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1. Introduction

Let D be the open unit disk in the complex plane C. Its boundary is the unit circle T. The

bidisk D2 and torus T2 are the subsets of C2 which are Cartesian products of two copies D and

T, respectively. We write L2(T) and H2(D) to denote the usual Lebesgue space on T and Hardy

space on D, respectively. Let L2(T2) = L2(T2, dσ) be the usual Lebesgue space of T2, where

dσ is the normalized Haar measure on T2, and the Hardy space H2(D2) is the closure of the

polynomials in L2(T2). Let P2 denote the orthogonal projection from L2(T) onto H2(D), and P

denote the orthogonal projection from L2(T2) onto H2(D2).

For a function f ∈ L2(T), we define f∗(w) = f(w), f(w) = f(w) and f̃(w) = f(w),

respectively. If f ∈ L2(T2), we define f∗(w1, w2) = f(w1, w2), f(w1, w2) = f(w1, w2) and

f̃(w1, w2) = f(w1, w2). U is the operator on L2(T2) defined by

Uh(w1, w2) = w1w2h̃(w1, w2).

Clearly, U is a unitary operator on L2(T2) .

Definition 1.1 For f ∈ L∞(T2), the Toeplitz operator Tf and Hankel operator Hf with symbol

f are defined respectively by

Tfh = P (fh), Hfh = P (U(fh))

for functions h ∈ H2(D2).

Then it is easy to get that both Tf and Hf are bounded linear operators on H2(D2).
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Similarly, we can also define the Toeplitz operator Tf and the Hankel operator Hf on H2(D).

The general problem that we are interested in is the following: when Toeplitz and Hankel

(or two Toeplitz ) operators commute, what is the relationship between their symbols? Knowing

commutativity of two operators often gives an idea of what these operators look like; conversely,

trying to determine commutativity of Toeplitz and Hankel (or two Toeplitz) operators often leads

to interesting problems in analysis. In the setting of the classical Hardy space H2, Brown and

Halmos [1] characterized commutativity of Toeplitz operators on H2(D) . Mart́ınez-Avendaño [2]

completely solved the problem of when a Hankel operator commutes with a Toeplitz operator,

and proved that Hg and Tf commute if and only if one of the following three conditions is

satisfied: (i) g is in H∞; (ii) f and f̃ are in H∞; (iii) There exists a nonzero constant λ such

that f + λg,f + f̃ and f f̃ are in H∞. Guo and Zheng [3] characterized when a Hankel operator

and a Toeplitz operator have a compact commutator.

On the Bergman space of the unit disk, the first complete result was obtained by Axler and

Čučković [4] who characterized commuting Toeplitz operators with harmonic symbols. Stroethoff

[5] extended their results to essentially commuting Toeplitz operators, and Axler, Čučković and

Rao [6] subsequently showed that if two Toeplitz operators commute and the symbol of one of

them is analytic and nonconstant, then the other one is also analytic. Čučković and Rao [7]

studied Toeplitz operators that commute with Toeplitz operators with monomial symbols.

In several variables, the situation is much more complicated. Gu and Zheng [8] mainly

characterized when the semi-commutator TfTg − Tfg of two Toeplitz operators Tf and Tg on

the Hardy space of the bidisk is zero. Zheng [9] made significant contributions in the study of

commuting Toeplitz operators on the Bergman space of the unit ball in Cn with pluriharmonic

symbols. Lee [10] studied weighted cases. Lu [11] characterized commuting Toeplitz operators

on the Bergman space of the bidisk with H∞(D2) + H∞(D2) symbols. Choe, Koo and Lee

[12] obtained characterization of (essential) commuting Toeplitz operators with pluriharmonic

symbols on the Bergman sapce of the polydisk. Recently, on the Hardy space of the bidisk, Lee

[13] gave a necessary and sufficient condition for a bounded symbol of a Toeplitz operator that

commutes with another Toeplitz operator whose symbol is a certain type of bounded symbol.

Motivated by Mart́ınez-Avendaño [2] and Guo and Zheng [3], it is natural to ask about the

relationships between Toeplitz and Hankel operators on the Hardy space of higher dimensional

polydisks, but little is known concerning the commutativity of Hankel and Toeplitz operators

and many problems still remain open on the polydisk.

In this paper, we investigate the commutativity of Hankel operators and Toeplitz operators

on the Hardy space of the bidisk and completely characterize when the Toeplitz operator Tf with

a certain type of symbol commutes with the Hankel operator Hg with some special symbol.

To state our main result, we introduce some notations.

Throughout this paper, let Z denote the set of all integers, Z+ denote the set of all nonnegative

integers, Z− denote the set of all negative integers and N denote the set of all positive integers.

As in [14] we can consider multiple Fourier series on the bitorus T2. The multiple Fourier series

on the bitorus T2 can be viewed as the Fourier transformation on L1(T2). For f in L1(T2), the
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Fourier transformation of f on T × T is given by :

fm = fm1,m2 = (
1

2π
)2

∫ 2π

0

∫ 2π

0

f(eiθ1 , eiθ2)ei(m,θ)dθ1dθ2,

where m = (m1, m2) ∈ Z × Z, θ = (θ1, θ2) and (m, θ) = m1θ1 + m2θ2. By Theorem 1.7 in [14],

the Fourier transformation is injective, i.e., if f ∈ L1(T2) and fm1,m2 = 0 for all m ∈ Z×Z, then

f ≡ 0.

Using multiple Fourier series, we have

L2(T2) =
{

f : f =
∑

(m1,m2)∈Z×Z

fm1,m2e
i(m,θ) =

∑

(m1,m2)∈Z×Z

fm1,m2z
m1

1 zm2

2 ,

∑

(m1,m2)∈Z×Z

|fm1,m2 |
2 < +∞

}

H2(D2) =
{

h : h =
∑

(m1,m2)∈Z+×Z+

fm1,m2e
i(m,θ) =

∑

(m1,m2)∈Z+×Z+

fm1,m2z
m1
1 zm2

2 ,

∑

(m1,m2)∈Z+×Z+

|fm1,m2 |
2 < +∞

}

and

Pf =
∑

(m1,m2)∈Z+×Z+

fm1,m2z
m1
1 zm2

2 , for f =
∑

(m1,m2)∈Z×Z

fm1,m2z
m1
1 zm2

2 ∈ L2(T2).

The multiple Fourier series of f ∈ L2(T2) can be written as follows

f =
∑

(m1,m2)∈Z×Z

fm1,m2z
m1

1 zm2

2 = f++(z) + f+−(z) + f−+(z) + f−−(z),

where

f++(z) =
∑

m∈Z+×Z+

fmzm, f+−(z) =
∑

m∈Z+×Z−

fmzm,

f−+(z) =
∑

m∈Z−×Z+

fmzm, f−−(z) =
∑

m∈Z−×Z−

fmzm,

and for example, m = (m1, m2) ∈ Z+ × Z− means that m1 ∈ Z+ and m2 ∈ Z−, and zm means

the product zm1
1 zm2

2 .

2. The equation T
∗

f Hg = HgTf∗

In this section we will investigate when the equation T ∗

f Hg = HgTf∗ holds. Before doing

this, we discuss some properties of the Toeplitz and Hankel operators.

Lemma 2.1 Let f ∈ L∞(T2) and suppose f(z1, z2) =
∑+∞

i=−∞
fi(z2)z

i
1 is the Fourier series

expansion of f with respect to z1-variable. Then fi(z2) ∈ L∞(T).

Proof According to the supposition, we know

fj(z2) =

∫

T

f(z1, z2)z
j
1dσ1(z1), j ∈ Z.
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Then |fj(z2)| = |
∫

T
(
∑+∞

i=−∞
fi(z2)z

i
1)z

j
1dσ1(z1)| ≤ ‖f‖L∞(T2), that is, fi(z2) ∈ L∞(T).

Lemma 2.2 If f ∈ L∞(T2), then H∗

f = Hf∗ and T ∗

f = Tf .

Proof Suppose f =
∑

(m1,m2)∈Z×Z
fm1,m2z

m1
1 zm2

2 . For m1, m2, n1 and n2 in Z+, we have

(H∗

f (zn1
1 zn2

2 ), zm1
1 zm2

2 ) = (zn1
1 zn2

2 , Hf (zm1
1 zm2

2 ))

= (zn1
1 zn2

2 , P (z1z2

∑

(j1,j2)∈Z×Z

fj1,j2z1
j1+m1z2

j2+m2))

= (zn1
1 zn2

2 ,
∑

(j1,j2)∈Z×Z

fj1,j2z1
j1+m1+1z2

j2+m2+1)

= f
−n1−m1−1,−n2−m2−1

and

(Hf∗(zn1
1 zn2

2 ), zm1
1 zm2

2 ) = (P (U(f∗zn1
1 zn2

2 )), zm1
1 zm2

2 )

= f
−n1−m1−1,−n2−m2−1,

i.e.,

(H∗

f (zn1
1 zn2

2 ), zm1
1 zm2

2 ) = (Hf∗(zn1
1 zn2

2 ), zm1
1 zm2

2 ), for any m1, m2, n1 and n2 in Z+,

so we get H∗

f = Hf∗ .

For any g, h ∈ H2(D2), we have

(T ∗

f g, h) = (g, Tfh) =

∫

T2

g(z)f(z)h(z)dσ(z)

and

(Tfg, h) = (fg, h) =

∫

T2

g(z)f(z)h(z)dσ(z),

so T ∗

f = Tf . 2

Lemma 2.3 Suppose f ∈ L∞(T2) and

f =
∑

(i,j)∈Z×Z

fi,jz
i
1z

j
2 for z = (z1, z2) ∈ T

2.

Then Hf 6= 0 if and only if there exist n1 and n2 in Z− such that fn1,n2 6= 0.

Proof Since for m1, m2 in Z+,

Hf (zm1
1 zm2

2 ) = P (U(fzm1
1 zm2

2 ))

= P (z1z2

∑

(i,j)∈Z×Z

fi,jz
i
1z

j
2z

m1
1 zm2

2 )

= P (
∑

(i,j)∈Z×Z

fi,jz
−i−m1−1
1 z

−j−m2−1
2 )

=
∑

(i,j)∈Z+×Z+

f−i−m1−1,−j−m2−1z
i
1z

j
2,

we can conclude that Hf 6= 0 if and only if there are n1 and n2 in Z− such that fn1,n2 6= 0. 2
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Now we characterize when the equation T ∗

f Hg = HgTf∗ holds.

Theorem 2.1 Let f, g ∈ L∞(T2), and

f =

+∞∑

i=−∞

fi(z2)z
i
1, g =

+∞∑

i=−∞

gi(z2)z
i
1.

Then T ∗

f Hg = HgTf∗ if and only if for all k, l ∈ Z+,

+∞∑

j=0

T ∗

fj−l
Hg−j−k−1

=

+∞∑

j=0

Hg−l−j−1
Tf∗

j−k
,

where Tfi
and Hgj

are Toeplitz and Hankel operators on the H2(T), respectively.

Proof Since for k, l, α and β in Z+,

(T ∗

f Hgz
k
1 zα

2 , zl
1z

β
2 ) = (Hgz

k
1zα

2 , Tfzl
1z

β
2 )

= (P (U(
+∞∑

i=−∞

gi(z2)z
k+i
1 zα

2 )), P (
+∞∑

j=−∞

fj(z2)z
l+j
1 z

β
2 ))

= (
+∞∑

i=−∞

gi(z2)z
k+i+1
1 zα+1

2 , P (
+∞∑

j=−∞

fj(z2)z
l+j
1 z

β
2 ))

= (

+∞∑

i=−∞

g−l−i−k−1(z2)z
i+l
1 z−α−1

2 , P (

+∞∑

j=−∞

fj(z2)z
l+j
1 z

β
2 ))

=

+∞∑

i=−l

(g−l−i−k−1(z2)z
−α−1
2 , P2(fi(z2)z

β
2 ))

= ((
+∞∑

i=0

T ∗

fi−l
Hg−i−k−1

)zα
2 , z

β
2 )

and

(HgTf∗zk
1zα

2 , zl
1z

β
2 ) = (Tf∗zk

1zα
2 , H∗

g zl
1z

β
2 ) = ((

+∞∑

i=0

Hg−l−i−1
Tf∗

i−k
)zα

2 , z
β
2 ),

we have

(T ∗

f Hgz
k
1zα

2 , zl
1z

β
2 ) = (HgTf∗zk

1zα
2 , zl

1z
β
2 )

if and only if

((

+∞∑

j=0

T ∗

fj−l
Hg−j−k−1

)zα
2 , z

β
2 ) = ((

+∞∑

j=0

Hg−l−j−1
Tf∗

j−k
)zα

2 , z
β
2 ).

Hence we can conclude that

T ∗

f Hg = HgTf∗ ,

if and only if for all k, l ∈ Z+,

+∞∑

j=0

T ∗

fj−l
Hg−j−k−1

=
+∞∑

j=0

Hg−l−j−1
Tf∗

j−k
. 2
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In the light of Theorem 2.1, we can get the following two results.

Corollary 2.1 Let f, g ∈ L∞(T2) as in Theorem 2.1. If T ∗

f Hg = HgTf∗ , then we have

T ∗

f
−(l+1)

Hg−k
= −Hg

−(l+1)
Tf∗

−k

for k in N and l in Z+.

Proof If T ∗

f Hg = HgTf∗ , then

(T ∗

f Hgz
k−1
1 zα

2 , zl+1
1 z

β
2 ) = (HgTf∗zk−1

1 zα
2 , zl+1

1 z
β
2 ), (1)

(T ∗

f Hgz
k
1zα

2 , zl
1z

β
2 ) = (HgTf∗zk

1zα
2 , zl

1z
β
2 ) (2)

for k in N and l, α, β in Z+.

From (1) and (2), we get

+∞∑

i=−(l+1)

(g−l−i−k−1(z2)z
−α−1
2 , P2(fi(z2)z

β
2 )) =

+∞∑

i=−(k−1)

(P2(f i(z2)z
α
2 ), g

−l−i−k−1(z2)z
−β−1
2 ),

(3)
+∞∑

i=−l

(g−l−i−k−1(z2)z
−α−1
2 , P2(fi(z2)z

β
2 )) =

+∞∑

i=−k

(P2(f i(z2)z
α
2 ), g

−l−i−k−1(z2)z
−β−1
2 ). (4)

It is trivial to get

(g−k(z2)z
−α−1
2 , P2(f−(l+1)(z2)z

β
2 )) = −(P2(f−k(z2)z

α
2 ), g

−l−1(z2)z
−β−1
2 ),

i.e.,

(T ∗

f
−(l+1)

Hg−k
zα
2 , z

β
2 ) = (−Hg

−(l+1)
Tf∗

−k
zα
2 , z

β
2 ). (5)

Since the equation (5) holds for all α, β ∈ Z+, we obtain the desired conclusion. 2

Corollary 2.2 Let f , g ∈ L∞(T2), f =
∑+∞

i=−∞
fi(z2)z

i
1 and g = gj(z2)z

j
1, where j ∈ Z−.

Suppose f = f++ + f−− and Hg 6= 0. Then T ∗

f Hg = HgTf∗ if and only if f−− = 0.

Proof Since for k, l, α and β in Z+,

(T ∗

f Hgz
k
1zα

2 , zl
1z

β
2 ) = (Hgz

k
1zα

2 , Tfzl
1z

β
2 ) = (gj(z2)z

α+1
2 z

j+k+1
1 ,

+∞∑

i=−l

P2(fi(z2)z
β
2 )zl+i

1 ),

we get

(a) (T ∗

f Hgz
k
1 zα

2 , zl
1z

β
2 ) = 0, if k > −j − 1;

(b) (T ∗

f Hgz
k
1zα

2 , zl
1z

β
2 ) = (zα+1

2 gj(z2), P2(f−j−k−l−1(z2)z
β
2 )), if 0 ≤ k ≤ −j − 1.

Similarly, we get

(c) (HgTf∗zk
1zα

2 , zl
1z

β
2 ) = 0, if l > −j − 1;

(d) (HgTf∗zk
1zα

2 , zl
1z

β
2 ) = (P2(f−j−k−l−1(z2)z

α
2 ), z

β+1
2 gj(z2)), if 0 ≤ l ≤ −j − 1.

If T ∗

f Hg = HgTf∗ , then we obtain

(i) If 0 ≤ k ≤ −j − 1 and l > −j − 1,

(zα+1
2 gj(z2), P2(f−j−k−l−1(z2)z

β
2 )) = 0;
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(ii) If 0 ≤ l ≤ −j − 1 and k > −j − 1,

(P2(f−j−k−l−1(z2)z
α
2 ), zβ+1

2 gj(z2)) = 0;

(iii) If 0 ≤ k ≤ −j − 1 and 0 ≤ l ≤ −j − 1,

(zα+1
2 gj(z2), P2(f−j−k−l−1(z2)z

β
2 )) = (P2(f−j−k−l−1(z2)z

α
2 ), zβ+1

2 gj(z2)).

Since the equations (1), (2) and (3) hold for all α, β ∈ Z+, we have T ∗

f0
Hgj

= Hgj
Tf∗

0
and

T ∗

fi
Hgj

= Hgj
Tf∗

i
= 0 where i ∈ Z−.

Since f =
∑+∞

i=−∞
fi(z2)z

i
1, f = f++ + f−− and Hg 6= 0, we have

(iv) fi ∈ H∞(D) for all i ∈ Z−,

(v) Hgj
6= 0 and there exists α0 ∈ Z+ such that Hgj

zα0
2 6= 0.

By Lemma 2.2 and the fact that T ∗

fi
Hgj

= 0, we get fi · (Hgj
zα0
2 ) = 0. Since fi ∈ H∞(D) and

Hgj
zα0
2 6= 0, using the fact in [1] that a non-zero analytic function cannot vanish on a set of

positive measure, we obtain fi = 0 for all i ∈ Z−, that is, fi = 0 for all i ∈ Z−. So we have

f−− = 0.

Suppose f−− = 0. Since f = f+++f−−, we have f ∈ H∞(D2). Since for n1, n2, m1, m2 ∈ Z+,

(T ∗

f Hgz
n1
1 zn2

2 , zm1
1 zm2

2 ) = (Hgz
n1
1 zn2

2 , Tfzm1
1 zm2

2 ) = (z1z2g̃zn1
1 zn2

2 , fzm1
1 zm2

2 )

= (zn1+1
1 zn2+1

2 g̃f , zm1
1 zm2

2 )

and

(HgTf∗zn1
1 zn2

2 , zm1
1 zm2

2 ) = (zn1+1
1 zn2+1

2 g̃f , zm1
1 zm2

2 ),

we obtain

(T ∗

f Hgz
n1
1 zn2

2 , zm1
1 zm2

2 ) = (HgTf∗zn1
1 zn2

2 , zm1
1 zm2

2 )

for all n1, n2, m1, m2 ∈ Z+, that is,

T ∗

f Hg = HgTf∗ . 2

3. Commutativity of Toeplitz and Hankel operators

In this section we characterize when a Toeplitz operator Tf commutes with a Hankel operator

Hg. we are not able to obtain a characterization when two symbols are all arbitrary bounded

functions. In the course of the proof of the main Theorem 3.4, we will make use of some known

results obtained in [2] for commutativity of Toeplitz and Hankel operators on the Hardy space

of the unit disk.

Theorem 3.1 Let f, g ∈ L∞(T2), f = f++ + f−−, f = f̃ , g = gj(z2)z
j
1 and Hg 6= 0 where j is

in Z−. If HgTf = TfHg, then f is a constant.

Proof Using f = f̃ , we have (f)∗ = f . By Lemma 2.2, Tf = T ∗

f
. Combining these two facts

together, we see that HgTf = TfHg is equivalent to T ∗

f
Hg = HgTf

∗ . By Corollary 2.2, we obtain

f++ is a constant. Applying f = f̃ again, it follows that f is a constant. 2
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Theorem 3.2 Let f, g ∈ L∞(T2). Then TfHg = HgTf if and only if T
f̃
Hg = HgTf̃

.

Proof Let us define the anti-unitary involution V on H2 by V f = f∗. It is easy to check

that V TfV = Tf∗ for f ∈ L∞(T2), and V HgV = H∗

g for any Hankel operator Hg. Clearly,

V 2 = I. Thus TfHg = HgTf implies that V TfV V HgV = V HgV V TfV , which in turn implies

that Tf∗H∗

g = H∗

g Tf∗ . Taking adjoints, we get HgTf̃
= T

f̃
Hg. Applying this to f̃ , it follows that

T
f̃
Hg = HgTf̃

implies TfHg = HgTf . 2

In view of the last two theorems, we can get the following useful corollary.

Corollary 3.1 Let f, g ∈ L∞(T2), f = f++ + f−−, g = gj(z2)z
j
1 and Hg 6= 0 where j is in Z−.

If TfHg = HgTf , then f + f̃ is a constant.

Proof Since TfHg = HgTf , we get T
f̃
Hg = HgTf̃

with the help of Theorem 3.2. Therefore

T
f+f̃

Hg = HgTf+f̃
. Using Theorem 3.1, we obtain f + f̃ is a constant function. 2

Next, we will discuss the commutativity of a Toeplitz operator Tf and a Hankel operator Hg.

Theorem 3.3 Let f, g ∈ L∞(T2), where f =
∑+∞

i=−∞
fi(z2)z

i
1 and g =

∑+∞

i=−∞
gi(z2)z

i
1. Then

TfHg = HgTf if and only if

+∞∑

j=0

Hg−j−n1−1Tfj−m1
=

+∞∑

j=0

Tfn1−j
Hg−j−m1−1

for all m1, n1 ∈ Z+.

Proof For m1, m2, n1 and n2 in Z+, we define

Cm1,m2,n1,n2 = (HgTfzm1
1 zm2

2 , zn1
1 zn2

2 ) = (Tfzm1
1 zm2

2 , H∗

g zn1
1 zn2

2 )

= (P (
+∞∑

j=−∞

fj(z2)z
m1+j
1 zm2

2 ), z1z2(
+∞∑

i=−∞

gi(z2)z
i+n1
1 zn2

2 ))

= (

+∞∑

j=0

P2(fj−m1(z2)z
m2
2 )zj

1,

+∞∑

i=−∞

zn2+1
2 g

−i−n1−1(z2)z
j
1)

=

+∞∑

j=0

(P2(fj−m1(z2)z
m2
2 ), zn2+1

2 g
−j−n1−1(z2))

= ((

+∞∑

j=0

Hg−j−n1−1Tfj−m1
)zm2

2 , zn2
2 )

and

Dm1,m2,n1,n2 = (TfHgz
m1
1 zm2

2 , zn1
1 zn2

2 ) = ((

+∞∑

j=0

Tfn1−j
Hg−j−m1−1)z

m2
2 , zn2

2 ).

Then we get for all m1, m2, n1, n2 ∈ Z+,

Cm1,m2,n1,n2 = Dm1,m2,n1,n2
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if and only if for all m1, m2, n1, n2 ∈ Z+,

((

+∞∑

j=0

Hg−j−n1−1Tfj−m1
)zm2

2 , zn2
2 ) = ((

+∞∑

j=0

Tfn1−j
Hg−j−m1−1)z

m2
2 , zn2

2 ).

Hence we obtain

TfHg = HgTf

if and only if for all n1, m1 ∈ Z+,

+∞∑

j=0

Hg−j−n1−1Tfj−m1
=

+∞∑

j=0

Tfn1−j
Hg−j−m1−1 . 2

By means of Theorem 3.3, we have the following discussions.

Corollary 3.2 Let f, g ∈ L∞(T2), where f =
∑+∞

i=−∞
fi(z2)z

i
1 and g =

∑+∞

i=−∞
gi(z2)z

i
1. If

TfHg = HgTf , then we have

Hg−n−1Tf−m
+ Tfn+1Hg−m

= 0

for m in N and n in Z+.

Proof For m in N and n in Z+, we define

Cn,m =

+∞∑

j=0

Hg−j−n−1Tfj−m

and

Dn,m =

+∞∑

j=0

Tfn−j
Hg−j−m−1 .

Since TfHg = HgTf , by Theorem 3.3 it follows that Cn,m = Dn,m. In fact, we have the following

expressions for Cn,m and Dn,m.

Cn,m = Hg−n−1Tf−m
+

+∞∑

j=1

Hg−j−n−1Tfj−m
= Hg−n−1Tf−m

+

+∞∑

s=0

Hg
−(s+1)−n−1

Tf(s+1)−m

= Hg−n−1Tf−m
+

+∞∑

s=0

Hg
−s−(n+1)−1

Tfs−(m−1)
= Hg−n−1Tf−m

+ Cn+1,m−1

and

Dn+1,m−1 =

+∞∑

j=0

Tf(n+1)−j
Hg

−j−(m−1)−1
= Tf(n+1)

Hg−m
+

+∞∑

j=1

Tf(n+1)−j
Hg

−j−(m−1)−1

= Tf(n+1)
Hg−m

+

+∞∑

s=0

Tf(n+1)−(s+1)
Hg

−(s+1)−(m−1)−1

= Tf(n+1)
Hg−m

+
+∞∑

s=0

Tfn−s
Hg−s−m−1 = Tf(n+1)

Hg−m
+ Dn,m.

Since Cn,m = Dn,m, it follows that

Hg−n−1Tf−m
+ Tfn+1Hg−m

= 0,
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for m in N and n in Z+. 2

Corollary 3.3 Let f, g ∈ L∞(T2), f =
∑+∞

i=−∞
fi(z2)z

i
1 and g = gj(z2)z

j
1, where j is in Z−.

Then TfHg = HgTf if and only if

(i) Hgj
Tf−i

= Tfi
Hgj

= 0, i > 0;

(ii) Hgj
Tf−i

= Tfi
Hgj

, j + 1 ≤ i ≤ 0.

Proof Define

Cm1,m2,n1,n2 = (HgTfzm1
1 zm2

2 , zn1
1 zn2

2 )

= (P (
+∞∑

i=−∞

fi(z2)z
i+m1
1 zm2

2 ), z1z2(gj(z2)z
j
1z

n1
1 zn2

2 ))

= (

+∞∑

i=−m1

P2(fi(z2)z
m2
2 )zi+m1

1 , gj(z2)z
n2+1
2 z

j+n1+1
1 )

for m1, m2, n1, n2 in Z+ . Then we have

(a) Cm1,m2,n1,n2 = 0, if n1 > −j − 1.

(b) Cm1,m2,n1,n2 = (P2(f−j−m1−n1−1(z2)z
m2
2 ), gj(z2)z

n2+1
2 ), if 0 ≤ n1 ≤ −j − 1.

Similarly define

Dm1,m2,n1,n2 = (TfHgz
m1
1 zm2

2 , zn1
1 zn2

2 ) = (gj(z2)z
m2+1
2 z

j+m1+1
1 ,

−∞∑

i=n1

P2(f i(z2)z
n2
2 )zn1−i

1 ),

and we have

(c) Dm1,m2,n1,n2 = 0, if m1 > −j − 1,

(d) Dm1,m2,n1,n2 = (gj(z2)z
m2+1
2 , P2(f j+m1+n1+1(z2)z

n2
2 )), if 0 ≤ m1 ≤ −j − 1.

Suppose TfHg = HgTf . Since TfHg = HgTf if and only if for all m1, m2, n1, n2 ∈ Z
+
,

Cm1,m2,n1,n2 = Dm1,m2,n1,n2 , it follows that

(i) Hgj
Tf−j−m1−n1−1 = 0, if 0 ≤ n1 ≤ −j − 1 and m1 ≥ −j − 1,

(ii) Tfj+m1+n1+1Hgj
= 0, if 0 ≤ m1 ≤ −j − 1 and n1 ≥ −j − 1,

(iii) Tfj+m1+n1+1Hgj
= Hgj

Tf−j−m1−n1−1 , if 0 ≤ m1 ≤ −j − 1 and 0 ≤ n1 ≤ −j − 1.

Combining all these facts, we have

Hgj
Tf−i

= Tfi
Hgj

= 0

for i ∈ N, and

Hgj
Tf−i

= Tfi
Hgj

for j + 1 ≤ i ≤ 0.

It is easy to get that the converse is true. 2

Finally, we will discuss the relationship between f and g under the condition of g = gj(z2)z
j
1.

Theorem 3.4 Let f, g ∈ L∞(T2), f =
∑+∞

i=−∞
fi(z2)z

i
1, g = gj(z2)z

j
1 and f = f++ + f−−,

where j ∈ Z−. Then TfHg = HgTf if and only if one of the following conditions is satisfied:

(i) gj(z2) is in H∞(D).
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(ii) f and f̃ are in H∞(D2).

(iii) fi(z2) = 0 for all nonzero integers i and there exists a nonzero constant λ such that

f0 + λgj , f0 + f̃0 and f0 · f̃0 are in H∞(D).

Proof Suppose TfHg = HgTf . Then we have

(i) gj(z2) is in H∞(D) provided that Hg = 0.

(ii) If Tf = µI, where µ is a constant, then we have f is a constant function, i.e., f and f̃

are in H∞(D2).

(iii) If Hg 6= 0 and Tf 6= µI, then by Corollaries 3.1 and 3.3, we have

(a) f + f̃ = C, where C is a constant,

(b) Hgj
Tf−i

= Tfi
Hgj

= 0, for all i ∈ N,

(c) Tf0Hgj
= Hgj

Tf0 .

Let gj(z2) =
∑+∞

k=−∞
bkzk

2 and fi(z2) =
∑+∞

k=−∞
ai,kzk

2 for all i ∈ Z. Since f =
∑+∞

i=−∞
fi(z2)z

i
1,

f = f++ + f−− and f + f̃ = C, we have ai,k = −a−i,−k for i ∈ N, k ∈ Z+ and ai,k = 0 for

i, k ∈ Z where the product of i and k is negative. Thus fi(z2) =
∑+∞

k=0 ai,kzk
2 and f−i(z2) =

−
∑

∞

k=0 ai,kz−k
2 for i ∈ N.

For m, n in Z+ and i in N, using the fact (b), we have

(Hgj
Tf−i

zm
2 , zn

2 ) = (Tf−i
zm
2 , H∗

gj
zn
2 ) = −(P2(

+∞∑

k=0

ai,kzm−k
2 ), zn+1

2 gj(z2))

= −(P2(

+∞∑

k=0

ai,kzm−k
2 ),

+∞∑

k=−∞

bkzk+n+1
2 ) = −

m∑

k=0

ai,kb−(m+n+1)+k

= 0,

that is,
m∑

k=0

ai,kb−(m+n+1)+k = 0, for all m, n ∈ Z+, i ∈ N. (6)

Now we claim that for any m ∈ Z+, ai,m = 0, i ∈ N.

Since Hg 6= 0, there exists l ∈ N such that b−l 6= 0. Let n + 1 = l. Then the equation (6) can

be written as
m∑

k=0

ai,kb−(m+l)+k = 0, for all m ∈ Z+, i ∈ N. (7)

If m = 0, by Equation (7) and the fact b−l 6= 0, we have ai,0b−l = 0 and ai,0 = 0, i ∈ N.

If m = 1, by Equation (7), we have ai,0b−l−1 + ai,1b−l = 0. Since ai,0 = 0 and b−l 6= 0, we

get ai,1 = 0, i ∈ N.

Now suppose the conclusion holds when 0 ≤ m ≤ N , that is,

ai,m = 0, for 0 ≤ m ≤ N, i ∈ N. (8)

If m = N + 1, by Equation (7), we get

N∑

k=0

ai,kb−(N+1+l)+k + ai,N+1b−l = 0.
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Since the Equation (8) holds and b−l 6= 0, we have ai,(N+1) = 0.

Hence by the induction we obtain

ai,m = 0 for all m ∈ Z+, i ∈ N,

i.e.,

fi = 0, for all i ∈ N.

Since a−i,−k = −ai,k for i ∈ N, k ∈ Z+, we get fi = 0 for all nonzero integers i.

By the fact (c) and [2], we get that there exists a nonzero constant λ such that f0 + λgj ,

f0 + f̃0 and f0 · f̃0 are in H∞(D).

By [2] and Corollary 3.3, it is easy to obtain that the converse holds.
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