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Abstract In this paper, we prove that some Kronecker products of G and K2 are determined by

their spectra where the graph G is also determined by its spectrum. And a problem for further

researches is proposed.
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1. Introduction

In this paper, we only consider undirected simple graphs (loops and multiple edges are not

allowed). Let G be a graph with n vertices and the adjacency matrix A(G). Let D(G) be the

diagonal matrix with the degrees of G. The matrix L(G) = D(G)−A(G) is called the Laplacian

matrix of G. The adjacency (resp. Laplacian) spectrum of G is the set of all eigenvalues of

A(G) (resp. L(G)) together with their multiplicities. The adjacency matrix of the complement

of graph G is denoted by A(G), that is, A(G) = J − A(G) − I where J and I are the all-ones

matrix and the identity matrix, respectively.

Two graphs are said to be cospectral with respect to (w.r.t. for short) adjacency (resp.

Laplacian) matrix if they share the same adjacency (resp. Laplacian) spectrum. A graph G is

said to be determined by its spectrum (DS for short) if any graph H that has the same spectrum

as G is isomorphic to G (of course, we should identify the spectrum concerned, such as the

adjacency spectrum, the Laplacian spectrum, etc.)

The problem of characterizing the DS graphs goes back for half a century and originates from

chemistry. By now few families of DS graphs are known, so finding new families of DS graphs

is an interesting problem. For the background and some known results about this problem, we

refer the reader to [1] and the references therein.
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The Cartesian product of two graphs G and H , denoted by G©H , is a new graph that has

vertex set V (G) × V (H) and edge set {(a, x)(b, y) : ab ∈ E(G) and x = y or xy ∈ E(H) and

a = b}. The Kronecker product of G and H , denoted by G × H , is a new graph that has vertex

set V (G) × V (H) and edge set {(a, x)(b, y) : ab ∈ E(G) and xy ∈ E(H)}. The strong product

of G and H , denoted by G⊗ H , is also a new graph that has vertex set V (G) × V (H) and edge

set E(G © H)
⋃

E(G × H).

In [2], some properties of Kronecker products of graphs were given. In this paper, we investi-

gate the DS properties of products of some graphs and K2, and show that some products of some

known DS graphs and K2 are also DS. Finally, we propose a problem for further researches.

2. Preliminaries

The following are several known results we shall use in the next section.

Theorem 2.1 ([1]) A regular graph is DS if and only if it is DS w.r.t. the adjacency matrix A,

the Laplacian matrix L and the adjacency matrix A of the complement.

Lemma 2.1 ([1]) Let G be a graph. For the adjacency matrix and the Laplacian matrix, the

following can be obtained from the spectrum.

(i) The number of vertices. (ii) The number of edges.

(iii) Whether G is regular. (iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follow from the spectrum.

(v) The number of closed walk of any length. (vi) Whether G is bipartite.

For the Laplacian matrix the following follow from the spectrum.

(vii) The number of spanning trees. (viii) The number of components.

Lemma 2.2 Let G be a regular graph. If H is cospectral with G w.r.t. the adjacency matrix

A, then G and H are cospectral w.r.t. the Laplacian matrix L.

Proof Suppose that G is a k-regular graph of order n. Then, so is the graph H by (i), (ii)

and (iii) of Lemma 2.1. Then D(G) = D(H) = kIn. Since A(G) and A(H) are two cospectral

symmetric 0,1-matrices, they are similar. It follows that D(G) − A(G) and D(H) − A(H) are

also similar ones. This implies that the graphs G and H are cospectral w.r.t. the Laplacian

matrix L. 2

Theorem 2.2 ([1]) The complete graph Kn, the regular complete bipartite graph Km,m, the

cycle Cn and their complements are DS.

Theorem 2.3 ([1]) The path Pn with n vertices is DS w.r.t. the adjacency matrix.

Theorem 2.4 ([1]) The disjoint union of k complete graphs Km1
+ Km2

+ · · · + Kmk
, the

disjoint union of k disjoint paths Pn1
+ Pn2

+ · · · + Pnk
, the disjoint union of k disjoint cycles

Cn1
+ Cn2

+ · · · + Cnk
are all DS w.r.t. the adjacency matrix.
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Theorem 2.5 ([2]) Let G be a connected graph. The Kronecker product G× K2 is a bipartite

graph with partition {(x, 1)|x ∈ V (G)}
⋃

{(x, 2)|x ∈ V (G)}. If G has no odd cycle, then G×K2

has exactly two connected components isomorphic to G.

Theorem 2.6 ([3]) Let G be a bipartite graph with eigenvalues λ1 > λ2 > λ3 with respective

multiplicities m1, m2, and m3. Then λ1 = −λ3, λ2 = 0, m3 = m1 and G is the disjoint union of

m1 complete bipartite graphs Kri,si
where risi = λ2

1, i = 1, . . . , m1, and m2 −
∑m1

i=1(ri + si − 2)

isolated vertices.

3. Main results

In this section we only consider the DS property of some graphs w.r.t. the adjacency matrix.

So, the DS property w.r.t. the adjacency matrix is simply denoted by DS.

In [4], it was pointed out that a regular graph G has ±1 and ±r as distinct eigenvalues if and

only if each connected component is isomorphic to a graph obtained from Kr+1,r+1 by deleting

a complete matching. By the definition of Kronecker product and Cartesian product of graphs,

it is obvious that Kn © K2 = (Kn × K2)
c, where Gc denotes the complement of G. Because of

the regularity of Kn ×K2 and Theorem 2.1, Kn ©K2 is DS. Moreover, we can easily verify that

Kn ⊗ K2 = K2n. In view of Theorem 2.2, the following theorem immediately holds.

Theorem 3.1 The products Kn © K2, Kn × K2, Kn ⊗ K2 are all DS.

Theorem 3.2 Let G be a k-regular bipartite graph of order 2m. If k = 1, 2, m− 1, m, then the

product G × K2 is DS.

Proof For k = 1, we have G = P2 + P2 + · · · + P2 = mP2. It can be easily verified that

G × K2 = 2mP2. By Theorem 2.4, this theorem follows immediately.

For k = 2, G must be a union of t disjoint even cycles, that is, G = C2k1
+ C2k2

+ · · ·+ C2kt

where k1 + k2 + · · · + kt = m. Applying Theorems 2.4 and 2.5, this theorem holds.

For k = m−1, G will be denoted by K
(1)
m,m, which is a bipartite graph by removing a complete

matching from Km,m. Then we have K
(1)
m,m × K2 = 2K

(1)
m,m with application of Theorem 2.5.

Suppose that the graph H is cospectral with K
(1)
m,m×K2. Then H must be an (m−1)-regular

bipartite graph of order 4m with two connected components because of (i), (iii), (vi), (viii) of

Lemmas 2.1 and 2.2. So we can assume that H = H1+H2 where Hi is an (m−1)-regular bipartite

graph of order 2m for i = 1, 2. Otherwise we have |V (H1)| 6= |V (H2)|, then one of Hi for i = 1, 2,

without loss of generality, H1 is Km−1,m−1, and its spectrum is {m − 1, 02m−4,−(m − 1)} (see

p.72-74 in [4]). K
(1)
m,m is isomorphic to Km ×K2 by Theorem 3.1, so the spectrum of K

(1)
m,m ×K2

is {(m− 1)2, 12m−2, (−1)2m−2, (−(m− 1))2}. This is a contradiction to the fact that H1 + H2 is

cospectral with K
(1)
m,m × K2. Since Kn × K2 is DS, H is isomorphic to 2K

(1)
m,m = K

(1)
m,m × K2.

The proof of the case for k = m is similar to that of the case for k = m − 1, and is omitted

here. 2

Remark 3.1 Note that the proof of the case for m = k in Theorem 3.2 can be simplified. A
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k-regular graph G is said to be strongly regular with parameters (k, a, c) if each pair of adjacent

vertices in G has the same number a ≥ 0 of common neighbors, and each pair of non-adjacent

vertices in G has the same number c ≥ 1 of common neighbors. It was pointed out in [1] that

the disjoint union of t copies of a strongly regular DS graph is also DS. It is obvious that Km,m

is a strongly regular graph with parameters (m, 0, 1). We can complete the proof by choosing

t = 2.

Corollary 3.1 The product Cn × K2 is DS.

Proof By the definition of Kronecker product of graphs, it is obvious that

Cn × K2 =

{

C2n, if n is odd;

2Cn, if n is even.

This corollary holds immediately by Theorems 2.2 and 3.2. 2

By a similar method, we can show that the product Pn × K2 is also DS.

In the next, we will consider the DS property of complete bipartite graphs and always assume

that m, n are two positive integers with m ≤ n in the complete bipartite graph Km,n.

Theorem 3.3 The complete bipartite graph Km,n (m < n) is DS if and only if for any integer

k with m < k < n, k is not a factor of mn.

Proof Let f(x) = m+n−x− mn
x

, and let f0(x) = x+ mn
x

, where x and mn
x

are always positive

integers.

First we consider the necessity of this theorem. Suppose that a graph H is cospectral with

Km,n. Since the spectrum of Km,n is {√mn, 0m+n−2,−√
mn}, by Theorem 2.6, H = Kr1,s1

+

(m + n − r1 − s1)K1 where r1s1 = mn. Because of the DS property of Km,n, we may have that

r1 = m, s1 = n. Since the function f(x) = m+n−x− mn
x

has the maximum value 0 and reaches

its maximum only at x = m or x = n, the function f0(x) = x + mn
x

has the minimum value

m + n in [m, n] and reaches its minimum only at x = m or x = n. Owing to the monotonicity of

the function f0(x) at the integers in the intervals (m,
√

mn) and (
√

mn, n), any integer x such

that m < x < n is not a factor of mn.

Now we turn to the sufficiency of this theorem. Because of the non-divisibility of mn by any

integer k with m < k < n, the function f0(x) = x + mn
x

reaches the minimum value m + n only

at x = m or x = n. So we have that m + n− r1 − s1 ≤ 0 for all positive integers r1, s1 such that

r1 ≤ s1 and r1s1 = mn and the equality holds only if r1 = m, s1 = n. Therefore, by Theorem

2.6, any graph H cospectral with Km,n is isomorphic to Km,n, thus this result follows. 2

Corollary 3.2 The star K1,n is DS if and only if n is 1 or prime.

For any integer k with 1 < k < n, k is not a factor of n, then n must be prime. Combining

it and Theorem 2.2, this corollary follows immediately.

Corollary 3.3 Let m and n be two positive integers with n − m ≤ 2. Then the complete

bipartite graph Km,n is DS.



Some results on graph products determined by their spectra 231

Proof When n−m = 0, this result is easily obtained by Theorem 2.2. For the case of n−m = 1,

there is no integer k such that m < k < n, therefore this result follows immediately from Theorem

3.3. While n − m = 2, m + 1 is the unique integer between m and n which is not a factor of

mn = m(m + 2). In view of Theorem 3.3, the proof is completed. 2

Note that for n − m = 3, this corollary does not hold. It is easy to verify that K1,4 and

K2,2 + K1 are two cospectral but not isomorphic graphs.

Corollary 3.4 If m and n are two distinct prime integers, then the complete bipartite graph

Km,n is DS.

Corollary 3.5 If m and n are two distinct integers such that
√

mn is an integer, then the

complete bipartite graph Km,n is not DS.

Corollary 3.6 For i ∈ {1, 2}, let m and n be two distinct integers such that n − m > i and

mn = x2 + ix for a positive integer x. Then the complete bipartite graph Km,n is not DS.

Since x and x + 2 are two factors of mn such that m < x < x + i < n for i = 1, 2 when

n−m > i, the proof of this corollary is a direct consequence of Theorem 3.3. As examples, Km,n

and Kx,x+i + (m + n − 2x − i)K1 are a pair of cospectral but not isomorphic graphs.

Remark 3.2 Let k > 1 be an integer. Since there exists an integer xk such that xk|(mknk)

when m < x < n and x is a factor of mn, the complete bipartite graph Kmk,nk is not DS when

Km,n is not DS. However, not all the complete bipartite graphs Kmk,nk is DS when Km,n is DS

. As an example, K2,3 is DS, so is the graph K4,6, but K20,30 is not DS because of the fact that

20 × 30 = 600 = 24 × 25.

Theorem 3.4 The complete bipartite graph Km,n is DS if and only if Km,n×K2 (the Kronecker

product of Km,n by K2) is DS.

Proof By Theorem 2.5, we have that Km,n × K2 = 2Km,n. In view of Theorem 3.3, the graph

Km,n is DS if and only if the function f0(x) = x + mn
x

, where x and mn
x

are positive integers,

has the minimum value m + n at x = m or x = n. It is equivalent to the fact that the bivariate

function g(x, y) = x+ mn
x

+ y + mn
y

, where x and y are positive integers, has the minimum value

2(m + n) at (x, y) = (m, m), (m, n), (n, m) or (n, n). Considering that the spectrum of 2Km,n

is {√mn
2
, 02m+2n−4, (−√

mn)2} (see p.72-74 in [4]), by Theorem 2.6, the graph Km,n × K2 is

DS if and only if the bivariate function g(x, y) = x + mn
x

+ y + mn
y

, where x and y are positive

integers, has the minimum value 2(m + n) at (x, y) = (m, m), (m, n), (n, m) or (n, n). Thus we

have completed the proof. 2

Corollary 3.7 The product graph Km,n × K2 is DS if and only if for any integer k with

m < k < n, k is not a factor of mn.

In this paper we have provided some Kronecker products of graphs by K2 determined by

their spectra. But for a more general case, it seems difficult to give an exact answer. It may

be helpful to investigate the structure and the automorphism group of Kronecker product of
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graphs. Based on the results on the products of known graph which is DS and K2, we propose

the following problem.

Problem 3.1 Which DS graphs are the ones such that their Kronecker products by K2 are also

DS?

When G is a connected regular graph, the above problem may be easier to deal with. But so

far we have not obtained any progress about it. As the interesting problems, some more modest

ones may be worth researching, such as:

(1) Given two DS graphs G0 and G, which graphs are the objects such that G©G0, G×G0

and G ⊗ G0 are all DS w.r.t. the adjacency matrix?

(2) Which DS graphs denoted by G0 are the ones such that G0 ©G0, G0 ×G0 and G0 ⊗G0

are DS w.r.t. the adjacency matrix?
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