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1. Introduction

Let D be the open unit disk in the complex plane C. Its boundary is the unit circle T. The
bidisk D? and torus T? are the subsets of C? which are Cartesian products of two copies D and
T, respectively. We write L?(T) and H?(D) to denote the usual Lebesgue space on T and Hardy
space on D, respectively. Let L?(T?) = L?(T?,do) be the usual Lebesgue space of T2, where
do is the normalized Haar measure on T?, and the Hardy space H?(D?) is the closure of the
polynomials in L?(T?). Let P, denote the orthogonal projection from L?(T) onto H?(D), and P
denote the orthogonal projection from L?(T?) onto H?(D?).

For a function f € L%*(T), we define f*(w) = f(w), f(w) (w) and f(w) = f(w),

respectively. If f € L%(T?), we define f*(wi,ws) = f(w1,w2), flwi,w2) = f(wy,wz) and

f(wy,ws) = f(wy,ws). U is the operator on L?(T?) defined by
Uh(wl, ’wg) = Elmg/ﬁ(wl, ’wg).
Clearly, U is a unitary operator on L?(T?) .

Definition 1.1 For f € L*>°(T?), the Toeplitz operator T¢ and Hankel operator H; with symbol
f are defined respectively by

Tih = P(fh), Hyh= PU(fh))

for functions h € H*(D?).
Then it is easy to get that both Ty and Hy are bounded linear operators on H?(D?).

Received November 10, 2009; Accepted January 4, 2010

Supported by the National Natural Science Foundation of China (Grant Nos. 10671028; 10971020).
* Corresponding author

E-mail address: lyfdlut@dlut.edu.cn (Y. F. LU)



206 Y. F. LU and B. ZHANG

Similarly, we can also define the Toeplitz operator Ty and the Hankel operator Hy on H?(DD).

The general problem that we are interested in is the following: when Toeplitz and Hankel
(or two Toeplitz ) operators commute, what is the relationship between their symbols? Knowing
commutativity of two operators often gives an idea of what these operators look like; conversely,
trying to determine commutativity of Toeplitz and Hankel (or two Toeplitz) operators often leads
to interesting problems in analysis. In the setting of the classical Hardy space H?, Brown and
Halmos [1] characterized commutativity of Toeplitz operators on H?(D) . Martinez-Avendaiio [2]
completely solved the problem of when a Hankel operator commutes with a Toeplitz operator,
and proved that H, and 7Ty commute if and only if one of the following three conditions is
satisfied: (i) g is in H*; (i) f and f are in H*; (iii) There exists a nonzero constant A such
that f + Ag,f + f and ff are in H®. Guo and Zheng [3] characterized when a Hankel operator
and a Toeplitz operator have a compact commutator.

On the Bergman space of the unit disk, the first complete result was obtained by Axler and
Cuckovié [4] who characterized commuting Toeplitz operators with harmonic symbols. Stroethoff
[5] extended their results to essentially commuting Toeplitz operators, and Axler, Cuckovié and
Rao [6] subsequently showed that if two Toeplitz operators commute and the symbol of one of
them is analytic and nonconstant, then the other one is also analytic. Cuckovié¢ and Rao [7]
studied Toeplitz operators that commute with Toeplitz operators with monomial symbols.

In several variables, the situation is much more complicated. Gu and Zheng [8] mainly
characterized when the semi-commutator T¢T, — T, of two Toeplitz operators T and T on
the Hardy space of the bidisk is zero. Zheng [9] made significant contributions in the study of
commuting Toeplitz operators on the Bergman space of the unit ball in C™ with pluriharmonic
symbols. Lee [10] studied weighted cases. Lu [11] characterized commuting Toeplitz operators
on the Bergman space of the bidisk with H>(D?) 4 H>(D2?) symbols. Choe, Koo and Lee
[12] obtained characterization of (essential) commuting Toeplitz operators with pluriharmonic
symbols on the Bergman sapce of the polydisk. Recently, on the Hardy space of the bidisk, Lee
[13] gave a necessary and sufficient condition for a bounded symbol of a Toeplitz operator that
commutes with another Toeplitz operator whose symbol is a certain type of bounded symbol.

Motivated by Martinez-Avendafio [2] and Guo and Zheng [3], it is natural to ask about the
relationships between Toeplitz and Hankel operators on the Hardy space of higher dimensional
polydisks, but little is known concerning the commutativity of Hankel and Toeplitz operators
and many problems still remain open on the polydisk.

In this paper, we investigate the commutativity of Hankel operators and Toeplitz operators
on the Hardy space of the bidisk and completely characterize when the Toeplitz operator T with
a certain type of symbol commutes with the Hankel operator H, with some special symbol.

To state our main result, we introduce some notations.

Throughout this paper, let Z denote the set of all integers, Z denote the set of all nonnegative
integers, Z_ denote the set of all negative integers and N denote the set of all positive integers.
As in [14] we can consider multiple Fourier series on the bitorus T?. The multiple Fourier series

on the bitorus T? can be viewed as the Fourier transformation on L!(T?). For f in L'(T?), the
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Fourier transformation of f on T x T is given by :

1 27 2w ) ) )
fm = fmhmz = (_)2/ f(ezel,6192>ez(m,9)d91d927
27T 0 0

where m = (mq,mg) € Z x Z, § = (61,02) and (m, 0) = m161 + mabs. By Theorem 1.7 in [14],
the Fourier transformation is injective, i.e., if f € L*(T?) and fy, m, = 0 for all m € Z x Z, then
f=0.

Using multiple Fourier series, we have

LQ(']IQ) :{f : f = Z fmhmzei(mﬂ) = Z fmhmzzinlzgw’

(m1,m2)ELXL (m1,m2)ELXL

Z |fm1,mz|2 < +OO}

(m1,m2)ELXL

HQ(]D)Q) :{h ch = Z fmhmzez‘(m,e) - Z Frgma 2202,

(7711,7?7,2)624r XZi4 (7711,’”7,2)624r XZi4

Z |fm17m2|2 < +OO}

(ml,mg)ez+ ><Z+
and
Pf= Z frima2y t2g?, for f= Z Foma ma 225" € L2(T?).
(7711,7?7,2)624r XLy (ml,mz)GZXZ
The multiple Fourier series of f € L?(T?) can be written as follows
f= X Frmd "8 = fri () ()4 () + F(2),
(m1,m2)ELXZ

where

Fre() = > ™ fe ()= D fmE,

MEZLy XLy MEZLy XL
fr) = > w2 = ) fme™
MEZL_XTy MEZL_ X7 _

and for example, m = (my,mz) € Z; X Z_ means that m; € Z; and my € Z_, and 2™ means

the product 27" z3"2.

2. The equation T7H, = HyT}-

In this section we will investigate when the equation T7Hy = HyTy~ holds. Before doing

this, we discuss some properties of the Toeplitz and Hankel operators.

Lemma 2.1 Let f € L®(T?) and suppose f(z1,22) = Y1 fi(z2)z} is the Fourier series

1=—00

expansion of f with respect to zi-variable. Then f;(z2) € L*°(T).
Proof According to the supposition, we know

fi(z2) = Af(zlazz)fidUl(Zl)aj € Z.
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Then |f;(22)| = | fp (S5 . filz2)#)Zido (21)] < || fll o ro), that is, fi(z2) € L(T),

Lemma 2.2 If f € L°(T?), then H} = Hy+ and T} = T%.

Proof Suppose f = E(mhmz czxz fmima 21 297, For my,ma,ny and ng in Z,, we have

(Hj(21"25%), 21" 25"%) = (21" 297, Hyp (2" 25%))

= (21" 2%, P(z172 Z Fjy gzt gl ma))
(J1,J2)ELXZ

_ (N1 N2 E . wJitmitlo—jat+ma+l
- (Zl 29" fJ17J221 z2 )

(J1,42)ELZXZ
= f—nl—m1—l,—n2—m2—1
and

(Hp (21" 257%), 21" 25"%) = (P(U(f" 21" 257)), 27" 25%)

ffnlfmlfl,7n2777l2715

ie.
21t 25%), 21 2y = (21t 25%), 21" 25'?), for any mq,mo,ny and ng in Z4,
Hi(2"25%), 21" 22) = (Hy= (21" 257), 207" 25%), dnyin Zy
so we get Hy = Hp~.
For any g, h € H*(D?), we have

(Tjg.h) = (0. Ty = | g TEREIa()
T2

and

(Tyo.) = (Fa.h) = [ o) FEREIo(2)
soTy =170
Lemma 2.3 Suppose f € L>(T?) and

f= Z fij2iz) for z=(z1,2) € T2

(1.§) ELXZ

Then Hy # 0 if and only if there exist ny and ny in Z_ such that f,, n, 7 0.

Proof Since for mi, mg in Z4,

Hp (" 257) = P(U(f2" 25"7))
P(ziz3 Z fi 2 ZZTET)

(i,4)€ELXZ

Z fz; —i—mi—1 *J mo— 1)

(i,4)ELXZ
_ E : i J
= ffifmlfl,fjfmgflzlzm
(4,5)€Z4 XLy

we can conclude that Hy # 0 if and only if there are ny and ng in Z_ such that f,, n, #0. O
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Now we characterize when the equation T;fHy = HyTy- holds.

Theorem 2.1 Let f,g € L°°(T?), and

+o0 _ +o0 )
f= Z filz2)z1, 9= Z 9i(z2)21.

Then TfHy = HyTy- if and only if for all k,l € Z,

—+oo —+oo
Z T;jlegfjfkfl = Z Hg—lfj—le;,k7
j=0 J=0

where Ty, and Hy, are Toeplitz and Hankel operators on the H?(T), respectively.

Proof Since for k,l,a and § in Z,

(T Hyot 25, 2125) = (Hyzt 25, Tyz125)

+oo
= (PWU(Y gilz2)ati25) Z Fiz2)21724)
+Oo 1=—0Q +; oo |
= (_Z gi(Z2)Zy T Es T, (_Z filz2)21" )
:-oo ) " +oo )
= (D g1k (@)L PO fi(z2)272))

+oo
= Z (g,l,i,k,l(ig)z{afl,Pz(fi(zz)zg))

1=—1
+oo
o ((Z T;i—ngfi—k—l )23, Zzﬁ)
1=0

and

(Hyg Tf*212272522) (Tf*21227H*2122 ZHq i Ly, )237226)7

we have

* k l k l
(Tf Hgzyz3, 21226) = (HyTp2725, lezﬁ)

if and only if

—+oo
((ZTE,ZHg—j—k 1 22722 ZHQ 1—j— 1Tf )22(1735)
j=0

Hence we can conclude that
T; Hy=H,Ty-,

if and only if for all k, [ € Z,

—+oo —+oo
ZTE,ZHQ—j—k—l = ZHO—L—j—le;,k' U
j=0 j=0
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In the light of Theorem 2.1, we can get the following two results.

Corollary 2.1 Let f,g € L>(T?) as in Theorem 2.1. If TfHy = HyTy~, then we have

;7(z+1)H97k = _Hgf(Hl)Tfik
for k inN and l in Z .
Proof If TfH, = HyTy~, then
(Tf Hyzt 125 2171 25) = (HyTye 2y~ 25, 201 4)), (1)
(T}Hyzt25, 2125 ) = (HyTy-2125, 2,25 (2)
for kin Nand [, a, 8 in Z.
From (1) and (2), we get
+o0 too

Z (9—i—ik—1(F2)25 “ 71, Po(fi(22)2)) =

Y. (P(fi(z2)28), 91 iopa (z2)2 ),

i=—(1+1) i=—(k—1)
(3)
+00 00 _ P
D g1k 1(F2)z L Pafi(22)25) = D> (Pa(Fi(32)28), 511 (22)5 77 1), (4)
==l i=—k
It is trivial to get
(9-1(Z2)25 * 1 Palforn)(22)2) = —(Pa(F_i(22)28), G4 (22)2 1),
ie.,
(T;,(Hl)Hq—kzg? 226) = (_H‘J—(H»I)Tfik237 226) (5)

Since the equation (5) holds for all «, 5 € Z,, we obtain the desired conclusion. O

Corollary 2.2 Let f, g € L®(T?), f = 37 fi(22)2i and g = g;(22)2], where j € Z_.

Suppose f = fi4 + f-— and Hy # 0. Then TfHy = H,Ty- if and only if f__ = 0.

Proof Since for k, I, o and g in Z,

+oo
(TfHy2¥2g, 24 20) = (Hyat2s, Tzt 2) = (9;(Z2)25 T2 ™ D Pa(filz)25) 24,
i=—1
we get
(a) (TjHyzfz8,2025) = 0,if k> —j — 1;
(b) (TjH,zbz5,2028) = (257 9;(Z), Palfjoioion(22)26)), O < k< —j — 1.
Similarly, we get
(¢) (H,Tyzkzg, 2020y =0,if 1 > —j—1;
(d) (HyTy-228,2120) = (Po(F_j_ko1-1(%2)28), 25 'G;(2)), O <1< —j — 1.
It TfHy = HyTy~, then we obtain
() HO<k<—j—landl>—j—1,

(257 9(Z2), Pa(f—jr—i—1(22)25)) = 0;
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(i) H0<li<—j—land k>—j—1,
- - —B+1—
(Po(F—joro1-1(72)25), 75 T G5(22)) = 0;

(i) FO<k<—j—land0<I<—j—1,

(257195 (Z2), Po(f-jmr-1-1(22)25)) = (Po(f _j_j—1-1(32)25), 25 7' 9;(22)).

Since the equations (1), (2) and (3) hold for all o, 8 € Zy, we have T} Hy, = Hg Tys and
Ty Hg, = HgTy: =0 where i € Z_.

Since f =31 __ fi(22)2}, f = fyy + f—— and H, # 0, we have

(iv) fi€ H®(D) foralli € Z_,

(v) Hy, # 0 and there exists o € Zy such that Hy, 25° # 0.
By Lemma 2.2 and the fact that T7 Hy, = 0, we get f; - (Hy,25°) = 0. Since f; € H*(D) and
Hgy, 25° # 0, using the fact in [1] that a non-zero analytic function cannot vanish on a set of
positive measure, we obtain f; = 0 for all i € Z_, that is, f; = 0 for all i € Z_. So we have
f-—=0.

Suppose f__ = 0. Since f = f.+f__, we have f € H>(D?). Since for nq,nz, my, ms € Z,,

(T Hy 252, 270 2572) = (e ey, Tyl 25) = (313 232, £ 257
= T A )

and

—ni+lons+1~7F
(HyTyp-20" 257, 2 2502) = (270 1252 g FL 21 2572,

we obtain

* niy n2 mi1 . msa _ ny . n2 my . m2
(TngZl 2y 2" 2y ) = (HyTye 21" 297, 2" 25%)
for all ny,ne, my, ms € Z,, that is,

Tf*Hg = HyTy-. O

3. Commutativity of Toeplitz and Hankel operators

In this section we characterize when a Toeplitz operator Ty commutes with a Hankel operator
H,. we are not able to obtain a characterization when two symbols are all arbitrary bounded
functions. In the course of the proof of the main Theorem 3.4, we will make use of some known
results obtained in [2] for commutativity of Toeplitz and Hankel operators on the Hardy space
of the unit disk.

Theorem 3.1 Let f,g € L>®(T?), f=fir+f _, f= f.g= gj(ZQ)z{ and Hy # 0 where j is
inZ_. If HTy =TyH,, then f is a constant.

Proof Using f = f, we have (f)* = f. By Lemma 2.2, Ty = TT’T. Combining these two facts
together, we see that H,Ty = Ty H, is equivalent to T7*Hg = HT%-. By Corollary 2.2, we obtain

f++ is a constant. Applying f = fagain, it follows that f is a constant. O
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Theorem 3.2 Let f,g € L>(T?). Then TyH, = H,Ty if and only if TyHy = HyT5.

Proof Let us define the anti-unitary involution V on H? by Vf = f*. It is easy to check
that VIV = Ty« for f € L°°(T?), and VH,V = Hj for any Hankel operator H,. Clearly,
V2 =1. Thus TyH, = H,Ty implies that VI}VV H,V = VH,VVT;V, which in turn implies
that Ty« H; = H;Ty-. Taking adjoints, we get HgT]; = T;Hq Applying this to ]7, it follows that
T]:Hg = HgT]: implies TyH, = H,Ty. O

In view of the last two theorems, we can get the following useful corollary.

Corollary 3.1 Let f,g€ L=(T?), f=fis+f-—, 9= gj(ZQ)Z'lj and Hy # 0 where j isin Z_.
IfTyHy; = H,Ty, then f + f is a constant.

Proof Since TyH, = H,Ty, we get Tf~Hg = HgT? with the help of Theorem 3.2. Therefore
Tf+fH =H Tf+f Using Theorem 3.1, we obtain f + fis a constant function. O

Next, we will discuss the commutativity of a Toeplitz operator Ty and a Hankel operator H,.

Theorem 3.3 Let f,g € L®(T?), where f = Y. °° __ fi(22)2% and g = 3.;°° _ gi(22)2%. Then
TyHy = H,Ty if and only if

—+oo —+oo
Z Hg—j—nrlejfml = Z Tfnlfng—j—mlfl
J=0 Jj=0

for all my, ny € Z..

Proof For mi, mo, ny and ng in Z,, we define

le,mzﬂll,nz = (H szinl Z?lzgz) (szl 5 H*Z{“Z;Q)
+oo
Z Filza)2 H 252), 217 Z AC )
j=—o00 i=—00
+o0 too
) 1
= (O Polfyomi (22)25")20, > 252G, _1(22)2])
7=0 1=—00
o0
1—
= (Palfjmi (22)252), 257Gy 1 (22))
=0
—+o0
= ((Z Hgfjfnlflejfml )Z;nzvzgz)
=0

and

_ my ny nz _ ma na
Dm17m2;n17n2 = (Tngzl Zl 22 = ((E Tfnlfqu7j77n171)Z2 ) %2 )

Then we get for all my, ma,ny,n0 € Z4,

le,mz,nl,nz - Dm11m27n11n2
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if and only if for all my, mo,n1,n9 € Z,

+o0 too
(O Hy s Ty 50557 = (O T, Hy sy )35 557).
=0 =0
Hence we obtain
TyHy = HyTy
if and only if for all ny,m; € Z,
00 +oo
Z Hg—j—nl—lrfj—ml = Z Tfnl—jHQ—j—ml—l' U
§=0 §=0

By means of Theorem 3.3, we have the following discussions.

Corollary 3.2 Let f,g € L>(T?), where f = 3. °° _ fi(22)zi and g = .5 gi(22)24. If
TyHy = HyTy, then we have

qunflrffm + Tfn+1H‘]—m = 0

form inN and n in Z,.

Proof For m in N and n in Z,, we define

+oo
Cn,m = Z Hgfjfnfltz—‘fjfnl
j=0
and
—+oo
Dn,m - Z TfnfjHQ—j—m—l .
=0

Since Ty Hy = HyTy, by Theorem 3.3 it follows that Cy, ,, = Dy m- In fact, we have the following

expressions for Cy, p, and Dy, p,.

+oo +oo
Com=Hy_, Ty, + ZH‘]—j—nflejfm =Hy , Ty, + ZH97(5+1)7TL71T70(3+1)7771
j=1 s=0
—+o0
=Hy Ty, + ZHgfsf(n#»l)flesf(nlfl) =Hy , Ty, +Crg1m—1
s=0
and
—+o0 —+oo
DnJrl,m*l = ZTf(n#»l)fng—jf(m—l)—l = Tf(n+1)Hg—m + ZTf(n+1)fjH97j7(m71)71
=0 j=1
—+oo
= Tf(n+1)Hg—m + Z Tf(n#»l)f(s#»l)qu(s#»l)f(mfl)fl
s=0
—+oo
= Tf(n+1) Hgfm + Z Tfnszgfsfmfl = Tf(nJrl)Hgfm + D";m'
s=0

Since C', ;= Dy m, it follows that

Hg—n—le*m + Tf’n#»ng—m =0,
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forminNand ninZ,. O

Corollary 3.3 Let f,g € L™(T?), f = Y5°°__ fi(22)2} and g = g;(22)2], where j is in Z_.
Then TyH, = H,Ty if and only if

() Hy Ty, =Ty H,y =0, > 0;

(i) H, Ty, =TpH,, j+1<i<0.

Proof Define

— ml niy no
le,mzﬂll,nz - (H szl Zl ) )

Z filza) 2™ 202, 21%2(7, (22)2] 211 252))

—+oo
= (Y Palfi(z2)2y")2, g () z5 2 M

i:—ml
for my, meo, n1, n2 in Z, . Then we have
(a) le,mzﬂll,nz =0,ifny >—j-1
(b) Conymaimning = (Po(f—jmmy—ni—1(22)25%), 7;(22)75° 1), i 0 <y < —j — L.
Similarly define

Dy imaniine = (Tngzinl 2?1232) (g] (22)272712+1_J+m1+1 Z P2 22 22 ) 1 1)7

i=ny
and we have

(€) Dy mamime =0, ifmy > —j —1,

() Dy manrine = (95 (Z2)25 2, Po(F sy gy 11 (22)252)), i 0 < my < —j — 1.
Suppose TyH, = H,Ty. Since TyH, = HyTy if and only if for all mi,mz,n1,n2 € Z_,
Crmyma,nams = Dmy,ma,nangs it follows that

(i) HyTy ; . . . =0,if0<n <—j—landmy >—j—1,

(1) Tt mysny 1 Hgy =0,if0<my < —j—Tandny > —j—1,

(i) Ty iny 1 Hgy = Hy, Ty fo<m <—j—land0<n; <—j5—1.

Combining all these facts, we have

j—mi—mni1—17

ngTf—z' = TfiH‘Jj =0

for i € N, and
ng Ty, = Tfngj
for j+1<:<0.
It is easy to get that the converse is true. O

Finally, we will discuss the relationship between f and g under the condition of g = g;(z2)z].

Theorem 3.4 Let f,g € L=(T2), f = S5 fiz)#, g = g5(2)d and f = foy + [,
where j € Z_. Then TyH, = H Ty if and only if one of the following conditions is satisfied:
(i) gj(z2) is in H*(D).
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(i) f and f are in H>(D?).
(iii) fi(z2) = 0 for all nonzero integers i and there exists a nonzero constant A\ such that
fo+ Agj, fo+ fo and fo - fo are in H>(D).

Proof Suppose TrHy = H,T¢. Then we have

(1) gj(22) is in H*(D) provided that Hy = 0.

(i) If Ty = pl, where p is a constant, then we have f is a constant function, i.e., f and ]7
are in H>(D?).

(i) If Hy # 0 and Ty # pl, then by Corollaries 3.1 and 3.3, we have

(a) f+ f=C, where C is a constant,

(b) Hy,Ty , =Ty Hy =0, forallicN,

(c) Ty Hgy, = Hg, Ty,

Let g;(z2) = Z;__OO bkz2 and fi(z2) = EZSOO a; 2% for alli € Z. Since f = ZZ__OO fi(z2)2t,
f=f s+ andf—i—sz, we have a;, = —a—_; _j for i € Nk € Z and a;; = 0 for
i,k € Z where the product of ¢ and k is negative. Thus f;(z2) = :OB a; k25 and f_;(z2) =
—> o aipzy " fori e N,

For m,n in Z4 and ¢ in N, using the fact (b), we have

(ng Tf—izén’ 22) (Tf i%2 ’H 22 P2 Z a; kZQ n+lgg (22))
—+oo
(P ainzg” Z bz Z @i kD (mtnt1)+k
k=0 k=—o0 k=0
= 0,
that is,
Zai7kb,(m+n+1)+k =0, forall mneZ,;, ieN. (6)
k=0

Now we claim that for any m € Z4, ajm =0, 7 € N.
Since Hy # 0, there exists [ € N such that b_; # 0. Let n+1 = [. Then the equation (6) can
be written as .
> aikb_(min4r =0, forall meZ,, ieN. (7)
k=0
If m = 0, by Equation (7) and the fact b_; # 0, we have a; ob_; = 0 and a;0 =0, i € N.
If m = 1, by Equation (7), we have a;0b—;—1 + a;10_; = 0. Since a; 0 = 0 and b_; # 0, we
get a;1 =0,7€N.
Now suppose the conclusion holds when 0 < m < N, that is,

aim =0, for 0<m<N, ieN (8)

If m = N + 1, by Equation (7), we get
N

Z a; kb_(N+140)+k + @i, Ny10— = 0.
k=0
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Since the Equation (8) holds and b_; # 0, we have a; (y4+1) = 0.

Hence by the induction we obtain
aim =0 foral meZy, ieN,

ie.,

fi=0, forall :eN.

Since a_;,—, = —a; for 1 € N,k € Z,, we get f; = 0 for all nonzero integers .

By the fact (c) and [2], we get that there exists a nonzero constant A such that fy + Agj,
fo+ fo and fo - fo are in H>(D).

By [2] and Corollary 3.3, it is easy to obtain that the converse holds.
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