,

(6), (7) and (8) it follows

1

xn+1 − x0

[

f (n)
( 1

n + 1

n+1
∑

i=1

xi

)

− f (n)
( 1

n + 1

n
∑

i=0

xi

)]

=
1

n + 1
f (n+1)

( 1

n + 2

n+1
∑

i=0

xi

)

. (9)

From the assumption of induction it is known that

f (n)
( 1

n + 1

n+1
∑

i=1

xi

)

− f (n)
( 1

n + 1

n
∑

i=0

xi

)

is a polynomial of xn+1 of degree not greater than 1, and it contains a factor xn+1 − x0, so the

left side and right side of (9) must be constant with respect to xn+1. From the arbitrariness of

xn+1, f (n+1)(x) is constant with respect to x, so f(x) is a polynomial of degree not greater than

n + 2.

By the principle of induction, f(x) is a polynomial of degree not greater than n + 1 as (6) is

valid.

But the conclusion can also be proved without induction.

The validity of (6) gives

f [x0, x1, . . . , xn−1, xn+1) =
1

n!
f (n)

( 1

n + 1

n−1
∑

i=0

xi +
1

n + 1
xn+1

)

, (10)

f [x0, x1, . . . , xn−2, xn, xn+1) =
1

n!
f (n)

( 1

n + 1

n−2
∑

i=0

xi +
1

n + 1
xn +

1

n + 1
xn+1

)

. (11)

Since

f [x0, x1, . . . , xn−1, xn+1] − f [x0, x1, . . . , xn]

xn+1 − xn

=
f [x0, x1, . . . , xn−2, xn, xn+1] − f [x0, x1, . . . , xn−1, xn+1]

xn − xn−1
, (12)

using (10), (11) and (12) together with
∑n−2

i=0 xi = λ0 gives

(xn − xn−1)
{

f (n)
[ 1

n + 1
(λ0 + xn−1 + xn+1)

]

− f (n)
[ 1

n + 1
(λ0 + xn−1 + xn)

]}

= (xn+1 − xn)
{

f (n)
[ 1

n + 1
(λ0 + xn + xn+1)

]

− f (n)
[ 1

n + 1
(λ0 + xn−1 + xn+1)

]}

.
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It can be deduced by differentiating both sides of the equation above in respect to xn and

rearranging that

(n + 1)f (n)
[ 1

n + 1
(λ0 + xn + xn+1)

]

= (xn+1 − xn)f (n+1)
[ 1

n + 1
(λ0 + xn + xn+1)

]

+

(xn − xn−1)f
(n+1)

[ 1

n + 1
(λ0 + xn−1 + xn)

]

+

(n + 1)f (n)
[ 1

n + 1
(λ0 + xn−1 + xn)

]

.

Then differentiating both sides in respect of xn+1 and rearranging yields

xn+1 − xn

n + 1
f (n+2)

[ 1

n + 1
(λ0 + xn + xn+1)

]

= 0,

so

f (n+2)
[ 1

n + 1
(λ0 + xn + xn+1)

]

= 0. (13)

From the arbitrariness of x0, x1, . . . , xn, xn+1 we know that, when (6) is valid, f(x) is a

polynomial of degree not greater than n + 1.

Thus, when (2) is valid, f(x) is a polynomial of degree not greater than n + 1.

Now the proof of Theorem is completed. 2

Contrarily, if f(x) is a polynomial of degree not greater than n + 1, it is easy to verify that

(2) is valid now, so we have

Theorem 2 Function f(x) is a polynomial of degree not greater then n + 1 if and only if the

equality (2) is valid.

3. An application

About the difference of functions with equidistant knots, we have

Theorem 3 ([2]) Suppose f(x) ∈ Cm+1[a, b], and f (m+1)(a) 6= 0. If h = b−a
m

, xk = a + kh (k =

0, 1, . . . , m), then η, defined by the relation equation of the m-th difference of f(x) at knots

x0, x1, . . . , xm and its m-th derivative

∆mf(x0) = hmf (m)(η), η ∈ (a, b) (14)

satisfies

lim
h→0+

η − a

h
=

m

2
. (15)

As an application of Theorem 2, let us solve a problem contrary to Theorem 3.

Problem Let η−a
h

= m
2 , so η = a + m

2 h. By (14), if

∆mf(x0) = hmf (m)(a +
m

2
h), (16)

then what properties does f(x) possess?
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By the relation between difference and difference quotient, (16) can be rewritten as

f [x0, x1, . . . , xm] =
1

m!
f (m)

( 1

m + 1

m
∑

i=0

xi

)

. (16’)

So from Theorem 2 it can be derived that f(x) is a polynomial of degree not greater then m+1.

Thus we also have

Theorem 4 Function f(x) is a polynomial of degree not greater than m + 1 if and only if the

equality (16) is valid.
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