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Abstract Let {An}
∞

n=0 be an arbitary sequence of natural numbers. We say A(n, k; A) are the

Convolution Annihilation Coefficients for {An}
∞

n=0 if and only if

n
∑

k=0

A(n, k; A)(x − Ak)n−k = x
n
. (0.1)

Similary, we define B(n, k; A) to be the Dot Product Annihilation Coefficients for {An}
∞

n=0 if

and only if
n

∑

k=0

B(n, k; A)(x − Ak)k = x
n
. (0.2)

The main result of this paper is an explicit formula for B(n, k; A), which depends on both k and

{An}
∞

n=0. This paper also discusses binomial and q-analogs of Equations (0.1) and (0.2).
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1. Introduction

Motivated by the identities

(x − 1)4 + 4(x − 2)3 + 18(x − 3)2 + 64(x − 4)1 + 125 = x4. (1.1)

16(x − 1)1 + 48(x − 2)2 + 16(x − 3)3 + (x − 4)4 = x4. (1.2)

Gould [1] defined the Convolution Annihilation Coefficients by the expansion

n
∑

k=0

A(n, k)(x − k − 1)n−k = xn, (1.3)

and the Dot Product Annihilation Coefficients by the expansion

n
∑

k=0

B(n, k)(x − k)k = xn, (1.4)
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for A(n, k) and B(n, k) arbitrary arrays of numbers.

The terminology was chosen in analogy with a dot product
∑n

i=0 xiyi and a convolution

product
∑n

i=0 xiyn−i. The proof that they exist and are unique is an easy consequence of the

Fundamental Theorem of Algebra. For a given value of n they may be successively determined

by simple computations, annihilating lower powers one at a time.

More generally, Gould considered the following definitions:

Definition 1.1 Given an arbitrary sequence of natural numbers {An}∞n=0, we say A(n, k; A)

are the Convolution Annihilation Coefficients for the sequence {An}∞n=0 if and only if

n
∑

k=0

A(n, k; A)(x − Ak)n−k = xn. (1.5)

Definition 1.2 Given an arbitrary sequence of natural numbers {An}∞n=0, we say B(n, k; A)

are the Dot Product Annihilation Coefficients for the sequence {An}∞n=0 if and only if

n
∑

k=0

B(n, k; A)(x − Ak)k = xn. (1.6)

For brevity we sometimes call them AC’s. Most of the time we will assume in our applications

that the sequence {An}∞n=0 is strictly increasing. The proof that they exist and are unique is a

consequence of the Fundamental Theorem of Algebra.

In [1] a detailed study of A(n, k; A) was made. It was shown that

A(n, k; A) =

(

n

k

)

C(k), (1.7)

where C(k) depends only upon k. It was then shown from Definition 1.1 that there exist unique

coefficients C(k) such that
n

∑

k=0

(

n

k

)

C(k)(x − Ak)n−k = xn. (1.8)

Setting x = 0 in (1.8) we have the basic linear recurrence for C(k) is

n
∑

k=0

(

n

k

)

C(k)(−Ak)n−k =

{

0, for n ≥ 1;

1, for n = 0.
(1.9)

Its main use is to compute C(n) from C(0), C(1), C(2), . . . , C(n−1). For this use it is convenient

to restate it in the form

C(n) =

n−1
∑

k=0

(−1)n−k−1

(

n

k

)

C(k)An−k
k , for n ≥ 1. (1.10)

This was used in [1] to compute C(k) in general and a (complicated) general formula was proved

giving an explicit construction of C(k).

Here we will study the corresponding results which follow from Definition 1.2, i.e., for general

dot product AC’s.
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2. Dot product annihilation coefficients

We begin this section with a theorem that parallels Equation (1.8).

Theorem 2.1 There exist unique coefficients D(n, k) such that

n
∑

k=0

(

n

k

)

D(n, k)(x − Ak)k = xn, (2.1)

where the coefficients D(n, k) are functions of n as well as of k.

Note that, in contrast, the coefficients C(k) in (1.8) were functions of k alone. The proof of

Theorem 2.1 follows directly from the Fundamental Theorem of Algebra.

Setting x = 0 in Equation (2.1), we have the basic linear recurrence for D(n, k).

Theorem 2.2
n

∑

k=0

(

n

k

)

D(n, k)(−Ak)k =

{

0, for n ≥ 1;

1, for n = 0.
(2.2)

As in [1], we may obtain a more general orthogonality relation for the D’s than Relation (2.2)

by using the binomial expansion of (x − Ak)k. Indeed we have

(x − Ak)k =
k

∑

j=0

(

k

j

)

xj(−A
k−j
k )

so that

xn =

n
∑

k=0

(

n

k

)

D(n, k)(x − Ak)k =

n
∑

k=0

(

n

k

)

D(n, k)

k
∑

j=0

(

k

j

)

xj(−A
k−j
k )

=

n
∑

j=0

xj

n
∑

k=j

(

n

k

)(

k

j

)

D(n, k)(−A
k−j
k ),

so that we get, by uniqueness of coefficients,

n
∑

k=j

(

n

k

)(

k

j

)

D(n, k)(−A
k−j
k ) = δn

j . (2.3)

Since
(

n
k

)(

k
j

)

=
(

n
j

)(

n−j
k−j

)

, we may rewrite the equation as

Theorem 2.3
n

∑

k=j

(

n − j

k − j

)

D(n, k)(−A
k−j
k ) = δn

j . (2.4)

Note Equation (2.2) is just the special case corresponding to j = 0. Equation (2.3) may be

compared to equation (23) in [1] for the C(k) coefficients:

n−j
∑

k=0

(

n

k

)(

n − k

j

)

C(k)(−A
n−k−j
k ) = δn

j .

We next use Theorem 2.1, to explicitly solve for D(n, k). In particular, we have
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Theorem 2.4

D(n, k) =
1

(

n
k

)

n−k
∑

j=1

(

n

k + j

)

D(n, k + j)

(

k + j

j

)

(−Ak+j)
j . (2.5)

Theorem 2.4 is important since it allows us to prove Theorem 2.5 by induction on k. Theorem

2.5 allows us to write D(n, k) in terms of {Ak}. We should note that Theorem 2.5 corresponds

to Theorems 6 and 7 in [1].

Theorem 2.5 In general, D(n, k) has the form of a sum of 2n−k−1 terms

∑

σ∈2n−k−1

pk+1+pk+2+···+pn=n−k

(n − k)!(−1)n−k+s

pk+1!pk+2!...pn!
A

pk+1

σ(k+1)A
pk+2

σ(k+2) · · ·A
pn

σ(n), (2.6)

where s is the number of nonzero p′js and σ is an element of the power set of [n− k− 1] and acts

on the base term Ak+1Ak+2 · · ·An via the following algorithm.

(i) Write σ = σ1, σ2, . . . , σp, where each the elements σi forms a subsequence consisting of

ti consecutive integers. Note that 1 ≤ ti ≤ |σ| and
∑p

i=1 ti = |σ|.

(ii) For 1 ≤ i ≤ p, use σi to locate the corresponding positions in the base term Ak+1Ak+2..An.

In other words, if the smallest term in σi is mi, we work with the A′s in positions mi to mi+ti−1.

(iii) Change all the A′s located in Step II to the A value located immediately to the right

of this subsequence.

In order to understand Equation (2.6), we will calculate C(5, 1). For C(5, 1), the base term

is A2A3A4A5, and σ is an element of the power set of [3]. For example, suppose σ = {2, 3}.

In this case, the elements of σ form an increasing subsequence of two consecutive integers. We

locate, in the base term, the A′s in positions 2 and 3. In other words, we will change A3A4 to

the A value immediately to the right of these terms, namely A5. Hence, applying σ = {2, 3}

turns A2A3A4A5 into A2A
3
5. The following table calculates all the terms in C(5, 1).

σ Adjusted Base Term Term in C(5, 1)

∅ A2A3A4A5 24A2A3A4A5

{1} A2
3A4A5 −12A2

3A4A5

{2} A2A
2
4A5 −12A2A

2
4A5

{3} A2A3A
2
5 −12A2A3A

2
5

{1, 2} A3
4A5 4A3

4A5

{1, 3} A2
3A

2
5 6A2

3A
2
5

{2, 3} A2A
3
5 4A2A

3
5

{1, 2, 3} A4
5 −A4

5

Table 1 The terms of C(5, 1)

Proof of Theorem 2.5 We fix n and induct on k. Using Equation (2.1), it is easy to show
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D(n, n) = 1 and D(n, n − 1) = An. By Equation (2.6), we also have

D(n, n − 1) =
∑

σ∈20

(−1)1+s 1!

pn!
A

pn

σ(n) = An.

Now assume, for some positive integer k, that Equation (2.6) is true for D(n, n − i), where

0 ≤ i ≤ k. We need to compute D(n, n − k − 1). By Equation (2.5), we have

D(n, n − k − 1) =
1

(

n
k+1

)

k+1
∑

j=1

(−1)jD(n, n − k − 1 + j)

(

n

n − k − 1 + j

)

·

(An−k−1+j)
j

(

n − k − 1 + j

j

)

=

k+1
∑

j

(−1)j(k + 1)!

j!(k + 1 − j)!
(An−k−1+j)

jD(n, n − k − 1 + j)

=

k+1
∑

j

(−1)j(k + 1)!

j!(k + 1 − j)!
(An−k−1+j)

j ·

∑

σ∈2k−j

pn−k+j+···+pn=k+1−j

(−1)k+1−j+s(k + 1 − j)!

pn−k+j !...pn!
A

pn−k+j

σ(n−k+j)...A
pn

σ(n)

=

k+1
∑

j=1

∑

σ∈2k−j

pn−k+j+···+pn=k+1−j

(−1)k+1+s(k + 1)!

j!pn−k+j !...pn!
A

j
n−k−1+jA

pn−k+j

σ(n−k+j) ...A
pn

σ(n)

=
∑

σ∈2k

pn−k+···+pn=k+1

(−1)k+1+s(k + 1)!

pn−k!pn−k+1!...pn!
A

pn−k

σ(n−k)A
pn−k+1

σ(n−k+1)...A
pn

σ(n).

Note that third equality follows from the induction hypothesis. The final equality is what Equa-

tion (2.6) provides for D(n, n − k − 1). Thus, Theorem 2.5 is true via induction on k. 2

3. Annihilation coefficients in binomial expansions

In this section we generalize Equations (1.5) and (1.6) as follows. For Equation (1.5), we

replace the factors of (x − Ak)n−k and xn with appropriate binomial coefficients to obtain

n
∑

k=0

A(n, k; A)x − Akn − k =

(

x

n

)

. (3.1)

In a similar manner, we transform Equation (1.6) to obtain

n
∑

k=0

B(n, k; A)

(

x − Ak

k

)

=

(

x

n

)

. (3.2)

3.0.1 Expansions of Equation (3.1)

The goal of this section is to find an expression that will allows us to inductively compute

the A(n, k; A) of Equation (3.1) and the B(n, k; A) of Equation (3.2). We begin by finding the
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formula for the A(n, k; A) of Equation (3.1). The first step to finding such a formula is to rewrite

Equation (3.1) as

n
∑

k=0

A(n, k; A)

k−1
∏

j=0

(n − j)

n−k−1
∏

p=0

(x − Ak − p) =

n−1
∏

q=0

(x − q). (3.3)

It is well known [2] that
n−1
∏

q=0

(x − q) =

n
∑

k=0

s(n, k)xk, (3.4)

where s(n, k) is appropriate Stirling number of the first kind. We next use Lemma 3.1 to expand

the inner product on the left side of Equation (3.3).

Lemma 3.1 Let a0 be a fixed number. Then,

p+1
∑

n=0

(−1)p+1−nxn

p+1
∑

k=n

|s(p + 1, k)|

(

k

n

)

ak−n
0 =

p
∏

q=0

(x − a0 − q). (3.5)

Proof of Lemma 3.1 We will use induction on p. If p = 0, the right side of Equation (3.5)

becomes

(x − a0) = −1|s(1, 1)|a0 + x|s(1, 1)| =

1
∑

n=0

(−1)1−nxn

1
∑

k=n

|s(1, k)|

(

k

n

)

ak−n
0 .

Now assume Equation (3.5) is true for all non-negative integers less than or equal to p. Then,

for p + 1, Equation (3.5) implies

p+1
∏

q=0

(x − a0 − q) =(x − a0 − (p + 1))

p
∏

q=0

(x − a0 − q)

=

p+1
∑

n=0

(−1)p+2−nxn

p+1
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak−n
0 (0)+

p+1
∑

n=0

(−1)p+2−nxn

p+1
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak+1−n
0 +

p+1
∑

n=0

(−1)p+1−nxn+1

p+1
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak−n
0

=

p+2
∑

n=0

(−1)p+2−nxn

p+1
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak−n
0 +

p+2
∑

n=0

(−1)p+2−nxn

p+1
∑

k=n

(p + 1)|s(p + 1, k)|
[

(

k

n

)

+

(

k

n − 1

)

]

ak+1−n
0

=

p+2
∑

n=0

(−1)p+2−nxn

p+2
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak−n
0 +

p+2
∑

n=0

(−1)p+2−nxn

p+2
∑

k=n

(p + 1)|s(p + 1, k)|

(

k

n

)

ak−n
0 (1)
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=

p+2
∑

n=0

(−1)p+2−nxn

p+2
∑

k=n

|s(p + 2, k)|

(

k

n

)

ak−n
0 (2).

The equality at (0) follows from the inductive hypothesis. At (1), we used Pascal’s Identity while

at (2), we used the well-known recurrence for the Stirling numbers of the first kind. Note that

the final expression at (2) is the left side of Equation (3.5) for p + 2. 2

Using Equation (3.4) and Lemma 3.1, we can rewrite Equation (3.3) as

n
∑

k=0

A(n, k; A)

k−1
∏

j=0

(n − j)

n−k
∑

j=0

(−1)n−k−jxj

n−k
∑

i=j

|s(n − k, i)|

(

i

j

)

A
i−j
k =

n
∑

j=0

s(n, j)xj . (3.6)

By interchanging the order of summation, we obtain

∑

j=0

xj

n−j
∑

k=0

(−1)n−k−jA(n, k; A)
k−1
∏

j=0

(n − j)
n−k
∑

i=j

|s(n − k, i)|

(

i

j

)

A
i−j
k =

n
∑

j=0

s(n, j)xj . (3.7)

Finally, by comparing the coefficient of xj , we obtain the following formula.

n−j
∑

k=0

(−1)n−k−jA(n, k; A)

k−1
∏

j=0

(n − j)

n−k
∑

i=j

|s(n − k, i)|

(

i

j

)

A
i−j
k = s(n, j). (3.8)

We use Equation (3.8) to inductively define A(n, m; A). In particular, A(n, m; A) is

s(n, n − m) −
∑m−1

k=0 (−1)m−kA(n, k)
∏k−1

p=0(n − p)
∑n−k

i=n−m |s(n − k, i)|
(

i
n−m

)

Ai−n+m
k

∏m−1
q=0 (n − q)

. (3.9)

Thus, if we know A(n, i; A), for 0 ≤ i ≤ m, Equation (3.9) allows us to compute A(n, m; A).

In order to see how Equation (3.9) works, we will compute A(n, 1; A) and A(n, 2; A). Using

Equation (3.3), we easily show A(n, 0; A) = 1. Then, via Equation (3.9), we have

A(n, 1; A) =
1

n

[

s(n, n − 1) +

n
∑

i=n−1

|s(n, i)|

(

i

n − i

)

Ai−n+1
0

]

=
1

n
[s(n, n − 1) + |s(n, n − 1)| + n|s(n, n)|A0] = A0.

We also have

A(n, 2; A) =
1

n(n − 1)

[

s(n, n − 2) −
1

∑

k=0

(−1)2−k

k−1
∏

p=0

(n − p)

n−k
∑

i=n−2

|s(n − k, i)|

(

i

n − 2

)

Ai−n+2
k

]

=
1

n(n − 1)

[

s(n, n − 2) −
n

∑

i=n−2

|s(n, i)|

(

i

n − 2

)

Ai−n+2
0 + nA0

n−1
∑

i=n−2

|s(n − 1, i)|

(

i

n − 2

)

Ai−n+2
1

]

=
1

n(n − 1)

[

[−(n − 1)|s(n, n − 1)| + n|s(n − 1, n− 2)|]A0 −

(

n

n − 2

)

A2
0 + n(n − 1)A0A1

]

.

3.0.2 Specific example of equation (3.1)

In order to help the reader comprehend Equation (3.9), we provide a simple example of
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Equation (3.1). In particular, we let Ak = k + 1. Then, Equation (3.1) becomes

n
∑

k=0

A(n, k)

(

x − k − 1

n − k

)

=

(

x

n

)

,

where, A(n, k; A) ≡ A(n, k). For this situation, Equation (3.9) implies A(n, m) is

s(n, n − m) −
∑m−1

k=0 (−1)m−kA(n, k)
∏k−1

p=0(n − p)
∑n−k

i=n−m |s(n − k, i)|
(

i
n−m

)

(k + 1)i−n+m

∏m−1
q=0 (n − q)

.

(3.11)

Using Equation (3.11), we find that

A(n, 0) = 1 = A(n, 1)

A(n, 2) =
1

n(n − 1)

[

− (n − 1)|s(n, n − 1)| + n|s(n − 1, n − 2)| +
3n(n − 1)

2

]

.

In order to further understand the implications of Equation (3.11), we let n = 2. Recalling that

s(1, 0) = 0 while s(2, 1) = −1, we verify, via Equation (3.11), that A(2, 0) = A(2, 1) = A(2, 2) =

1. The reader may check
2

∑

k=0

A(2, k)

(

x − k − 1

2 − k

)

=

(

x

2

)

. (3.12)

3.1 Expansions of Equation (3.2)

We now derive a formula for the B(n, k; A) of Equation (3.2). In order to derive this formula,

we first write Equation (3.2) in the following equivalent form, namely,

n!

n
∑

k=0

B(n, k; A)

k!

k−1
∏

p=0

(x − Ak − p) =

n
∑

j=0

s(n, j)xj . (3.13)

Applying Lemma 3.1 to Equation (3.13) yields

n!

n
∑

k=0

B(n, k; A)

k!

k
∑

j=0

(−1)k−nxj

k
∑

i=j

|s(k, i)|

(

i

j

)

A
i−j
k =

n
∑

j=0

s(n, j)xj . (3.14)

Then, by interchanging the order of summation in the left side of Equation (3.11), we are able

to compare the coefficients of xj . This comparison implies

n!

n
∑

k=j

(−1)k−n B(n, k; A)

k!

k
∑

i=j

|s(k, i)|

(

i

j

)

A
i−j
k = s(n, j). (3.15)

Note that Equation (3.15) is the counterpart to Equation (3.8). More importantly, Equation

(3.15) provides a formula that allows us to inductively define B(n, p; A) in terms of B(n, m; A),

where p + 1 ≤ m ≤ n. In particular, we can show that B(n, p; A) is

(−1)n−pp!

n!

[

s(n, p) − n!

n
∑

k=p+1

(−1)k−n B(n, k; A)

k!

k
∑

i=p

|s(k, i)|

(

i

p

)

A
i−p
k

]

. (3.16)

By inspection of Equation (3.2), we easily find that B(n, n; A) = 1. Then, by utilizing Equation

(3.16), we can readily compute B(n, m; A) for all 0 ≤ m ≤ n − 1. As an example, we provide
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the first two such computations. In particular, Equation (3.16) implies that B(n, n− 1; A) = An

while

B(n, n − 2; A) =
nAn(|s(n − 1, n − 2)| + (n − 1)An−1) − (n − 1)|s(n, n − 1)|An − n(n−1)

2 A2
n

n(n − 1)
.

3.1.1 Specific example of Equation (3.2)

Once again, we believe it would be helpful to analyze a specific example of Equation (3.2).

In our example, we let Ak = kβ, where β 6= 0. In this case, Equation (3.2) becomes

n
∑

k=0

B(n, k)

(

x − kβ

k

)

=

(

x

n

)

, (3.17)

where, B(n, k; A) ≡ B(n, k). Note that the binomial coefficient in the left side of Equation (3.17)

is a Hagen-Rothe type coefficient [3].

In this situation, Equation (3.16) becomes

B(n, m) =
(−1)n−pp!

n!

[

s(n, p) − n!

n
∑

k=p+1

(−1)k−n B(n, k)

k!

k
∑

i=p

|s(k, i)|

(

i

p

)

(kβ)i−p
]

. (3.18)

Using Equation (3.18), we find that

B(n, n) = 1,

B(n, n − 1) = βn,

B(n, n − 2) =
nβ(|s(n − 1, n − 2)| + (n − 1)(n − 1)β) − (n − 1)|s(n, n − 1)|β − n(n−1)

2 nβ2

(n − 1)
.

To further understand the previous three equations, we let n = 2 and obtain B(2, 2) = 1,

B(2, 1) = 2β, and B(2, 0) = −β. The reader should verify that
(

x − 2β

2

)

+ 2β

(

x − β

1

)

− β

(

x

0

)

=

(

x

2

)

, (3.19)

which is Equation (3.17) with n = 2.

4. q-number annihilation coefficients

In this section, we generalize the work Gould started in Section 6 of [1]. Recall that the

q-numbers are defined by

[x] = [x]q =
qx − 1

q − 1
with [0] = 0. (4.1)

Note that when q = 1, we let [x] = x. The goal of this section is to analyze formulas for the

Convolution AC associated with
n

∑

k=0

Q(n, k; A)[x − Ak]n−k = [x]n, (4.2)

and for the Dot Product AC associated with
n

∑

k=0

P (n, k; A)[x − Ak]k = [x]n. (4.3)
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Note that Equations (4.2) and (4.3) are the q-analogs of Equations (1.5) and (1.6). Thus, it

will not be surprising to find that the formulas for Q(n, k; A) and P (n, k; A) closely resemble the

formulas for A(n, k; A) found in Section 2 of [1] and B(n, k; A) found in Section 2 of this paper.

We begin our analysis by rewriting Equation (4.2). Recalling that

[x + y] = qy[x] + [y], [−x] = −q−x[x], (4.4)

we find that Equation (4.2) is equivalent to

n
∑

k=0

q−Ak(n−k)([x] − [Ak])n−kQ(n, k; A) = [x]n. (4.5)

The Binomial Theorem allows us to transform Equation (4.5) into an equivalent expression

involving a double sum.

n
∑

j=0

[x]j
n−j
∑

k=0

(−1)n−k−jqAk(n−k)Q(n, k; A)

(

n − k

j

)

[Ak]n−k−j = [x]n. (4.6)

By comparing the coefficients of [x]j on both sides of Equation (4.6), we are able to show that

Q(n, 0; A) = qnA0 (4.7)

and for 0 < j ≤ n,

Q(n, j; A)

qAj(n−j)
=

j−1
∑

k=0

(−1)n−j−k−1q−Ak(n−k)

(

n − k

n − j

)

[Ak]j−kQ(n, k; A). (4.8)

Equations (4.6) and (4.7) are the q-analogs of Equation (15) in [1].

We now provide Theorem 4.1, the q-analog of Theorem 7 in [1]. Since the proof of Theorem

4.1 is basically identical to that of Theorem 7 given in [1], (i.e., we perform induction on k and

use Equation (4.8) in place of Equation (15)), we will omit the details and simply state the

theorem.

Theorem 4.1 Suppose
∑n

k=0 Q(n, k; A)[x − Ak]n−k = [x]n. Then,

Q(n, k; A)

qAk(n−k)
(

n
k

) =
∑

{p0,p1,...,pk−1}∈Pk

(−1)ǫ k!

p0!p1!..pk−1!
[A0]

p0 [A1]
p1 ..[Ak−1]

pk−1 , (4.9)

where the index set Pk is defined as follows: p0 + p1 + · · · + pk−1 = k, with 0 ≤ pi ≤ k − i for

i ≥ 1 and 1 ≤ p0 ≤ k. Also pi = r ≥ 0 implies pi+1 = pi+2 = · · · = pi+r−1 = 0. The exponent

ǫ = (−1)k+ the number of non-zero p′js in Pk.

We now turn our attention to Equation (4.3). Using the q-number identities provided by

Equation (4.4), we write Equation (4.3) as follows, namely

n
∑

k=0

q−Akk([x] − [Ak])kP (n, k; A) = [x]n. (4.10)

Once again, the Binomial Theorem allows us to transform Equation (4.10) into Equation (4.11).

n
∑

j=0

[x]j
n

∑

k=j

(−1)k−ja−kA)k

(

k

j

)

[Ak]k−jP (n, k; A) = [x]n. (4.11)
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By comparing the coefficients of [x]j , we find that

P (n, n; A) = qnAn , (4.12)

and for 0 ≤ j < n,

P (n, j; A)

qAjj
=

n
∑

k=j+1

(−1)k−j−1q−Akk

(

k

j

)

[Ak]k−jP (n, k; A). (4.13)

Note that Equations (4.12) and (4.13) are the q-analogs of Theorem 2.4.

We end this section by describing the q-analog of Theorem 2.5. This is Theorem 4.2. Since

the proof of Theorem 4.2 directly parallels the induction proof of Theorem 2.5 (with Equation

(2.5) replaced with Equation (4.13)), we omit the details and simply state theorem.

Theorem 4.2 Suppose
∑n

k=0 P (n, k; A)[x − Ak]k = [x]n. Then,

P (n, k; A)

qkAk

(

n
k

)

=
∑

σ∈2n−k−1

pk+1+pk+2+···+pn=n−k

(n − k)!(−1)n−k+s

pk+1!pk+2!...pn!
[Aσ(k+1)]

pk+1 [Aσ(k+2)]
pk+2 ...[Aσ(n)]

pn , (4.14)

where s is the number of nonzero p′js and σ is an element of the power set of 2n−k−1 and acts

on the base term [Ak+1][Ak+2]..[An] via the following algorithm.

(i) Write σ = σ1σ2...σp, where each the elements σi forms a subsequence consisting of ti

consecutive integers. Note that 1 ≤ ti ≤ |σ| and
∑p

i=1 ti = |σ|.

(ii) For 1 ≤ i ≤ p, use σi to locate the corresponding positions in the base term [Ak+1][Ak+2]..[An].

In other words, if the smallest term in σi is mi, we work with the [A′s] in positions mi to mi+ti−1.

(iii) Change all the [A′s] located in Step II to the [A] value located immediately to the right

of this subsequence.

5. q-Binomial annihilation coefficients

In this section, we expand the results of Section 7 of [1]. These results parallel the results

provided in Section 3.

Recall that q-binomial is defined by
[

x

n

]

=
n

∏

i=1

qx−i+1 − 1

q1 − 1
,

[

x

0

]

= 1. (5.1)

Equivalently, we could define the q-binomial by
[

x

n

]

=
[x][x − 1] · · · [x − n + 1]

[n]!
, (5.2)

where [n]! = [n][n − 1]...[2][1]. Note that [0]! = 1. With these definitions in place, it is only
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natural to generalize Equations (3.1) and (3.2) as follows

n
∑

k=0

A(n, k; A)

[

x − Ak

n − k

]

=

[

x

n

]

, (5.3)

n
∑

k=0

B(n, k; A)

[

x − Ak

k

]

=

[

x

n

]

. (5.4)

Our goal is to determine formulas, similar to Equations (3.8) and (3.12), that allow us to recur-

sively define A(n, k; A) and B(n, k; A), respectively. The techniques to find these formulas require

that the reader be familiar with the q-Stirling number of the first kind, denoted S1(n, k, q), and

a few of their basic properties.

Recall from [2], that S1(n, k, q) is the sum of the
(

n
k

)

possible products, each with different

factors, formed from the first n q-natural numbers. From this definition, it can be shown [2] that

S1(n, k, q) = S1(n − 1, k, q) + [n]S1(n − 1, k − 1, q), (5.5)

n−1
∏

k=0

([x] − [k]) =

n
∑

k=0

(−1)n−kS1(n − 1, n− k, q)[x]k. (5.6)

We are now ready to determine a formula for recursively defining the A(n, k; A). First, using

Equation (5.2), we transform Equation (5.3) as follows:

n
∑

k=0

A(n, k : A)

k−1
∏

j=0

[n − j]

n−k−1
∏

p=0

[x − Ak − p] = [x][x − 1]...[x − n + 1]. (5.7)

Using Equations (4.4) and (5.6), we can show that the right side of Equation (5.7) is equal to

[x][x − 1] · · · [x − n + 1] = q
−n(n−1)

2

n−1
∏

k=0

([x] − [k])

= q
−n(n−1)

2

n
∑

k=0

(−1)n−kS1(n − 1, n − k, q)[x]k. (5.8)

We now need to simplify the inner product on the left side of Equation (5.7). Using Equation

(4.4), we easily show

n−k−1
∏

p=0

[x − Ak − p] = q
−(n−k)(2Ak+n−k−1)

2

n−k−1
∏

i=0

([x] − [Ak + i]). (5.9)

Using induction on i and the recursion given by Equation (5.6), we prove that

p
∏

i=0

([x] − [Ak + i]) =

p+1
∑

m=0

(−1)p+1−mC(p + 1, p + 1 − k)[x]m, (5.10)

where C(p + 1, m) ≡ S1(p + 1, m, q) with [j] → [Ak + j − 1], for m > 0. Otherwise, C(p + 1, 0) ≡

[1]. For example, C(2, 2, q) = [Ak][Ak + 1], which is obtained from S1(2, 2, q) = [1][2] by the

substitutions of [1] → [Ak] and [2] → [Ak + 1].
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All the previous calculations allow us to write Equation (5.7) as

n
∑

k=0

q
−(n−k)(2Ak+n−k−1)

2 A(n, k : A)

k−1
∏

j=0

[n − j]

n−k
∑

p=0

(−1)n−k−pC(n − k + 1, n − k − p)[x]p

= q
−n(n−1)

2

n
∑

p=0

(−1)n−pS1(n − 1, n − p, q)[x]p. (5.11)

By rearranging the order of summation in the left side of Equation (5.11) and then comparing

the coefficients of [x]p, we obtain the formula

n−p
∑

k=0

(−1)n−k−pq
−(n−k)(2Ak+n−k−1)

2 A(n, k; A)

k−1
∏

j=0

[n − j]C(n − k + 1, n− k − p)

= q
−n(n−1)

2 (−1)n−pS1(n − 1, n − p, q). (5.12)

Equation (5.12) is the parallel of Equation (3.8). Thus, we can use Equation (5.12) to recursively

solve for A(n, p; A). In particular, by letting p → n − p, Equation (5.12) becomes

p
∑

k=0

(−1)p−kq
−(n−k)(2Ak+n−k−1)

2 A(n, k; A)

k−1
∏

j=0

[n − j]C(n − k + 1, p− k)

= q
−n(n−1)

2 (−1)pS1(n − 1, p, q). (5.13)

Thus, Equation (5.13) implies that

A(n, p; A) =
q

(n−p)(2Ap+n−p−1)−n(n−1)

2 (−1)pS1(n − 1, p, q)

[n][n − 1] · · · [n − p + 1]
−

q
(n−p)(2Ap+n−p−1)

2

[n][n − 1] · · · [n − p + 1]
·

p−1
∑

k=0

(−1)p−kq
−(n−k)(2Ak+n−k−1)

2 A(n, k; A)
k−1
∏

j=0

[n − j]C(n − k + 1, p − k). (5.14)

Note that Equation (5.14) is the q generalization of Equation (3.9).

For the remainder of this section, we work on determining a recursive formula for B(n, k; A)

of Equation (5.4). Just as in the case of Equation (5.3), we use the properties of q-binomials to

transform Equation (5.4) into the following equivalent equation.

n
∑

k=0

q
−k(2Ak+k−1)

2 [n]!B(n, k : A)

[k]!

k
∑

j=0

(−1)k−j [x]jC(k, k − j)

= q
−n(n−1)

2

n
∑

j=0

(−1)n−j [x]jS1(n − 1, n − j, q). (5.15)

After rearranging the order of summation on the right side of Equation (5.5), we are then able

to compare the coefficients of [x]j . This comparison shows that

n
∑

k=j

B(n, k : A)
q

−k(2Ak+k−1)

2 [n]!

[k]!
(−1)k−jC(k, k − j) = q

−n(n−1)
2 (−1)n−jS1(n − 1, n− j, q). (5.16)

Note that Equation (5.16) is the parallel of Equation (3.12). It can be used to recursively solve
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for B(n, p; A). In particular, Equation (5.16) implies

B(n, p : A) =
[p]!q

−n(n−1)+p(2Ap+p−1)

2 (−1)n−p

[n]!
S1(n − 1, n− p, 1)−

[p]!

n
∑

k=p+1

B(n, k : A)
q

−k(2Ak+k−1)

2 (−1)n−p

[k]!
C(k, k − p), (5.17)

which is the parallel to Equation (3.13).
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