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Abstract Let P (G, λ) be the chromatic polynomial of a simple graph G. A graph G is chro-

matically unique if for any simple graph H, P (H,λ) = P (G, λ) implies that H is isomorphic

to G. Many sufficient conditions guaranteeing that some certain complete tripartite graphs are

chromatically unique were obtained by many scholars. Especially, in 2003, Zou Hui-wen showed

that if n > 1
3
m2 + 1

3
k2 + 1

3
mk+ 1

3
m− 1

3
k+ 2

3

√
m2 + k2 + mk, where n, k and m are non-negative

integers, then the complete tripartite graph K(n −m, n, n + k) is chromatically unique (or sim-

ply χ–unique). In this paper, we prove that for any non-negative integers n, m and k, where

m ≥ 2 and k ≥ 0, if n ≥ 1
3
m2 + 1

3
k2 + 1

3
mk + 1

3
m − 1

3
k + 4

3
, then the complete tripartite graph

K(n − m, n, n + k) is χ–unique, which is an improvement on Zou Hui-wen’s result in the case

m ≥ 2 and k ≥ 0. Furthermore, we present a related conjecture.

Keywords complete tripartite graph; chromatic polynomial; chromatic uniqueness; color par-

tition.
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1. Introduction

We consider only finite, undirected and simple graphs. Notation and terminology that are

not defined here may be found in [1, 2].

Let G be a graph with vertex set V (G) and edge set E(G), order p(G) and size q(G). Denote

by G the complement of G. Let On = Kn, where Kn denotes the complete graph with n vertices.

For disjoint graphs G and H, G ∨ H denotes the graphs whose vertex-set is V (G) ∪ V (H) and

whose edge-set is {wv ∈ V (G)|w ∈ V (G), v ∈ V (H)}∪E(G)∪E(H). G∨H is called the join of G

and H . We denote by K(n1, n2, n3) the complete tripartite graph with three parts of n1, n2, n3

vertices, respectively. Let S be a set of s edges of G. We denote by G−S the graph by deleting all

edges in S from G. Let N3(G) denote the number of triangles in G, and ⌈θ⌉ denote the smallest

integer greater than or equal to θ.
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Let P (G, λ) be the chromatic polynomial of G and mr(G) denote the number of distinct

partitions of V (G) into r color classes. Let λ(r) = λ(λ − 1) · · · (λ − r + 1). Then we have

P (G, λ) =
∑p

r=1 mr(G)λ(r) (see [1]). The notion of chromatic uniqueness was first introduced

and studied by Chao and Whitehead Jr. in 1978 (see [3]). Koh and Teo in their expository paper

(see [4, 5]), gave a survey of most of the work before 1997. Two graphs H and G are said to be

chromatically equivalent (in notation: H ∼ G) if P (H, λ) = P (G, λ). Let 〈G〉 = {H |H ∼ G}.
A graph G is chromatically unique if 〈G〉 = {G}. The polynomial σ(G, χ) =

∑p

r=1 mr(G)χr is

called the σ–polynomial of G (see [6]). Clearly, P (H, χ) = P (G, χ) iff σ(G, χ) = σ(H, χ).

The chromatic uniqueness of certain complete tripartite graphs have been studied by many

authors. It has been shown in [7]–[11] that the following complete tripartite graphs are χ–unique:

K(n1, n2, n3) for |ni − nj| ≤ 1 and 1 ≤ i, j ≤ 3 (see [7]);

K(n, n, n + k) for n ≥ 2 and 0 ≤ k ≤ 3, K(n− k, n, n + k) for n ≥ 5 and 0 ≤ k ≤ 2 (see [8]);

K(n − k, n, n) for n > 1
3k2 + k (see [9,10]);

K(n, n, n + k) for n > 1
3 (k2 + k) (see [9]);

K(n − k, n, n + k) for n > k2 + 2
√

3
3 k (see [9]);

K(n − k, n, n) for n ≥ k + 2 ≥ 4 (see [11]).

Especially, Zou Hui-wen obtained the following result in 2003.

Theorem 1.1 ([12]) Let G = K(n1, n2, n3), n1 ≤ n2 ≤ n3 and a = {2[(n1 −n2)
2 + (n1 −n3)

2 +

(n2 − n3)
2]} 1

2 . If n1 + n2 + n3 > 1
4a2 + a, then G is χ-unique.

We may also formulate Theorem 1.1 in another way as follows.

Theorem 1.2 ([12]) Let K(n1, n2, n3) = K(n − m, n, n + k), where m and k are non-negative

integers. If n > 1
3m2 + 1

3k2 + 1
3mk+ 1

3m− 1
3k+ 2

3

√
m2 + k2 + mk, then K(n1, n2, n3) is χ-unique.

In this paper, we show that for any non-negative integers n, m and k, where m ≥ 2 and k ≥ 0,

if n ≥ 1
3m2 + 1

3k2 + 1
3mk + 1

3m− 1
3k + 4

3 , then the complete tripartite graph K(n−m, n, n + k)

is χ-unique, which is an improvement of Theorem 1.2 in the case m ≥ 2 and k ≥ 0. Note

that when (m, k) ∈ {(0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2)}, the conclusion of this result is

trivial. Furthermore, we present a related conjecture.

Conjecture 1.3 For any non-negative integers m, k and n, where (m, k) ∈ {(m, k)|m = 0 and

k ≥ 4, or m = 1 and k ≥ 3}, let G = K(n−m, n, n+k). If n ≥ 1
3m2 + 1

3k2 + 1
3mk+ 1

3m− 1
3k+ 4

3 ,

then G is χ-unique.

2. Preliminaries

Lemma 2.1 ([13]) Let G and H be two graphs with G ∼ H. Then p(G) = p(H), q(G) = q(H),

N3(G) = N3(H) and mr(G) = mr(H) for r = 1, 2, . . . , p(G).

Lemma 2.2 ([13]) Let n0 ≥ m0 ≥ 2. Then K(n0, m0) is χ-unique.
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Lemma 2.3 ([6]) Let G and H be two disjoint graphs. Then

σ(G ∨ H, τ) = σ(G, τ)σ(H, τ).

In particular, σ(K(n1, n2, . . . , nt), τ) =
∏t

i=1 σ(Oni
, τ).

Lemma 2.4 ([10]) Let G = K(n1, n2, n3). Then

(i) m4(G) =
∑3

i=1 2ni−1 − 3;

(ii) If H ∈ 〈G〉, there exists a completely tripartite graph F = K(m1, m2, m3) such that

H = F −S and m1+m2+m3 = n1+n2+n3, where S is a set of s edges of F and s = q(F )−q(G).

Lemma 2.5 ([10]) Let G = K(n1, n2, n3) with n3 ≥ n2 ≥ n1 ≥ 2 and let H = G − S for a set

S of s edges of G. If n1 ≥ s + 1, then s ≤ m4(H) − m4(G) ≤ 2s − 1.

Lemma 2.6 ([11]) For any integers n3 ≥ n2 ≥ n1 ≥ 2, we have

〈K(n1, n2, n3)〉 ⊆ {K(x, y, z)− S|1 ≤ x ≤ y ≤ z, n2 ≤ z ≤ n3,

x + y + z = n1 + n2 + n3, S ⊂ E(K(x, y, z)),

|S| = xy + xz + yz − n1n2 − n1n3 − n2n3 ≥ 0}.

In particular, if z = n3, then K(n1, n2, n3) is isomorphic to K(x, y, z).

Lemma 2.7 ([11]) For any integers n and m with n ≥ m + 2 ≥ 4, K(n − m, n, n) is χ-unique.

Lemma 2.8 For any integers n and m with m ≥ 2, if n ≥ 1
3m2 + 1

3m + 4
3 , then K(n−m, n, n)

is χ-unique.

Proof From m ≥ 2, we have ⌈ 1
3m2 + 1

3m + 4
3⌉ ≥ m + 2 ≥ 4. Thus, by Lemma 2.7, this lemma

is true.

3. Main results

Theorem 3.1 For any non-negative integers m, k and n, where m ≥ 2 and k ≥ 0, let G =

K(n − m, n, n + k), if n ≥ 1
3m2 + 1

3k2 + 1
3mk + 1

3m − 1
3k + 4

3 , then G is χ-unique.

Proof If k = 0, then Theorem 3.1 is true by Lemma 2.8. We shall consider the case k ≥ 1 in

the following.

Suppose H ∈ 〈G〉. Since m ≥ 2 and k ≥ 1, by calculation, we have

n − m ≥ 1

3
m2 +

1

3
k2 +

1

3
mk − 2

3
m − 1

3
k +

4

3
≥ 2.

Consequently, we have n + k ≥ n ≥ n − m ≥ 2. Then by Lemma 2.6, we have

H ∈ {K(x, y, z)− S|1 ≤ x ≤ y ≤ z, n ≤ z ≤ n + k, x + y + z = 3n + k − m,

|S| = s = xy + yz + xz − n(n − m) − (n − m)(n + k) − n(n + k) ≥ 0}.

Next, there are 4 cases to be considered. When k = 1, we just need to consider Cases 1 and

2; When k = 2, we just need to consider Cases 1, 2 and 3; When k ≥ 3, we have to consider all
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the 4 cases.

Case 1 z = n + k.

By Lemma 2.6, we conclude that H is isomorphic to G.

Case 2 z = n.

We distinguish the following two subcases.

Subcase 2.1 x ≤ y = z = n.

We set β(H) = m4(H)−m4(F ) in the following proof. Let H = F−S = K(n+k−m, n, n)−S.

According to n + k − m ≤ n, we have k ≤ m. By Lemma 2.4, we deduce that

s = q(F ) − q(G) = km > 0.

By the conditions of the theorem, we have

n ≥ 1

3
m2 +

1

3
k2 +

1

3
mk +

1

3
m − 1

3
k +

4

3
≥ mk + m − k + 1.

So

s + 1 = mk + 1 ≤ n + k − m.

Obviously, we have n + k − m ≥ mk + 1 ≥ 2. Consequently, by Lemma 2.5, we have

km ≤ β(H) ≤ 2km − 1.

Using Lemma 2.4, we have

m4(G) − m4(H) = (2n−m−1 + 2n−1 + 2n+k−1 − 3) − (2n+k−m−1 + 2n−1 + 2n−1 − 3 + β(H))

≥ 2n−m−1 + 2n+k−1 − 2n+k−m−1 − 2n−1 − 2km + 1

≥ 2n−m−1 + 2n+k−1 − 2n+k−m − 2n−1 + 1.

Since m ∈ {(m, k)|m ≥ 2, k ≥ 1}, we have

1

2
+ 2k2m−1 − 2k − 2m−1 > 0, i.e., (

1

2
+ 2k2m−1 − 2k − 2m−1)2n−m > 0.

Hence

2n−m−1 + 2n+k−1 − 2n+k−m − 2n−1 > 0, i.e., m4(G) − m4(H) > 1.

This contradicts that m4(G) = m4(H).

Subcase 2.2 z = n and x ≤ y ≤ n − 1.

Let H = F − S = K(x, y, n) − S. Let V1, V2, V3 be the unique 3-independent partition of F

such that |V1| = x, |V2| = y, |V3| = n. By Lemma 2.1, x + y = 2n + k − m, N3(G) = N3(H).

Hence, we shall consider the number of triangles in G and H. Without loss of generality, let

S = {e1, e2, . . . , es} ⊂ E(F ). It is not hard to see that N3(ei) ≤ n. Then

N3(H) ≥ N3(F ) − ns (1)

and the equality holds only if N3(ei) = n for all ei ∈ S.
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Let η = N3(F ) − N3(G). It is obvious that N3(F ) = xyn, N3(G) = n(n − m)(n + k) and

η = xyn − n(n − m)(n + k). So, we have

N3(G) = N3(F ) − η. (2)

Since N3(G) = N3(H), from (1) and (2) it follows that

η ≤ sn.

Assume that f(z) = η−sz. Recalling that s = xy+xn+yn−n(n−m)−(n−m)(n+k)−n(n+k),

we have

f(n) = η − sn = n2[2n + k − m − (x + y)] = 0, i.e., η = sn.

From (1) and (2), we have N3(G) = N3(H) = N3(F ) − sn and N3(ei) = n for all ei ∈ S. Thus

for every edge one end-vertex belongs to V1, whereas the other end-vertex belongs to V2. Hence

H contains Kn as its component. Set H = H1

⋃

Kn. Then H = H1 ∨On. From Lemma 2.3 and

σ(H, τ) = σ(K(n − m, n, n + k), τ), we have

σ(H1 ∨ On, τ) = σ(On−m ∨ On ∨ On+k, τ).

So

σ(H1, τ) = σ(On−m ∨ On+k, τ) = σ(K(n − m, n + k), τ).

Hence, from Lemma 2.2 and the conditions of the theorem, we have H1 = K(n − m, n + k). So

y = n + k, which contradicts y ≤ n − 1.

Case 3 z = n + k − 1 (k ≥ 2).

Let H = F −S = K(n−k−m+u+1, n+k−u, n+k−1)−S, where u is a positive integer.

According to n − k − m + u + 1 ≤ n + k − u ≤ n + k − 1, we have

1 ≤ u ≤ 1

2
(m + 2k − 1).

By Lemma 2.4, we deduce that

s = q(F ) − q(G) = −u2 + (m + 2k − 1)u − k2 − km + m + 2k − 1

= −[u − 1

2
(m + 2k − 1 −

√

m2 + 2m + 4k − 3)][u − 1

2
(m + 2k − 1 +

√

m2 + 2m + 4k − 3)].

From s ≥ 0, we get

1

2
(m + 2k − 1 −

√

m2 + 2m + 4k − 3) ≤ u ≤ 1

2
(m + 2k − 1 +

√

m2 + 2m + 4k − 3).

Set g(u) = n− k − m + u + 1 − (s + 1) = u2 + (2 − m− 2k)u + n + km + k2 − 3k − 2m + 1. We

shall consider the domain of u. There are two cases to be considered.

(i) If 1
2 (m + 2k − 1 −

√
m2 + 2m + 4k − 3) < 1, then we have 1 ≤ u ≤ 1

2 (m + 2k − 1).

(ii) If 1
2 (m + 2k − 1 −

√
m2 + 2m + 4k − 3) ≥ 1, then we get

1

2
(m + 2k − 1 −

√

m2 + 2m + 4k − 3) ≤ u ≤ 1

2
(m + 2k − 1).

By calculation, we have

g(u) ≥ min{g(u)} = g[
1

2
(m + 2k − 2)] = n − (

1

4
m2 + m + k).
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By the conditions of the theorem, it follows that

n ≥ 1

3
m2 +

1

3
k2 +

1

3
mk +

1

3
m − 1

3
k +

4

3
≥ 1

4
m2 + m + k.

So

g(u) ≥ 0, i.e., s + 1 ≤ n − k − m + u + 1.

From n ≥ 1
4m2 + m + k, we have n− k − m + u + 1 ≥ 2. Consequently, by Lemma 2.5, we have

s ≤ β(H) ≤ 2s − 1 ≤ 2n−k−m+u − 1.

Using Lemma 2.4, we have

m4(G) − m4(H)

= (2n−m−1 + 2n−1 + 2n+k−1 − 3) − (2n−k−m+u + 2n+k−u−1 + 2n+k−2 − 3 + β(H))

≥ 2n−m−1 + 2n−1 + 2n+k−1 − 2n−k−m+u − 2n+k−u−1 − 2n+k−2 − 2n−k−m+u + 1

= 2n−m−1 + 2n−1 + 2n+k−2 − 2n+k−u−1 − 2n−k−m+u+1 + 1.

Set

Γ(n, m, k, u) = 2n−m−1 + 2n−1 + 2n+k−2 − 2n+k−u−1 − 2n−k−m+u+1 + 1,

where

(m, k) ∈ {(m, k)|m ≥ 2, k ≥ 2}, u ∈ {u|1 ≤ u ≤ 1

2
(m + 2k − 1)}

or

u ∈ {u|1
2
(m + 2k − 1 −

√

m2 + 2m + 4k − 3) ≤ u ≤ 1

2
(m + 2k − 1)}.

There are two cases to consider.

(i) If u ≤ 1
2 (m + 2k − 2), by the convexity and the monotone increasing property of the

function 2x, we have m + 2k ≥ 2u + 2 and 2m+2k+u−1 − 2m+2k ≥ 0. So, 2k + 2k+m ≥ 2u+2, i.e.,

2k+u + 2k+m+u − 22u+2 ≥ 0. Therefore, we get

2k+u + 2m+k+u + 2m+2k+u−1 − 2m+2k − 22u+2 ≥ 0.

This leads to Γ(n, m, k, u) = 2n−u−k−m−1(2k+u +2m+k+u +2m+2k+u−1−2m+2k−22u+2)+1 ≥ 1.

(ii) If u = 1
2 (m+2k−1), then Γ(n, m, k, u) = Γ(n, m, k, m

2 +k− 1
2 ) = 2n−1(1+2−m +2k−1−

2
1

2
−m

2 − 2
3

2
−m

2 ) + 1 > 0.

From (i) and (ii) it follows that m4(G) − m4(H) > 0, this is impossible.

Cases 4 z = n + k − t (k ≥ 3 and 2 ≤ t ≤ k − 1).

Let H = F −S = K(n− k−m+u+ t, n+ k−u, n+ k− t)−S, where u is a positive integer.

According to n − k − m + u + t ≤ n + k − u ≤ n + k − t, we can easily obtain that

t ≤ u ≤ 1

2
(m + 2k − t).

By Lemma 2.4, we deduce that

s = q(F ) − q(G) = −u2 + u(m + 2k − t) + 2kt + mt − km − k2 − t2.
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Because of 2 ≤ t ≤ k − 1 and (m, k) ∈ {(m, k)|m ≥ 2, k ≥ 3}, we have m2 − 3t2 + 4kt + 2mt > 0.

So

s = −[u− 1

2
(m+2k− t−

√

m2 − 3t2 + 4kt + 2mt)][u− 1

2
(m+2k− t+

√

m2 − 3t2 + 4kt + 2mt)].

From s ≥ 0, we get

1

2
(m + 2k − t −

√

m2 − 3t2 + 4kt + 2mt) ≤ u ≤ 1

2
(m + 2k − t +

√

m2 − 3t2 + 4kt + 2mt).

Now we consider the domain of u. There are two cases to be considered.

(i) If 1
2 (m + 2k − t −

√
m2 − 3t2 + 4kt + 2mt) < t, then we have t ≤ u ≤ 1

2 (m + 2k − t).

(ii) If 1
2 (m + 2k − t −

√
m2 − 3t2 + 4kt + 2mt) ≥ t, then we have

1

2
(m + 2k − t −

√

m2 − 3t2 + 4kt + 2mt) ≤ u ≤ 1

2
(m + 2k − t).

Set h(u) = n−k−m+u+t−(s+1) = u2+u(t−m−2k+1)+t2+k2+km−2kt−mt+n−k−m+t−1.

By calculation, we have, respectively,

h(u) ≥ min{h(u)} = h[
1

2
(m + 2k − t − 1)] =

1

4
(3t2 − m2 + 2t − 2mt− 4kt + 4n − 2m − 5)

and

min{3t2 + (2 − 2m − 4k)t} = −1

3
m2 − 4

3
k2 − 4

3
mk +

2

3
m +

4

3
k − 1

3
.

So

min{h(u)} ≥ n − (
1

3
m2 +

1

3
k2 +

1

3
mk +

1

3
m − 1

3
k +

4

3
).

By the conditions of the theorem, it follows that

h(u) ≥ min{h(u)} ≥ 0.

Hence

s + 1 ≤ n − k − m + u + t.

From n ≥ 1
3m2 + 1

3k2 + 1
3mk + 1

3m − 1
3k + 4

3 , we have n − k − m + u + t ≥ 2. Consequently, by

Lemma 2.5, we have

s ≤ β(H) ≤ 2s − 1 ≤ 2n−k−m+u+t−1 − 1.

Using Lemma 2.4, we have

m4(G) − m4(H)

= (2n−m−1 + 2n−1 + 2n+k−1 − 3) − (2n−k−m+u+t−1 + 2n+k−u−1 + 2n+k−t−1 − 3 + β(H))

≥ 2n−m−1 + 2n−1 + 2n+k−1 − 2n−k−m+u+t−1 − 2n+k−u−1 − 2n+k−t−1 − 2n−k−m+u+t−1 + 1

= 2n−m−1 + 2n−1 + 2n+k−1 − 2n−k−m+u+t − 2n+k−u−1 − 2n+k−t−1 + 1

≥ 2n−m−1 + 2n−1 + 2n+k−1 − 2n+k−u−1 − 2n+k−t−1 − 2n+k−u + 1

≥ 2n−m−1 + 2n−1 + 2n+k−1 − 2n+k−t − 2n+k−u + 1

≥ 2n−m−1 + 2n−1 + 2n+k−1 − 2n+k−t+1 + 1.

Since n + k − 1 ≥ n + k − t + 1, it follows that m4(G) − m4(H) ≥ 1, which is impossible. The

proof is completed. 2
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Remark 3.2 We shall discuss the improvement of Theorem 3.1 with respect to Theorem 1.2

in the following cases. Note that the judgement condition in the brackets was obtained from

Theorem 1.2.

(i) If k = 0, m = 2, then for n ≥ 4 (n ≥ 4), K(n− 2, n, n) is χ–unique. Theorem 1.2 has not

been improved in this case.

(ii) If k = 0, m = 3, then for n ≥ 6 (n ≥ 7), K(n − 3, n, n) is χ–unique. Theorem 1.2 has

been improved in this case.

(iii) If k = 1, m = 2, then for n ≥ 4 (n ≥ 5), K(n − 2, n, n + 1) is χ–unique. Theorem 1.2

has been improved in this case.

(iv) If k = 2, m = 2, then for n ≥ 6 (n ≥ 7), K(n − 2, n, n + 2) is χ–unique. Theorem 1.2

has been improved in this case.

(v) For the other cases, we have 2
3

√
m2 + k2 + mk > 7

3 . Theorem 1.2 has been improved

largely in these cases. For example, when n ≥ 102 (n ≥ 112), K(n − 10, n, n + 10) is χ–unique;

When n ≥ 10002 (n ≥ 10116), K(n − 100, n, n + 100) is χ–unique; When n ≥ 1000002 (n ≥
1001155), K(n − 1000, n, n + 1000) is χ–unique.
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