Commuting Hankel and Toeplitz Operators on the Hardy Space of the Bidisk

Yu Feng LU*, Bo ZHANG
School of Mathematical Science, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

In this paper, we characterize when the Toeplitz operator T_{f} and the Hankel operator H_{g} commute on the Hardy space of the bidisk. For certain types of bounded symbols f and g, we give a necessary and sufficient condition on the symbols to guarantee $T_{f} H_{g}=H_{g} T_{f}$.

Keywords Hankel operator; Toeplitz operator; Hardy space; bidisk; commuting.
Document code A
MR(2000) Subject Classification 47B35; 47B47
Chinese Library Classification O177.1

1. Introduction

Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C}. Its boundary is the unit circle \mathbb{T}. The bidisk \mathbb{D}^{2} and torus \mathbb{T}^{2} are the subsets of \mathbb{C}^{2} which are Cartesian products of two copies \mathbb{D} and \mathbb{T}, respectively. We write $L^{2}(\mathbb{T})$ and $H^{2}(\mathbb{D})$ to denote the usual Lebesgue space on \mathbb{T} and Hardy space on \mathbb{D}, respectively. Let $L^{2}\left(\mathbb{T}^{2}\right)=L^{2}\left(\mathbb{T}^{2}, \mathrm{~d} \sigma\right)$ be the usual Lebesgue space of \mathbb{T}^{2}, where $\mathrm{d} \sigma$ is the normalized Haar measure on \mathbb{T}^{2}, and the Hardy space $H^{2}\left(\mathbb{D}^{2}\right)$ is the closure of the polynomials in $L^{2}\left(\mathbb{T}^{2}\right)$. Let P_{2} denote the orthogonal projection from $L^{2}(\mathbb{T})$ onto $H^{2}(\mathbb{D})$, and P denote the orthogonal projection from $L^{2}\left(\mathbb{T}^{2}\right)$ onto $H^{2}\left(\mathbb{D}^{2}\right)$.

For a function $f \in L^{2}(\mathbb{T})$, we define $f^{*}(w)=\overline{f(\bar{w})}, \bar{f}(w)=\overline{f(w)}$ and $\tilde{f}(w)=f(\bar{w})$, respectively. If $f \in L^{2}\left(\mathbb{T}^{2}\right)$, we define $f^{*}\left(w_{1}, w_{2}\right)=\overline{f\left(\bar{w}_{1}, \bar{w}_{2}\right)}, \bar{f}\left(w_{1}, w_{2}\right)=\overline{f\left(w_{1}, w_{2}\right)}$ and $\widetilde{f}\left(w_{1}, w_{2}\right)=f\left(\bar{w}_{1}, \bar{w}_{2}\right) . U$ is the operator on $L^{2}\left(\mathbb{T}^{2}\right)$ defined by

$$
U h\left(w_{1}, w_{2}\right)=\bar{w}_{1} \bar{w}_{2} \widetilde{h}\left(w_{1}, w_{2}\right)
$$

Clearly, U is a unitary operator on $L^{2}\left(\mathbb{T}^{2}\right)$.
Definition 1.1 For $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$, the Toeplitz operator T_{f} and Hankel operator H_{f} with symbol f are defined respectively by

$$
T_{f} h=P(f h), \quad H_{f} h=P(U(f h))
$$

for functions $h \in H^{2}\left(\mathbb{D}^{2}\right)$.
Then it is easy to get that both T_{f} and H_{f} are bounded linear operators on $H^{2}\left(\mathbb{D}^{2}\right)$.

[^0]Similarly, we can also define the Toeplitz operator T_{f} and the Hankel operator H_{f} on $H^{2}(\mathbb{D})$.
The general problem that we are interested in is the following: when Toeplitz and Hankel (or two Toeplitz) operators commute, what is the relationship between their symbols? Knowing commutativity of two operators often gives an idea of what these operators look like; conversely, trying to determine commutativity of Toeplitz and Hankel (or two Toeplitz) operators often leads to interesting problems in analysis. In the setting of the classical Hardy space H^{2}, Brown and Halmos [1] characterized commutativity of Toeplitz operators on $H^{2}(\mathbb{D})$. Martínez-Avendaño [2] completely solved the problem of when a Hankel operator commutes with a Toeplitz operator, and proved that H_{g} and T_{f} commute if and only if one of the following three conditions is satisfied: (i) g is in H^{∞}; (ii) f and \widetilde{f} are in H^{∞}; (iii) There exists a nonzero constant λ such that $f+\lambda g, f+\widetilde{f}$ and $f \tilde{f}$ are in H^{∞}. Guo and Zheng [3] characterized when a Hankel operator and a Toeplitz operator have a compact commutator.

On the Bergman space of the unit disk, the first complete result was obtained by Axler and Čučković [4] who characterized commuting Toeplitz operators with harmonic symbols. Stroethoff [5] extended their results to essentially commuting Toeplitz operators, and Axler, Čučković and Rao [6] subsequently showed that if two Toeplitz operators commute and the symbol of one of them is analytic and nonconstant, then the other one is also analytic. Čučković and Rao [7] studied Toeplitz operators that commute with Toeplitz operators with monomial symbols.

In several variables, the situation is much more complicated. Gu and Zheng [8] mainly characterized when the semi-commutator $T_{f} T_{g}-T_{f g}$ of two Toeplitz operators T_{f} and T_{g} on the Hardy space of the bidisk is zero. Zheng [9] made significant contributions in the study of commuting Toeplitz operators on the Bergman space of the unit ball in \mathbb{C}^{n} with pluriharmonic symbols. Lee [10] studied weighted cases. Lu [11] characterized commuting Toeplitz operators on the Bergman space of the bidisk with $H^{\infty}\left(\mathbb{D}^{2}\right)+\overline{H^{\infty}\left(\mathbb{D}^{2}\right)}$ symbols. Choe, Koo and Lee [12] obtained characterization of (essential) commuting Toeplitz operators with pluriharmonic symbols on the Bergman sapce of the polydisk. Recently, on the Hardy space of the bidisk, Lee [13] gave a necessary and sufficient condition for a bounded symbol of a Toeplitz operator that commutes with another Toeplitz operator whose symbol is a certain type of bounded symbol.

Motivated by Martínez-Avendaño [2] and Guo and Zheng [3], it is natural to ask about the relationships between Toeplitz and Hankel operators on the Hardy space of higher dimensional polydisks, but little is known concerning the commutativity of Hankel and Toeplitz operators and many problems still remain open on the polydisk.

In this paper, we investigate the commutativity of Hankel operators and Toeplitz operators on the Hardy space of the bidisk and completely characterize when the Toeplitz operator T_{f} with a certain type of symbol commutes with the Hankel operator H_{g} with some special symbol.

To state our main result, we introduce some notations.
Throughout this paper, let \mathbb{Z} denote the set of all integers, \mathbb{Z}_{+}denote the set of all nonnegative integers, \mathbb{Z}_{-}denote the set of all negative integers and \mathbb{N} denote the set of all positive integers. As in [14] we can consider multiple Fourier series on the bitorus \mathbb{T}^{2}. The multiple Fourier series on the bitorus \mathbb{T}^{2} can be viewed as the Fourier transformation on $L^{1}\left(\mathbb{T}^{2}\right)$. For f in $L^{1}\left(\mathbb{T}^{2}\right)$, the

Fourier transformation of f on $\mathbb{T} \times \mathbb{T}$ is given by :

$$
f_{m}=f_{m_{1}, m_{2}}=\left(\frac{1}{2 \pi}\right)^{2} \int_{0}^{2 \pi} \int_{0}^{2 \pi} f\left(e^{i \theta_{1}}, e^{i \theta_{2}}\right) e^{i(m, \theta)} \mathrm{d} \theta_{1} \mathrm{~d} \theta_{2}
$$

where $m=\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}, \theta=\left(\theta_{1}, \theta_{2}\right)$ and $(m, \theta)=m_{1} \theta_{1}+m_{2} \theta_{2}$. By Theorem 1.7 in [14], the Fourier transformation is injective, i.e., if $f \in L^{1}\left(\mathbb{T}^{2}\right)$ and $f_{m_{1}, m_{2}}=0$ for all $m \in \mathbb{Z} \times \mathbb{Z}$, then $f \equiv 0$.

Using multiple Fourier series, we have

$$
\left.\begin{array}{l}
L^{2}\left(\mathbb{T}^{2}\right)=\left\{f: f=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{m_{1}, m_{2}} e^{i(m, \theta)}=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}},\right. \\
H^{2}\left(\mathbb{D}^{2}\right)=\left\{h: h=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}}\left|f_{m_{1}, m_{2}}\right|^{2}<+\infty\right\} \\
\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}} f_{m_{1}, m_{2}} e^{i(m, \theta)}=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}, \\
\end{array} \sum_{\left.\left.m_{m_{1}, m_{2}}\right|^{2}<+\infty\right\}}=\mathbb{Z}_{+} \times \mathbb{Z}_{+}\right) .
$$

and

$$
\operatorname{Pf}=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}, \text { for } f=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}} \in L^{2}\left(\mathbb{T}^{2}\right)
$$

The multiple Fourier series of $f \in L^{2}\left(\mathbb{T}^{2}\right)$ can be written as follows

$$
f=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}=f_{++}(z)+f_{+-}(z)+f_{-+}(z)+f_{--}(z)
$$

where

$$
\begin{aligned}
& f_{++}(z)=\sum_{m \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}} f_{m} z^{m}, f_{+-}(z)=\sum_{m \in \mathbb{Z}_{+} \times \mathbb{Z}_{-}} f_{m} z^{m} \\
& f_{-+}(z)=\sum_{m \in \mathbb{Z}_{-} \times \mathbb{Z}_{+}} f_{m} z^{m}, f_{--}(z)=\sum_{m \in \mathbb{Z}_{-} \times \mathbb{Z}_{-}} f_{m} z^{m}
\end{aligned}
$$

and for example, $m=\left(m_{1}, m_{2}\right) \in \mathbb{Z}_{+} \times \mathbb{Z}_{-}$means that $m_{1} \in \mathbb{Z}_{+}$and $m_{2} \in \mathbb{Z}_{-}$, and z^{m} means the product $z_{1}^{m_{1}} z_{2}^{m_{2}}$.

2. The equation $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$

In this section we will investigate when the equation $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$ holds. Before doing this, we discuss some properties of the Toeplitz and Hankel operators.

Lemma 2.1 Let $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$ and suppose $f\left(z_{1}, z_{2}\right)=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$ is the Fourier series expansion of f with respect to z_{1}-variable. Then $f_{i}\left(z_{2}\right) \in L^{\infty}(\mathbb{T})$.

Proof According to the supposition, we know

$$
f_{j}\left(z_{2}\right)=\int_{\mathbb{T}} f\left(z_{1}, z_{2}\right) \bar{z}_{1}^{j} \mathrm{~d} \sigma_{1}\left(z_{1}\right), j \in \mathbb{Z}
$$

Then $\left|f_{j}\left(z_{2}\right)\right|=\left|\int_{\mathbb{T}}\left(\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}\right) \bar{z}_{1}^{j} \mathrm{~d} \sigma_{1}\left(z_{1}\right)\right| \leq\|f\|_{L^{\infty}\left(\mathbb{T}^{2}\right)}$, that is, $f_{i}\left(z_{2}\right) \in L^{\infty}(\mathbb{T})$.
Lemma 2.2 If $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$, then $H_{f}^{*}=H_{f^{*}}$ and $T_{f}^{*}=T_{\bar{f}}$.
Proof Suppose $f=\sum_{\left(m_{1}, m_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{m_{1}, m_{2}} z_{1}^{m_{1}} z_{2}^{m_{2}}$. For m_{1}, m_{2}, n_{1} and n_{2} in \mathbb{Z}_{+}, we have

$$
\left.\begin{array}{rl}
\left(H_{f}^{*}\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\right), z_{1}^{m_{1}} z_{2}^{m_{2}}\right) & =\left(z_{1}^{n_{1}} z_{2}^{n_{2}}, H_{f}\left(z_{1}^{m_{1}} z_{2}^{m_{2}}\right)\right) \\
& =\left(z_{1}^{n_{1}} z_{2}^{n_{2}}, P\left(\overline{z_{1} z_{2}} \sum_{\left(j_{1}, j_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{j_{1}, j_{2}}{\overline{z_{1}}}^{j_{1}+m_{1}}{\overline{z_{2}}}^{j_{2}+m_{2}}\right)\right) \\
& =\left(z_{1}^{n_{1}} z_{2}^{n_{2}}, \sum_{\left(j_{1}, j_{2}\right) \in \mathbb{Z} \times \mathbb{Z}} f_{j_{1}, j_{2}}{\overline{z_{1}}}_{j_{1}+m_{1}+1}^{\bar{z}_{2}} j_{2}+m_{2}+1\right.
\end{array}\right), ~\left(\bar{f}_{-n_{1}-m_{1}-1,-n_{2}-m_{2}-1}\right.
$$

and

$$
\begin{aligned}
\left(H_{f^{*}}\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\right), z_{1}^{m_{1}} z_{2}^{m_{2}}\right) & =\left(P\left(U\left(f^{*} z_{1}^{n_{1}} z_{2}^{n_{2}}\right)\right), z_{1}^{m_{1}} z_{2}^{m_{2}}\right) \\
& =\bar{f}_{-n_{1}-m_{1}-1,-n_{2}-m_{2}-1}
\end{aligned}
$$

i.e.,

$$
\left(H_{f}^{*}\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\right), z_{1}^{m_{1}} z_{2}^{m_{2}}\right)=\left(H_{f^{*}}\left(z_{1}^{n_{1}} z_{2}^{n_{2}}\right), z_{1}^{m_{1}} z_{2}^{m_{2}}\right), \text { for any } m_{1}, m_{2}, n_{1} \text { and } n_{2} \text { in } Z_{+},
$$

so we get $H_{f}^{*}=H_{f^{*}}$.
For any $g, h \in H^{2}\left(\mathbb{D}^{2}\right)$, we have

$$
\left(T_{f}^{*} g, h\right)=\left(g, T_{f} h\right)=\int_{\mathbb{T}^{2}} g(z) \overline{f(z) h(z)} \mathrm{d} \sigma(z)
$$

and

$$
\left(T_{\bar{f}} g, h\right)=(\bar{f} g, h)=\int_{\mathbb{T}^{2}} g(z) \overline{f(z) h(z)} \mathrm{d} \sigma(z),
$$

so $T_{f}^{*}=T_{\bar{f}}$.
Lemma 2.3 Suppose $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$ and

$$
f=\sum_{(i, j) \in \mathbb{Z} \times \mathbb{Z}} f_{i, j} z_{1}^{i} z_{2}^{j} \text { for } z=\left(z_{1}, z_{2}\right) \in \mathbb{T}^{2}
$$

Then $H_{f} \neq 0$ if and only if there exist n_{1} and n_{2} in \mathbb{Z}_{-}such that $f_{n_{1}, n_{2}} \neq 0$.
Proof Since for m_{1}, m_{2} in \mathbb{Z}_{+},

$$
\begin{aligned}
H_{f}\left(z_{1}^{m_{1}} z_{2}^{m_{2}}\right) & =P\left(U\left(f z_{1}^{m_{1}} z_{2}^{m_{2}}\right)\right) \\
& =P\left(\overline{z_{1} z_{2}} \sum_{(i, j) \in \mathbb{Z} \times \mathbb{Z}} f_{i, j} \bar{z}_{1}^{i} \bar{z}_{2}^{j} \bar{z}_{1}^{m_{1}} \bar{z}_{2}^{m_{2}}\right) \\
& =P\left(\sum_{(i, j) \in \mathbb{Z} \times \mathbb{Z}} f_{i, j} z_{1}^{-i-m_{1}-1} z_{2}^{-j-m_{2}-1}\right) \\
& =\sum_{(i, j) \in \mathbb{Z}_{+} \times \mathbb{Z}_{+}} f_{-i-m_{1}-1,-j-m_{2}-1} z_{1}^{i} z_{2}^{j}
\end{aligned}
$$

we can conclude that $H_{f} \neq 0$ if and only if there are n_{1} and n_{2} in \mathbb{Z}_{-}such that $f_{n_{1}, n_{2}} \neq 0$.

Now we characterize when the equation $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$ holds.
Theorem 2.1 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$, and

$$
f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}, \quad g=\sum_{i=-\infty}^{+\infty} g_{i}\left(z_{2}\right) z_{1}^{i}
$$

Then $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$ if and only if for all $k, l \in \mathbb{Z}_{+}$,

$$
\sum_{j=0}^{+\infty} T_{f_{j-l}}^{*} H_{g_{-j-k-1}}=\sum_{j=0}^{+\infty} H_{g_{-l-j-1}} T_{f_{j-k}^{*}}
$$

where $T_{f_{i}}$ and $H_{g_{j}}$ are Toeplitz and Hankel operators on the $H^{2}(\mathbb{T})$, respectively.
Proof Since for k, l, α and β in \mathbb{Z}_{+},

$$
\begin{aligned}
\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right) & =\left(H_{g} z_{1}^{k} z_{2}^{\alpha}, T_{f} z_{1}^{l} z_{2}^{\beta}\right) \\
& =\left(P\left(U\left(\sum_{i=-\infty}^{+\infty} g_{i}\left(z_{2}\right) z_{1}^{k+i} z_{2}^{\alpha}\right)\right), P\left(\sum_{j=-\infty}^{+\infty} f_{j}\left(z_{2}\right) z_{1}^{l+j} z_{2}^{\beta}\right)\right) \\
& =\left(\sum_{i=-\infty}^{+\infty} g_{i}\left(\bar{z}_{2}\right) \bar{z}_{1}^{k+i+1} \bar{z}_{2}^{\alpha+1}, P\left(\sum_{j=-\infty}^{+\infty} f_{j}\left(z_{2}\right) z_{1}^{l+j} z_{2}^{\beta}\right)\right) \\
& =\left(\sum_{i=-\infty}^{+\infty} g_{-l-i-k-1}\left(\bar{z}_{2}\right) z_{1}^{i+l} z_{2}^{-\alpha-1}, P\left(\sum_{j=-\infty}^{+\infty} f_{j}\left(z_{2}\right) z_{1}^{l+j} z_{2}^{\beta}\right)\right) \\
& =\sum_{i=-l}^{+\infty}\left(g_{-l-i-k-1}\left(\bar{z}_{2}\right) z_{2}^{-\alpha-1}, P_{2}\left(f_{i}\left(z_{2}\right) z_{2}^{\beta}\right)\right) \\
& =\left(\left(\sum_{i=0}^{+\infty} T_{f_{i-l}}^{*} H_{g_{-i-k-1}}\right) z_{2}^{\alpha}, z_{2}^{\beta}\right)
\end{aligned}
$$

and

$$
\left(H_{g} T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=\left(T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, H_{g}^{*} z_{1}^{l} z_{2}^{\beta}\right)=\left(\left(\sum_{i=0}^{+\infty} H_{g_{-l-i-1}} T_{f_{i-k}^{*}}\right) z_{2}^{\alpha}, z_{2}^{\beta}\right)
$$

we have

$$
\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=\left(H_{g} T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)
$$

if and only if

$$
\left(\left(\sum_{j=0}^{+\infty} T_{f_{j-l}}^{*} H_{g_{-j-k-1}}\right) z_{2}^{\alpha}, z_{2}^{\beta}\right)=\left(\left(\sum_{j=0}^{+\infty} H_{g_{-l-j-1}} T_{f_{j-k}^{*}}\right) z_{2}^{\alpha}, z_{2}^{\beta}\right)
$$

Hence we can conclude that

$$
T_{f}^{*} H_{g}=H_{g} T_{f^{*}}
$$

if and only if for all $k, l \in \mathbb{Z}_{+}$,

$$
\sum_{j=0}^{+\infty} T_{f_{j-l}}^{*} H_{g_{-j-k-1}}=\sum_{j=0}^{+\infty} H_{g_{-l-j-1}} T_{f_{j-k}^{*}}
$$

In the light of Theorem 2.1, we can get the following two results.
Corollary 2.1 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$ as in Theorem 2.1. If $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$, then we have

$$
T_{f_{-(l+1)}}^{*} H_{g_{-k}}=-H_{g_{-(l+1)}} T_{f_{-k}^{*}}
$$

for k in \mathbb{N} and l in \mathbb{Z}_{+}.
Proof If $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$, then

$$
\begin{align*}
\left(T_{f}^{*} H_{g} z_{1}^{k-1} z_{2}^{\alpha}, z_{1}^{l+1} z_{2}^{\beta}\right) & =\left(H_{g} T_{f^{*}} z_{1}^{k-1} z_{2}^{\alpha}, z_{1}^{l+1} z_{2}^{\beta}\right), \tag{1}\\
\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right) & =\left(H_{g} T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right) \tag{2}
\end{align*}
$$

for k in \mathbb{N} and l, α, β in \mathbb{Z}_{+}.
From (1) and (2), we get

$$
\begin{align*}
\sum_{i=-(l+1)}^{+\infty}\left(g_{-l-i-k-1}\left(\bar{z}_{2}\right) z_{2}^{-\alpha-1}, P_{2}\left(f_{i}\left(z_{2}\right) z_{2}^{\beta}\right)\right) & =\sum_{i=-(k-1)}^{+\infty}\left(P_{2}\left(\bar{f}_{i}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{g}_{-l-i-k-1}\left(z_{2}\right) z_{2}^{-\beta-1}\right), \\
\sum_{i=-l}^{+\infty}\left(g_{-l-i-k-1}\left(\bar{z}_{2}\right) z_{2}^{-\alpha-1}, P_{2}\left(f_{i}\left(z_{2}\right) z_{2}^{\beta}\right)\right) & =\sum_{i=-k}^{+\infty}\left(P_{2}\left(\bar{f}_{i}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{g}_{-l-i-k-1}\left(z_{2}\right) z_{2}^{-\beta-1}\right) \tag{3}
\end{align*}
$$

It is trivial to get

$$
\left(g_{-k}\left(\bar{z}_{2}\right) z_{2}^{-\alpha-1}, P_{2}\left(f_{-(l+1)}\left(z_{2}\right) z_{2}^{\beta}\right)\right)=-\left(P_{2}\left(\bar{f}_{-k}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{g}_{-l-1}\left(z_{2}\right) z_{2}^{-\beta-1}\right)
$$

i.e.,

$$
\begin{equation*}
\left(T_{f_{-(l+1)}}^{*} H_{g_{-k}} z_{2}^{\alpha}, z_{2}^{\beta}\right)=\left(-H_{g_{-(l+1)}} T_{f_{-k}^{*}} z_{2}^{\alpha}, z_{2}^{\beta}\right) \tag{5}
\end{equation*}
$$

Since the equation (5) holds for all $\alpha, \beta \in \mathbb{Z}_{+}$, we obtain the desired conclusion.
Corollary 2.2 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right), f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$ and $g=g_{j}\left(z_{2}\right) z_{1}^{j}$, where $j \in \mathbb{Z}_{-}$. Suppose $f=f_{++}+f_{--}$and $H_{g} \neq 0$. Then $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$ if and only if $f_{--}=0$.

Proof Since for k, l, α and β in \mathbb{Z}_{+},

$$
\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=\left(H_{g} z_{1}^{k} z_{2}^{\alpha}, T_{f} z_{1}^{l} z_{2}^{\beta}\right)=\left(g_{j}\left(\bar{z}_{2}\right) \bar{z}_{2}^{\alpha+1} \bar{z}_{1}^{j+k+1}, \sum_{i=-l}^{+\infty} P_{2}\left(f_{i}\left(z_{2}\right) z_{2}^{\beta}\right) z_{1}^{l+i}\right)
$$

we get
(a) $\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=0$, if $k>-j-1$;
(b) $\left(T_{f}^{*} H_{g} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=\left(\bar{z}_{2}^{\alpha+1} g_{j}\left(\bar{z}_{2}\right), P_{2}\left(f_{-j-k-l-1}\left(z_{2}\right) z_{2}^{\beta}\right)\right)$, if $0 \leq k \leq-j-1$.

Similarly, we get
(c) $\left(H_{g} T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=0$, if $l>-j-1$;
(d) $\left(H_{g} T_{f^{*}} z_{1}^{k} z_{2}^{\alpha}, z_{1}^{l} z_{2}^{\beta}\right)=\left(P_{2}\left(\bar{f}_{-j-k-l-1}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{z}_{2}^{\beta+1} \bar{g}_{j}\left(z_{2}\right)\right)$, if $0 \leq l \leq-j-1$.

If $T_{f}^{*} H_{g}=H_{g} T_{f^{*}}$, then we obtain
(i) If $0 \leq k \leq-j-1$ and $l>-j-1$,

$$
\left(\bar{z}_{2}^{\alpha+1} g_{j}\left(\bar{z}_{2}\right), P_{2}\left(f_{-j-k-l-1}\left(z_{2}\right) z_{2}^{\beta}\right)\right)=0 ;
$$

(ii) If $0 \leq l \leq-j-1$ and $k>-j-1$,

$$
\left(P_{2}\left(\bar{f}_{-j-k-l-1}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{z}_{2}^{\beta+1} \bar{g}_{j}\left(z_{2}\right)\right)=0
$$

(iii) If $0 \leq k \leq-j-1$ and $0 \leq l \leq-j-1$,

$$
\left(\bar{z}_{2}^{\alpha+1} g_{j}\left(\bar{z}_{2}\right), P_{2}\left(f_{-j-k-l-1}\left(z_{2}\right) z_{2}^{\beta}\right)\right)=\left(P_{2}\left(\bar{f}_{-j-k-l-1}\left(\bar{z}_{2}\right) z_{2}^{\alpha}\right), \bar{z}_{2}^{\beta+1} \bar{g}_{j}\left(z_{2}\right)\right)
$$

Since the equations (1), (2) and (3) hold for all $\alpha, \beta \in \mathbb{Z}_{+}$, we have $T_{f_{0}}^{*} H_{g_{j}}=H_{g_{j}} T_{f_{0}^{*}}$ and $T_{f_{i}}^{*} H_{g_{j}}=H_{g_{j}} T_{f_{i}^{*}}=0$ where $i \in \mathbb{Z}_{-}$.

Since $f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}, f=f_{++}+f_{--}$and $H_{g} \neq 0$, we have
(iv) $\overline{f_{i}} \in H^{\infty}(\mathbb{D})$ for all $i \in \mathbb{Z}_{-}$,
(v) $H_{g_{j}} \neq 0$ and there exists $\alpha_{0} \in \mathbb{Z}_{+}$such that $H_{g_{j}} z_{2}^{\alpha_{0}} \neq 0$.

By Lemma 2.2 and the fact that $T_{f_{i}}^{*} H_{g_{j}}=0$, we get $\overline{f_{i}} \cdot\left(H_{g_{j}} z_{2}^{\alpha_{0}}\right)=0$. Since $\overline{f_{i}} \in H^{\infty}(\mathbb{D})$ and $H_{g_{j}} z_{2}^{\alpha_{0}} \neq 0$, using the fact in [1] that a non-zero analytic function cannot vanish on a set of positive measure, we obtain $\overline{f_{i}}=0$ for all $i \in \mathbb{Z}_{-}$, that is, $f_{i}=0$ for all $i \in \mathbb{Z}_{-}$. So we have $f_{--}=0$.

Suppose $f_{--}=0$. Since $f=f_{++}+f_{--}$, we have $f \in H^{\infty}\left(\mathbb{D}^{2}\right)$. Since for $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
\left(T_{f}^{*} H_{g} z_{1}^{n_{1}} z_{2}^{n_{2}}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right) & =\left(H_{g} z_{1}^{n_{1}} z_{2}^{n_{2}}, T_{f} z_{1}^{m_{1}} z_{2}^{m_{2}}\right)=\left(\bar{z}_{1} \bar{z}_{2} \widetilde{g} \bar{z}_{1}^{n_{1}} \bar{z}_{2}^{n_{2}}, f z_{1}^{m_{1}} z_{2}^{m_{2}}\right) \\
& =\left(\bar{z}_{1}^{n_{1}+1} \bar{z}_{2}^{n_{2}+1} \widetilde{g} \bar{f}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right)
\end{aligned}
$$

and

$$
\left(H_{g} T_{f *} z_{1}^{n_{1}} z_{2}^{n_{2}}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right)=\left(\bar{z}_{1}^{n_{1}+1} \bar{z}_{2}^{n_{2}+1} \widetilde{g} \bar{f}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right)
$$

we obtain

$$
\left(T_{f}^{*} H_{g} z_{1}^{n_{1}} z_{2}^{n_{2}}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right)=\left(H_{g} T_{f *} z_{1}^{n_{1}} z_{2}^{n_{2}}, z_{1}^{m_{1}} z_{2}^{m_{2}}\right)
$$

for all $n_{1}, n_{2}, m_{1}, m_{2} \in \mathbb{Z}_{+}$, that is,

$$
T_{f}^{*} H_{g}=H_{g} T_{f^{*}}
$$

3. Commutativity of Toeplitz and Hankel operators

In this section we characterize when a Toeplitz operator T_{f} commutes with a Hankel operator H_{g}. we are not able to obtain a characterization when two symbols are all arbitrary bounded functions. In the course of the proof of the main Theorem 3.4, we will make use of some known results obtained in [2] for commutativity of Toeplitz and Hankel operators on the Hardy space of the unit disk.

Theorem 3.1 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right), f=f_{++}+f_{--}, f=\widetilde{f}, g=g_{j}\left(z_{2}\right) z_{1}^{j}$ and $H_{g} \neq 0$ where j is in \mathbb{Z}_{-}. If $H_{g} T_{f}=T_{f} H_{g}$, then f is a constant.
Proof Using $f=\widetilde{f}$, we have $(\bar{f})^{*}=f$. By Lemma 2.2, $T_{f}=T_{\bar{f}}^{*}$. Combining these two facts together, we see that $H_{g} T_{f}=T_{f} H_{g}$ is equivalent to $T_{\bar{f}}^{*} H_{g}=H_{g} T_{\bar{f}^{*}}$. By Corollary 2.2, we obtain f_{++}is a constant. Applying $f=\widetilde{f}$ again, it follows that f is a constant.

Theorem 3.2 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$. Then $T_{f} H_{g}=H_{g} T_{f}$ if and only if $T_{\tilde{f}} H_{g}=H_{g} T_{\tilde{f}}$.
Proof Let us define the anti-unitary involution V on H^{2} by $V f=f^{*}$. It is easy to check that $V T_{f} V=T_{f^{*}}$ for $f \in L^{\infty}\left(\mathbb{T}^{2}\right)$, and $V H_{g} V=H_{g}^{*}$ for any Hankel operator H_{g}. Clearly, $V^{2}=I$. Thus $T_{f} H_{g}=H_{g} T_{f}$ implies that $V T_{f} V V H_{g} V=V H_{g} V V T_{f} V$, which in turn implies that $T_{f *} H_{g}^{*}=H_{g}^{*} T_{f^{*}}$. Taking adjoints, we get $H_{g} T_{\widetilde{f}}=T_{\widetilde{f}} H_{g}$. Applying this to \widetilde{f}, it follows that $T_{\widetilde{f}} H_{g}=H_{g} T_{\widetilde{f}}$ implies $T_{f} H_{g}=H_{g} T_{f}$.

In view of the last two theorems, we can get the following useful corollary.
Corollary 3.1 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right), f=f_{++}+f_{--}, g=g_{j}\left(z_{2}\right) z_{1}^{j}$ and $H_{g} \neq 0$ where j is in \mathbb{Z}_{-}. If $T_{f} H_{g}=H_{g} T_{f}$, then $f+\tilde{f}$ is a constant.

Proof Since $T_{f} H_{g}=H_{g} T_{f}$, we get $T_{\tilde{f}} H_{g}=H_{g} T_{\tilde{f}}$ with the help of Theorem 3.2. Therefore $T_{f+\tilde{f}} H_{g}=H_{g} T_{f+\tilde{f}}$. Using Theorem 3.1, we obtain $f+\tilde{f}$ is a constant function.

Next, we will discuss the commutativity of a Toeplitz operator T_{f} and a Hankel operator H_{g}.
Theorem 3.3 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$, where $f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$ and $g=\sum_{i=-\infty}^{+\infty} g_{i}\left(z_{2}\right) z_{1}^{i}$. Then $T_{f} H_{g}=H_{g} T_{f}$ if and only if

$$
\sum_{j=0}^{+\infty} H_{g_{-j-n_{1}-1}} T_{f_{j-m_{1}}}=\sum_{j=0}^{+\infty} T_{f_{n_{1}-j}} H_{g_{-j-m_{1}-1}}
$$

for all $m_{1}, n_{1} \in \mathbb{Z}_{+}$.
Proof For m_{1}, m_{2}, n_{1} and n_{2} in \mathbb{Z}_{+}, we define

$$
\begin{aligned}
C_{m_{1}, m_{2}, n_{1}, n_{2}} & =\left(H_{g} T_{f} z_{1}^{m_{1}} z_{2}^{m_{2}}, z_{1}^{n_{1}} z_{2}^{n_{2}}\right)=\left(T_{f} z_{1}^{m_{1}} z_{2}^{m_{2}}, H_{g}^{*} z_{1}^{n_{1}} z_{2}^{n_{2}}\right) \\
& =\left(P\left(\sum_{j=-\infty}^{+\infty} f_{j}\left(z_{2}\right) z_{1}^{m_{1}+j} z_{2}^{m_{2}}\right), \bar{z}_{1} \bar{z}_{2}\left(\sum_{i=-\infty}^{+\infty} \bar{g}_{i}\left(z_{2}\right) \bar{z}_{1}^{i+n_{1}} \bar{z}_{2}^{n_{2}}\right)\right) \\
& =\left(\sum_{j=0}^{+\infty} P_{2}\left(f_{j-m_{1}}\left(z_{2}\right) z_{2}^{m_{2}}\right) z_{1}^{j}, \sum_{i=-\infty}^{+\infty} \bar{z}_{2}^{n_{2}+1} \bar{g}_{-i-n_{1}-1}\left(z_{2}\right) z_{1}^{j}\right) \\
& =\sum_{j=0}^{+\infty}\left(P_{2}\left(f_{j-m_{1}}\left(z_{2}\right) z_{2}^{m_{2}}\right), \bar{z}_{2}^{n_{2}+1} \bar{g}_{-j-n_{1}-1}\left(z_{2}\right)\right) \\
& =\left(\left(\sum_{j=0}^{+\infty} H_{g_{-j-n_{1}-1}} T_{f_{j-m_{1}}}\right) z_{2}^{m_{2}}, z_{2}^{n_{2}}\right)
\end{aligned}
$$

and

$$
D_{m_{1}, m_{2}, n_{1}, n_{2}}=\left(T_{f} H_{g} z_{1}^{m_{1}} z_{2}^{m_{2}}, z_{1}^{n_{1}} z_{2}^{n_{2}}\right)=\left(\left(\sum_{j=0}^{+\infty} T_{f_{n_{1}-j}} H_{g_{-j-m_{1}-1}}\right) z_{2}^{m_{2}}, z_{2}^{n_{2}}\right)
$$

Then we get for all $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{Z}_{+}$,

$$
C_{m_{1}, m_{2}, n_{1}, n_{2}}=D_{m_{1}, m_{2}, n_{1}, n_{2}}
$$

if and only if for all $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{Z}_{+}$,

$$
\left(\left(\sum_{j=0}^{+\infty} H_{g_{-j-n_{1}-1}} T_{f_{j-m_{1}}}\right) z_{2}^{m_{2}}, z_{2}^{n_{2}}\right)=\left(\left(\sum_{j=0}^{+\infty} T_{f_{n_{1}-j}} H_{g_{-j-m_{1}-1}}\right) z_{2}^{m_{2}}, z_{2}^{n_{2}}\right)
$$

Hence we obtain

$$
T_{f} H_{g}=H_{g} T_{f}
$$

if and only if for all $n_{1}, m_{1} \in \mathbb{Z}_{+}$,

$$
\sum_{j=0}^{+\infty} H_{g_{-j-n_{1}-1}} T_{f_{j-m_{1}}}=\sum_{j=0}^{+\infty} T_{f_{n_{1}-j}} H_{g_{-j-m_{1}-1}}
$$

By means of Theorem 3.3, we have the following discussions.
Corollary 3.2 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right)$, where $f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$ and $g=\sum_{i=-\infty}^{+\infty} g_{i}\left(z_{2}\right) z_{1}^{i}$. If $T_{f} H_{g}=H_{g} T_{f}$, then we have

$$
H_{g_{-n-1}} T_{f_{-m}}+T_{f_{n+1}} H_{g_{-m}}=0
$$

for m in \mathbb{N} and n in \mathbb{Z}_{+}.
Proof For m in \mathbb{N} and n in \mathbb{Z}_{+}, we define

$$
C_{n, m}=\sum_{j=0}^{+\infty} H_{g_{-j-n-1}} T_{f_{j-m}}
$$

and

$$
D_{n, m}=\sum_{j=0}^{+\infty} T_{f_{n-j}} H_{g_{-j-m-1}}
$$

Since $T_{f} H_{g}=H_{g} T_{f}$, by Theorem 3.3 it follows that $C_{n, m}=D_{n, m}$. In fact, we have the following expressions for $C_{n, m}$ and $D_{n, m}$.

$$
\begin{aligned}
C_{n, m} & =H_{g_{-n-1}} T_{f_{-m}}+\sum_{j=1}^{+\infty} H_{g_{-j-n-1}} T_{f_{j-m}}=H_{g_{-n-1}} T_{f_{-m}}+\sum_{s=0}^{+\infty} H_{g_{-(s+1)-n-1}} T_{f_{(s+1)-m}} \\
& =H_{g_{-n-1}} T_{f_{-m}}+\sum_{s=0}^{+\infty} H_{g_{-s-(n+1)-1}} T_{f_{s-(m-1)}}=H_{g_{-n-1}} T_{f_{-m}}+C_{n+1, m-1}
\end{aligned}
$$

and

$$
\begin{aligned}
D_{n+1, m-1} & =\sum_{j=0}^{+\infty} T_{f_{(n+1)-j}} H_{g_{-j-(m-1)-1}}=T_{f_{(n+1)}} H_{g_{-m}}+\sum_{j=1}^{+\infty} T_{f_{(n+1)-j}} H_{g_{-j-(m-1)-1}} \\
& =T_{f_{(n+1)}} H_{g_{-m}}+\sum_{s=0}^{+\infty} T_{f_{(n+1)-(s+1)}} H_{g_{-(s+1)-(m-1)-1}} \\
& =T_{f_{(n+1)}} H_{g_{-m}}+\sum_{s=0}^{+\infty} T_{f_{n-s}} H_{g_{-s-m-1}}=T_{f_{(n+1)}} H_{g_{-m}}+D_{n, m}
\end{aligned}
$$

Since $C_{n, m}=D_{n, m}$, it follows that

$$
H_{g_{-n-1}} T_{f_{-m}}+T_{f_{n+1}} H_{g_{-m}}=0
$$

for m in \mathbb{N} and n in \mathbb{Z}_{+}.
Corollary 3.3 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right), f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$ and $g=g_{j}\left(z_{2}\right) z_{1}^{j}$, where j is in \mathbb{Z}_{-}.
Then $T_{f} H_{g}=H_{g} T_{f}$ if and only if
(i) $H_{g_{j}} T_{f_{-i}}=T_{f_{i}} H_{g_{j}}=0, i>0$;
(ii) $H_{g_{j}} T_{f_{-i}}=T_{f_{i}} H_{g_{j}}, j+1 \leq i \leq 0$.

Proof Define

$$
\begin{aligned}
C_{m_{1}, m_{2}, n_{1}, n_{2}} & =\left(H_{g} T_{f} z_{1}^{m_{1}} z_{2}^{m_{2}}, z_{1}^{n_{1}} z_{2}^{n_{2}}\right) \\
& =\left(P\left(\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i+m_{1}} z_{2}^{m_{2}}\right), \bar{z}_{1} \bar{z}_{2}\left(\bar{g}_{j}\left(z_{2}\right) \bar{z}_{1}^{j} \bar{z}_{1}^{n_{1}} \bar{z}_{2}^{n_{2}}\right)\right) \\
& =\left(\sum_{i=-m_{1}}^{+\infty} P_{2}\left(f_{i}\left(z_{2}\right) z_{2}^{m_{2}}\right) z_{1}^{i+m_{1}}, \bar{g}_{j}\left(z_{2}\right) \bar{z}_{2}^{n_{2}+1} \bar{z}_{1}^{j+n_{1}+1}\right)
\end{aligned}
$$

for $m_{1}, m_{2}, n_{1}, n_{2}$ in \mathbb{Z}_{+}. Then we have
(a) $C_{m_{1}, m_{2}, n_{1}, n_{2}}=0$, if $n_{1}>-j-1$.
(b) $C_{m_{1}, m_{2}, n_{1}, n_{2}}=\left(P_{2}\left(f_{-j-m_{1}-n_{1}-1}\left(z_{2}\right) z_{2}^{m_{2}}\right), \bar{g}_{j}\left(z_{2}\right) \bar{z}_{2}^{n_{2}+1}\right)$, if $0 \leq n_{1} \leq-j-1$.

Similarly define

$$
D_{m_{1}, m_{2}, n_{1}, n_{2}}=\left(T_{f} H_{g} z_{1}^{m_{1}} z_{2}^{m_{2}}, z_{1}^{n_{1}} z_{2}^{n_{2}}\right)=\left(g_{j}\left(\bar{z}_{2}\right) \bar{z}_{2}^{m_{2}+1} \bar{z}_{1}^{j+m_{1}+1}, \sum_{i=n_{1}}^{-\infty} P_{2}\left(\bar{f}_{i}\left(z_{2}\right) z_{2}^{n_{2}}\right) z_{1}^{n_{1}-i}\right)
$$

and we have
(c) $D_{m_{1}, m_{2}, n_{1}, n_{2}}=0$, if $m_{1}>-j-1$,
(d) $D_{m_{1}, m_{2}, n_{1}, n_{2}}=\left(g_{j}\left(\bar{z}_{2}\right) \bar{z}_{2}^{m_{2}+1}, P_{2}\left(\bar{f}_{j+m_{1}+n_{1}+1}\left(z_{2}\right) z_{2}^{n_{2}}\right)\right)$, if $0 \leq m_{1} \leq-j-1$.

Suppose $T_{f} H_{g}=H_{g} T_{f}$. Since $T_{f} H_{g}=H_{g} T_{f}$ if and only if for all $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{Z}_{+}$, $C_{m_{1}, m_{2}, n_{1}, n_{2}}=D_{m_{1}, m_{2}, n_{1}, n_{2}}$, it follows that
(i) $H_{g_{j}} T_{f_{-j-m_{1}-n_{1}-1}}=0$, if $0 \leq n_{1} \leq-j-1$ and $m_{1} \geq-j-1$,
(ii) $T_{f_{j+m_{1}+n_{1}+1}} H_{g_{j}}=0$, if $0 \leq m_{1} \leq-j-1$ and $n_{1} \geq-j-1$,
(iii) $T_{f_{j+m_{1}+n_{1}+1}} H_{g_{j}}=H_{g_{j}} T_{f_{-j-m_{1}-n_{1}-1}}$, if $0 \leq m_{1} \leq-j-1$ and $0 \leq n_{1} \leq-j-1$.

Combining all these facts, we have

$$
H_{g_{j}} T_{f_{-i}}=T_{f_{i}} H_{g_{j}}=0
$$

for $i \in \mathbb{N}$, and

$$
H_{g_{j}} T_{f_{-i}}=T_{f_{i}} H_{g_{j}}
$$

for $j+1 \leq i \leq 0$.
It is easy to get that the converse is true.
Finally, we will discuss the relationship between f and g under the condition of $g=g_{j}\left(z_{2}\right) z_{1}^{j}$.
Theorem 3.4 Let $f, g \in L^{\infty}\left(\mathbb{T}^{2}\right), f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}, g=g_{j}\left(z_{2}\right) z_{1}^{j}$ and $f=f_{++}+f_{--}$, where $j \in \mathbb{Z}_{-}$. Then $T_{f} H_{g}=H_{g} T_{f}$ if and only if one of the following conditions is satisfied:
(i) $g_{j}\left(z_{2}\right)$ is in $H^{\infty}(\mathbb{D})$.
(ii) f and \widetilde{f} are in $H^{\infty}\left(\mathbb{D}^{2}\right)$.
(iii) $f_{i}\left(z_{2}\right)=0$ for all nonzero integers i and there exists a nonzero constant λ such that $f_{0}+\lambda g_{j}, f_{0}+\widetilde{f}_{0}$ and $f_{0} \cdot \widetilde{f}_{0}$ are in $H^{\infty}(\mathbb{D})$.

Proof Suppose $T_{f} H_{g}=H_{g} T_{f}$. Then we have
(i) $g_{j}\left(z_{2}\right)$ is in $H^{\infty}(\mathbb{D})$ provided that $H_{g}=0$.
(ii) If $T_{f}=\mu I$, where μ is a constant, then we have f is a constant function, i.e., f and \tilde{f} are in $H^{\infty}\left(\mathbb{D}^{2}\right)$.
(iii) If $H_{g} \neq 0$ and $T_{f} \neq \mu I$, then by Corollaries 3.1 and 3.3, we have
(a) $f+\widetilde{f}=C$, where C is a constant,
(b) $H_{g_{j}} T_{f_{-i}}=T_{f_{i}} H_{g_{j}}=0$, for all $i \in \mathbb{N}$,
(c) $T_{f_{0}} H_{g_{j}}=H_{g_{j}} T_{f_{0}}$.

Let $g_{j}\left(z_{2}\right)=\sum_{k=-\infty}^{+\infty} b_{k} z_{2}^{k}$ and $f_{i}\left(z_{2}\right)=\sum_{k=-\infty}^{+\infty} a_{i, k} z_{2}^{k}$ for all $i \in \mathbb{Z}$. Since $f=\sum_{i=-\infty}^{+\infty} f_{i}\left(z_{2}\right) z_{1}^{i}$, $f=f_{++}+f_{--}$and $f+\tilde{f}=C$, we have $a_{i, k}=-a_{-i,-k}$ for $i \in \mathbb{N}, k \in \mathbb{Z}_{+}$and $a_{i, k}=0$ for $i, k \in \mathbb{Z}$ where the product of i and k is negative. Thus $f_{i}\left(z_{2}\right)=\sum_{k=0}^{+\infty} a_{i, k} z_{2}^{k}$ and $f_{-i}\left(z_{2}\right)=$ $-\sum_{k=0}^{\infty} a_{i, k} z_{2}^{-k}$ for $i \in \mathbb{N}$.

For m, n in \mathbb{Z}_{+}and i in \mathbb{N}, using the fact (b), we have

$$
\begin{aligned}
\left(H_{g_{j}} T_{f_{-i}} z_{2}^{m}, z_{2}^{n}\right) & =\left(T_{f_{-i}} z_{2}^{m}, H_{g_{j}}^{*} z_{2}^{n}\right)=-\left(P_{2}\left(\sum_{k=0}^{+\infty} a_{i, k} z_{2}^{m-k}\right), \bar{z}_{2}^{n+1} \bar{g}_{j}\left(z_{2}\right)\right) \\
& =-\left(P_{2}\left(\sum_{k=0}^{+\infty} a_{i, k} z_{2}^{m-k}\right), \sum_{k=-\infty}^{+\infty} \bar{b}_{k} \bar{z}_{2}^{k+n+1}\right)=-\sum_{k=0}^{m} a_{i, k} b_{-(m+n+1)+k} \\
& =0,
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{k=0}^{m} a_{i, k} b_{-(m+n+1)+k}=0, \text { for all } m, n \in \mathbb{Z}_{+}, \quad i \in \mathbb{N} . \tag{6}
\end{equation*}
$$

Now we claim that for any $m \in \mathbb{Z}_{+}, a_{i, m}=0, i \in \mathbb{N}$.
Since $H_{g} \neq 0$, there exists $l \in \mathbb{N}$ such that $b_{-l} \neq 0$. Let $n+1=l$. Then the equation (6) can be written as

$$
\begin{equation*}
\sum_{k=0}^{m} a_{i, k} b_{-(m+l)+k}=0, \quad \text { for all } m \in \mathbb{Z}_{+}, \quad i \in \mathbb{N} \tag{7}
\end{equation*}
$$

If $m=0$, by Equation (7) and the fact $b_{-l} \neq 0$, we have $a_{i, 0} b_{-l}=0$ and $a_{i, 0}=0, i \in \mathbb{N}$.
If $m=1$, by Equation (7), we have $a_{i, 0} b_{-l-1}+a_{i, 1} b_{-l}=0$. Since $a_{i, 0}=0$ and $b_{-l} \neq 0$, we get $a_{i, 1}=0, i \in \mathbb{N}$.

Now suppose the conclusion holds when $0 \leq m \leq N$, that is,

$$
\begin{equation*}
a_{i, m}=0, \quad \text { for } \quad 0 \leq m \leq N, \quad i \in \mathbb{N} . \tag{8}
\end{equation*}
$$

If $m=N+1$, by Equation (7), we get

$$
\sum_{k=0}^{N} a_{i, k} b_{-(N+1+l)+k}+a_{i, N+1} b_{-l}=0 .
$$

Since the Equation (8) holds and $b_{-l} \neq 0$, we have $a_{i,(N+1)}=0$.
Hence by the induction we obtain

$$
a_{i, m}=0 \quad \text { for all } m \in \mathbb{Z}_{+}, \quad i \in \mathbb{N}
$$

i.e.,

$$
f_{i}=0, \quad \text { for all } i \in \mathbb{N} .
$$

Since $a_{-i,-k}=-a_{i, k}$ for $i \in \mathbb{N}, k \in \mathbb{Z}_{+}$, we get $f_{i}=0$ for all nonzero integers i.
By the fact (c) and [2], we get that there exists a nonzero constant λ such that $f_{0}+\lambda g_{j}$, $f_{0}+\widetilde{f}_{0}$ and $f_{0} \cdot \widetilde{f}_{0}$ are in $H^{\infty}(\mathbb{D})$.

By [2] and Corollary 3.3, it is easy to obtain that the converse holds.

References

[1] BROWN A, HALMOS P R. Algebraic properties of Toeplitz operators [J]. J. Reine Angew. Math., 1963/1964, 213: 89-102.
[2] MARTÍNEZ-AVENDAN̋O R A, When do Toeplitz and Hankel operators commute? [J]. Integral Equations Operator Theory, 2000, 37(3): 341-349.
[3] GUO Kunyu, ZHENG Dechao. Essentially commuting Hankel and Toeplitz operators [J]. J. Funct. Anal., 2003, 201 (1): 121-147.
[4] AXLER S, ČUČKOVIĆ Ž. Commuting Toeplitz operators with harmonic symbols [J]. Integral Equations Operator Theory, 1991, 14(1): 1-12.
[5] STROETHOFF K. Essentially commuting Toeplitz operators with harmonic symbols [J]. Canad. J. Math., 1993, 45(5): 1080-1093.
[6] AXLER S, ČUČKOVIĆ Ž, RAO N V. Commutants of analytic Toeplitz operators on the Bergman space [J]. Proc. Amer. Math. Soc., 2000, 128(7): 1951-1953.
[7] ČUČKOVIĆ Ž, RAO N V. Mellin transform, monomial symbols, and commuting Toeplitz operators [J]. J. Funct. Anal., 1998, 154(1): 195-214.
[8] GU Caixing, ZHENG Dechao. The semi-commutator of Toeplitz operators on the bidisc [J]. J. Operator Theory, 1997, 38(1): 173-193
[9] ZHENG Dechao. Commuting Toeplitz operators with pluriharmonic symbols [J]. Trans. Amer. Math. Soc., 1998, 350(4): 1595-1618.
[10] LEE Y J. Pluriharmonic symbols of commuting Toeplitz type operators on the weighted Bergman spaces [J]. Canad. Math. Bull., 1998, 41(2): 129-136.
[11] LU Yufeng. Commuting of Toeplitz operators on the Bergman spaces of the bidisc [J]. Bull. Austral. Math. Soc., 2002, 66(2): 345-351.
[12] CHOE B R, KOO H, LEE Y J. Commuting Toeplitz operators on the polydisk [J]. Trans. Amer. Math. Soc., 2004, 356(5): 1727-1749.
[13] LEE Y J. Commuting Toeplitz operators on the Hardy space of the bidisk [J]. J. Math. Anal. Appl., 2008, 341(1): 738-749.
[14] STEIN E M, WEISS G. Introduction to Fourier Analysis on Euclidean Spaces [M]. Princeton University Press, Princeton, N.J., 1971.

[^0]: $\overline{\text { Received November 10, 2009; Accepted January 4, } 2010}$
 Supported by the National Natural Science Foundation of China (Grant Nos. 10671028; 10971020).

 * Corresponding author

 E-mail address: lyfdlut@dlut.edu.cn (Y. F. LU)

