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Abstract Polynomial functions (in particular, permutation polynomials) play an important

role in the design of modern cryptosystem. In this note the problem of counting the number

of polynomial functions over finite commutative rings is discussed. Let A be a general finite

commutative local ring. Under a certain condition, the counting formula of the number of

polynomial functions over A is obtained. Before this paper, some results over special finite

commutative rings were obtained by many authors.
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1. Introduction

It is well-known that permutations play an important role in modern cryptography. For

example, they are applied both in symmetric cryptosystem such as SPN, DES, AES, and so on,

and in non-symmetric crptosystem such as RSA, etc [1]. It brings convenience for computation

in both encryption and decryption if the permutations are polynomial. In 1977, Levine [2] first

made investigation on the applications of permutation polynomials to cryptography design, and

in 1987, he [3] made a further discussion on it. In 1985, Webster and Tavares [4] applied SAC

permutation polynomials to S-box design. Moreover, in 1992, Yang [5] applied permutation

polynomials to the design of full frequency Hop codes. In 1997, Guang and Dai [6] constructed

a number of SAC permutation polynomials. In 2002, Sun, Zhang and Peng [7] used Dickson

polynomial to design new cryptography algorithm. In 2005, Chen and Tang [8] constructed a

new public key cryptosystem by Dickson polynomial. In 2004 and 2005, Jiang and Sun obtained

a class of typical singular permutation polynomials in several variables over Z/pl
Z in [9] and [10].

The applications of permutation polynomials drive the research of polynomial functions. Here is

the concept.

Let A be a finite commutative ring, and A[x] the polynomial ring over A.

Definition 1.1 Any map f from A to A is called a function over A. If there exists a polynomial
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φ(x) ∈ A[x] such that

f(a) = φ(a), ∀a ∈ A,

then f is called a polynomial function over A. Furthermore, φ is called a permutation polynomial

over A if f is a permutation of A.

Naturally, there are two fundamental problems:

1) How should one check whether a function is polynomial?

2) How many polynomial functions are there over a given finite commutative ring?

For the first one, Jiang, Zhang, etc [11] have given a complete answer to the general case. And

for the second one, many mathematicians have shown answers to some special finite commutative

rings. In this paper the set of all polynomial functions over A is denoted by F(A), and the

cardinality of a set S denoted by |S|.

By a fundamental fact that every finite commutative ring is a direct sum of finite local rings,

we can restrict ourselves to local rings. From now on, we assume A is a finite commutative

local ring. A simple example for finite commutative local ring is A = Z/pl
Z. This class of rings

are widely used in the literature on finite combinatorics [12–14]. There is a classical result on

polynomial functions over Z/pl
Z:

Theorem 1.1 Let p be a prime, k a positive integer, β(k) the minimal positive integer m

satisfying pk|m!. Then

|F(Z/pl
Z)| = p

∑

l
k=1 β(k).

Theorem 1.1 was proved by Kempner [15] in 1921 and reproved by Keller and Olson [16] in

1968. In 1974 Singmaster proved Theorem 1.2 in [17] in which he did not use the technique of

reducing Z/mZ to Z/pl
Z:

Theorem 1.2 Let m > 1 be an integer, n the minimal positive integer satisfying m|n!. Then

|F(Z/mZ)| =
n−1
∏

k=0

m

gcd(k!,m)
.

So far, all of proofs of Theorems 1.1 and 1.2 contain complicated combinatorial calculations.

In 2004, Zhang [18] gave a simple algebraic proof to the case l ≤ p of Theorem 1.1 and generalized

his result to more general situation.

Theorem 1.3 Let p be a prime, l > 1 an integer, D a p-adic integer ring, where p is unramified,

D/pD = Fq, A = D/plD. Then when l ≤ q one has

|F(A)| = (qq)
l(l+1)

2 .

Some other commutative rings are also considered by many mathematicians. For example,

Frisch [19] recently computed the number of polynomial functions over so-called suitable rings.

[20] is a standard source for polynomials and polynomial functions over finite rings. In this paper,

general finite commutative local rings are taken into consideration and under a certain condition
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the answer to the second problem is obtained. To give our result, preparations and lemmas are

needed.

2. Some Lemmas

Assume m is the maximal ideal of A, N is the minimal positive integer satisfying m
N = 0,

and m
l is the l-th power of m, where l is an integer with 1 ≤ l ≤ N . A/ml denotes the ring of

A modulo m
l. Note that: (i) A/m = Fq, a finite field with q elements of characteristic p, and

p ∈ m; (ii) A/mN = A.

It is well-known that for i = 1, . . . , N , m
i−1/mi can be regarded as an Fq-linear space in a

canonical manner, where m
0 = R. Suppose dimFq

m
i−1/mi = di, where d1 = 1. Take πi1, . . . , πi,di

to be a basis for m
i−1/mi, where πij denotes the image of πij ∈ m

i−1 in m
i−1/mi. Let

T = {t ∈ A|tq = t}.

Then by Hensel Lemma [21], T has exactly q elements, and these q elements modulo m is Fq.

Furthermore, ∀ t ∈ T , one has t = tq = tq
2

· · · . The q elements are called Teichmüller elements

of A. The set T plays an important role in our discussion. Also let

T (l) = {t
(l)

= tmod m
l|t ∈ T }, l = 1, . . . , N.

It is easy to know T (l) has q elements too, l = 1, . . . , N . Note that T (1) = Fq, T
(N) = T . While

l > 1, t
(l)

is called the Teichmüller lifting in T (l) of t
(1)

. It follows from [11] that ∀ t
(1)

∈ T (1),

the Teichmüller lifting in T (l) of t
(1)

is unique, and it can be characterized as follows:

ωl : A/m → T (l)

t
(1)

7→ t
(l)

= ωl(t
(1)

) = t ql−1 (= t ql−1

mod m
l), (1)

where t ∈ T satisfies t
(1)

= tmod m. It is not difficult to get the following relation

A/m l = {t
(l)

+ s|t
(l)

∈ T (l), s ∈ m}.

From Lemma 2 in [11], the following map τl is bijective.

τl :

l
⊕

i=1

m
i−1/m i ∼=

l
⊕

i=1

(A/m)di = (A/m)
∑ l

i=1 di → A/m l

(t11; t21, . . . , t2,d2 ; . . . ; tl1, . . . , tl, dl
) 7→

l
∑

i=1

di
∑

j=1

πijt
pl−i

ij , (2)

where the implications of πi1, . . . , πi,di
, i = 1, . . . , l, are as above, and tij ∈ T is the Teichmüller

lifting of tij ∈ T (1), j = 1, . . . , di, i = 1, . . . , l.

For a function f over A, if it satisfies f(x+m l) ≡ f(x) (mod m l), then we know f induces a

function, denoted by f (l), overA/m l. The restriction f (l)|T (l) of f (l) to T (l) is called a Teichmüller

function over A/m l, denoted by t(l), i.e., t(l) = f (l)|T (l) . Teichmüller functions over A/m l can

be characterized as follows.

Lemma 2.1 (i) Let Tl be the set of all of Teichmüller functions over A/m l, Hl the set of all of
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functions from A/m to the Fq-linear space (A/m)
∑

l
i=1 di . Then there exists a bijection between

Tl and Hl, yielding

|Tl | = (qq)
∑

l
i=1 di . (3)

(ii) Any Teichmüller function over A/m l is polynomial.

(iii) The polynomial which induces a Teichmüller function over A/m l is of the following form

(up to A):
l

∑

i=1

di
∑

j=1

πijHij(X)pl−i

,

where Hij(X) ∈ A[X ], j = 1, . . . , di, i = 1, . . . , l.

Proof (i) From both (1) and (2), we have the following commutative diagram:

T (l) t(l)
−−−−→ A/m l

ωl

x





τl

x





A/m
ρl

−−−−→ (A/m)
∑

l
i=1 di ;

Diagram 1

namely, t(l) ◦ ωl = τl ◦ ρl. That both ωl and τl are bijective yields t(l) = τl ◦ ρl ◦ ω
−1
l or

ρl = τ−1
l ◦ t(l) ◦ ωl, which implies there exists a bijection between Tl and Hl.

A simple calculation yields

|Hl| = (q
∑ l

i=1 di)q = (qq)
∑ l

i=1 di ,

deducing (3).

(ii) and (iii) Suppose that t(l) ∈ Tl. Then by (i) there exists a corresponding ρl ∈ Hl.

Since ρl is a map over a finite field, it is polynomial [22], i.e., there are l polynomialsHij(X) ∈

A[x], j = 1, . . . , di, i = 1, . . . , l, such that

ρl : A/m → (A/m)
∑

l
i=1 di

t
(1)

7→ (H11(t); H21(t), . . . , H2,d2(t); . . . ; Hl1(t), . . . , Hl, dl
(t)). (4)

By (i) and recalling ρl and τl, we obtaint(l)(t
(l)

) = τl ◦ ρl ◦ ω
−1
l (t

(l)
) = τl ◦ ρl(t

(1)
)

= τl(H11(t); H21(t), . . . , H2,d2(t); . . . ; Hl1(t), . . . , Hl, dl
(t))

=

l
∑

i=1

di
∑

j=1

πijHij(t)pl−i .

Hence t(l) is induced by polynomials
∑l

i=1

∑di

j=1 πijHij(X)pl−i

∈ A[X ], yielding that t(l) is

polynomial.

Jiang, Zhang, etc [11] represented a characterization of a polynomial function over A as

follows.
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Lemma 2.2 Keep the above notations A, m, q and N . Then a function f over A is a polynomial

function if and only if there exist N functions fi (i = 0, 1, . . . , N − 1) over A such that

f(x+ s) = fN (x) + fN−1(x)s+ · · · + f1(x)s
N−1

holds for any x ∈ A and any s ∈ m.

In Lemma 2.2, for a function f , there exist several systems of functions (fN , fN−1, . . . , f1)

corresponding to it. For convenience of applications, we enhance Lemma 2.2 to Lemma 2.3.

Lemma 2.3 Keep the above notations A, m, q and N . And f is a function over A. Then the

following assertions are equivalent:

(i) f is polynomial;

(ii) There exist N functions f
(l)
l : A/m l → A/m l, l = 1, . . . , N such that

f(x+ s) = fN (x) + fN−1(x)s+ · · · + f1(x)s
N−1

holds for any x ∈ A and any s ∈ m;

(iii) There exist N Teichmüller functions t(l)
l : T (l) → A/m l, l = 1, . . . , N such that

f(t+ s) = tN (t) + tN−1(t)s+ · · · + t1(t)s
N−1 (5)

holds for any t ∈ T and any s ∈ m.

Proof (i)⇒ (ii). It is derived from Taylor formula;

(ii)⇒(iii). It follows by taking t(l)
l = f

(l)
l |T (l) , l = 1, . . . , N ;

(iii)⇒(i). From Lemma 2.1 (ii), t(l)
l is polynomial. There exists a polynomial Pl(X) ∈ A[x]

of the form in Lemma 2.1 (iii), such that ∀t ∈ T and ∀s ∈ m, we havetl(t) ≡ Pl(t) ≡ Pl(t+ s) (mod m
l), l = 1, . . . , N. (6)

⇒ tl(t)s
N−l = Pl(t+ s)sN−l, l = 1, . . . , N. (7)

⇒

N
∑

l=1

tl(t)s
N−l =

N
∑

l=1

Pl(t+ s)sN−l. (8)

⇒ f(t+ s) =

N
∑

l=1

Pl(t+ s)sN−l. (9)

The second equivalence in (6) comes from P (X)’s property, (7) from m
N = 0 and (9) from (5).

Set x = t + s and note that (i) x runs over A while t runs over T and s runs over m; (ii) from

x = t+ s one has t
(1)

= x(1), and so x and t are the lifting in A (⊃ T (N)) of the same element in

T (1). Therefore, t = xqN−1

by (1). Thus s = x− xqN−1

. By the two facts and (9), one deduces

f(x) =

N
∑

l=1

Pl(x)(x − xqN−1

)N−l, ∀ x ∈ A. (10)

Equation (10) implies f is polynomial over A.

Lemma 2.4 Keep the above notations A, m, q and N . l is an integer satisfying 1 ≤ l ≤ N .

Equation F (X) =
∑d

i=0 aiX
i ∈ A[X ] is a polynomial of degree d satisfying: (i) d < q; (ii)
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F (x) ≡ 0 (mod m
l) holds for any x ∈ A. Then

F (X) ≡ 0 (mod m
l), (11)

i.e., ai ≡ 0 (mod m
l), i = 0, 1, . . . , d.

Proof Set F (x) = a0 + a1x+ a2x
2 + · · · + adx

d. By (ii), for any x ∈ A, one gets

F (x) = a0 + a1x+ a2x
2 + · · · + adx

d ≡ 0 (mod m
l)

=⇒ F (x) = a0 + a1x+ a2x
2 + · · · + adx

d ≡ 0 (mod m)

=⇒ F (x) = ā0 + ā1x̄+ ā2x̄
2 + · · · + ādx̄

d = 0 has q (> d) roots in Fq

=⇒ ai = 0 in Fq, i = 0, 1, . . . , d. (12)

(12) shows

ai ≡ 0 (mod m), i = 0, 1, . . . , d. (13)

By (13), set

ai = αi + βi, i = 0, 1, . . . , d, (14)

where αi ∈ m\m2 ∪ {0}, βi ∈ m
2.

Our next objective is to prove ai ∈ m
2, or equivalently, to prove αi = 0, i = 0, 1, . . . , d.

Since m/m2 is an Fq-linear space with a base {π1, π2, . . . , πd2}, the following (15) holds in

A

αi =

d2
∑

j=1

cijπj , i = 0, 1, . . . , d, (15)

where cij ∈ T, i = 0, 1, . . . , d, j = 1, . . . , d2. From (14) and (15) we have

d
∑

i=0

(

d2
∑

j=1

cijπj

)

tik ≡ 0 (mod m
2), k = 1, . . . , d

=⇒

d2
∑

j=1

(

d
∑

i=0

cijtik

)

πj ≡ 0 (mod m
2), k = 1, . . . , d (16)

=⇒

d
∑

i=0

cijtik ≡ 0 (mod m), k = 1, . . . , d, j = 1, . . . , d2, (17)

where we used the fact that {π1, π2, . . . , πd2} is an Fq base of m/m2. Similarly, (17) implies

cij = 0, i = 0, 1, . . . , d; j = 1, . . . , d2. (18)

(15) and (18) yield αi = 0, i = 0, 1, . . . , d. Thus

ai ∈ m
2, i = 0, 1, . . . , d.

Repeating the same process, we can obtain at l-th step

ai ∈ m
l, i = 0, 1, . . . , d,

so

F (X) ≡ 0 (mod m
l).
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This completes the proof of Lemma 2.4. 2

Remark In Lemma 2.4, specially as l = N , we obtain a result as follows.

Let F (X) ∈ A[X ] be a polynomial of degree less than q. If F (x) = 0 for any x ∈ A, then

F (X) = 0.

3. Result and proof

Theorem 3.1 Keep the above notations A, m, q and N . If N ≤ q, then

|F(A)| = (qq)
∑ N

l=1

∑ l
i=1 di . (19)

Proof Define a map as

ψ : TN × TN−1 × · · · × T1 → F(A)

(t(N), t(N−1), . . . , t(1)) 7→ f (20)

where f in (20) is defined as in (5). It follows from Lemma 2.3 that ψ is surjective. We prove

that ψ is also injective.

m is finitely generated for A is finite and set g is a generator of m. If

ψ(t(N), t(N−1), . . . , t(1)) = ψ(r(N), r(N−1), . . . , r(1)),

then by Lemma 2.2, ∀ t ∈ T and ∀ x ∈ A, we have

N−1
∑

i=0

tN−i(t) · (gx)
i =

N−1
∑

i=0

rN−i(t) · (gx)
i

⇔

N−1
∑

i=0

[tN−i(t) − rN−i(t)]g
i · xi = 0. (21)

The left-hand side of (21) is a polynomial in x of degree N . It follows from Lemma 2.4 or the

remark that

N−1
∑

i=0

[tN−i(t) − rN−i(t)]g
i · xi = 0

⇔ [tN−i(t) − rN−i(t)]g
i = 0, i = 0, 1, . . . , N − 1

⇔ tN−i(t) ≡ rN−i(t) (mod m
N−i), i = 0, 1, . . . , N − 1

⇔ t(N−i)(t̄) = r(N−i)(t̄), i = 0, 1, . . . , N − 1

⇔ t(N−i) = r(N−i), i = 0, 1, . . . , N − 1.

This implies ψ is injective. Hence ψ is bijective. Thus it is deduced from (3) that

|F(A)| =

N
∏

l=1

|Tl| =

N
∏

l=1

(qq)
∑ l

i=1 di = (qq)
∑ N

l=1

∑ l
i=1 di .

The proof is completed. 2
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