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Abstract In this paper, we deal with some corresponding relations between knots and poly-

nomials by using the basic properties of knot polynomials (such as, some special values of knot

polynomials, the Arf invariant and derivative of knot polynomials). We give necessary and suffi-

cient conditions that a Laurent polynomial with integer coefficients, whose breadth is less than

five, is the Jones polynomial of a certain knot.
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1. Introduction

A fundamental problem is the classification of knots in the knot theory. The knot invariants

play a very key role. So do knot polynomials. The Alexander polynomial △(t) [1] and the

Jones polynomial V (t) [2] are two well known knot polynomials. The Alexander polynomial

△(t) is characterized by the following algebraic conditions: (1) △(1) = 1 and (2) △(t) is a

reciprocal polynomial (sometimes abbreviated as △(t)
.
= △(t−1)). It is well known that a

Laurent polynomial with integer coefficients is the Alexander polynomial of a certain knot if and

only if it satisfies the two conditions above [3, 4]. How can one tell whether a Laurent polynomial

with integer coefficients is the Jones polynomial of a certain knot? In this paper, we will discuss

the problem. In Section 2, we introduce the properties of the Jones polynomial and give the

properties of derivative of the Jones polynomial, which are used in the next section. In Section

3, we give necessary and sufficient conditions that a Laurent polynomial with integer coefficients

is the Jones polynomial of some knot, when the breadth of the Laurent polynomial is less than

five.

2. The Jones polynomial and its properties

Let L be an oriented link with n components. So one has the Jones polynomial, denoted by

V (L; t), of the link L as follows:
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(1) V (L; t) is an ambient isotopy invariant;

(2) Skein relation: t−1V (L+; t) − tV (L−; t) = (t
1
2 − t−

1
2 )V (L0; t);

(3) V (U ; t) = 1, where U is trivial.

In (2), L+, L− and L0 are the same except for in small disk where their projections are a

positive crossing, a negative crossing and an orientation preserving smoothing of that crossing,

respectively, as shown in the following Figure 1.

L+ L− L0

Figure 1 crossings

Lemma 2.1 ([2, 5]) Let L be an oriented link with n components. Then one can get the following

properties of the Jones polynomial:

(1) V (L; 1) = (−2)n−1;

(2) V ′(L; 1) = 0, If n = 1;

(3) V (L; e2πi/3) = (−1)n−1;

(4) If Arf(L) exits, V (L; i) = (−
√

2)n−1(−1)Arf(L); otherwise V (L; i) = 0. Here Arf(L) is

the Arf invariant of links. One can find the definition of the invariant in [5,6]. i denotes
√
−1.

To discuss the properties of derivative of the Jones polynomial, we introduce the Kauffman

polynomial and its properties . We consider also oriented link though the Kauffman polynomial

is defined for unoriented links. Let L be an oriented link with n components. So one can obtain

the following recursive relations:

(1) 〈L+〉 = A 〈L0〉 +A−1 〈L∞〉 , 〈L−〉 = A 〈L∞〉 +A−1 〈L0〉;
(2) 〈U ;L〉 = (−A2 − A−2) 〈L〉, where U is trivial;

(3) 〈U〉 = 1.

In (1), L+, L− and L0 are the same as in the Jones polynomial. L∞ is obtained by an

orientation reserving smoothing of that crossing. 〈L〉 is said to be the Kauffman polynomial.

L∞ and L+, L−, L0 are the same except for in the small disk.

We call the equivalence generated by move II and move III (the Reidemeister moves) regular

isotopy. Thus 〈L〉 is a regular isotopy invariant [7]. Let ω(L) be the writhe of L. It is also a

regular invariant. We define f(L;A) = α−ω(L) 〈L〉, where 〈〉 forgets the particular orientation

(α = −A3).

Lemma 2.2 ([7]) f(L;A) is an ambient isotopy invariant for oriented knots and links L. And

f(L; t−
1
4 ) = V (L; t), V (L∗; t) = V (L, t−1). Where L∗ is the mirror image of L.

If L+ and L− are knots, then L0 is a link with two components, denoted by L01, L02,

respectively. Set l = lk(L01, L02) = lk(L0). L∞ is also a knot.
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Lemma 2.3 Let K+,K−,K0 and K∞ be knots defined above. Then

V (K+; t) − tV (K−; t) = (1 − t)t3lV (K∞; t),

where λ = lk(K0).

Proof By the Kauffman relations above,

(1) 〈K+〉 = A 〈K0〉 +A−1 〈K∞〉 ,

(2) 〈K−〉 = A 〈K∞〉 +A−1 〈K0〉 .

(1) ∗A−1 − (2) ∗A gives

A−1 〈K〉 −A 〈K−〉 = (A−2 −A2) 〈K∞〉 .

Since f(K;A) = α−ω(K) 〈K〉, we have

A−1αω(K+)f(K+;A) −Aαω(K−)f(K−;A) = (A−2 −A2)αω(K∞)f(K∞;A).

By the definition of the writhe, one gets the following relations: ω(K−) = ω(K+)− 2, ω(K∞) =

ω(K+) − 4λ− 1. So

A−1f(K+;A) −Aα−2f(K−;A) = (A−2 −A2)α−1α−4λf(K∞;A),

f(K+;A) −A−4f(K−;A) = (1 −A−4)α−4λf(K∞;A).

This completes the proof by setting A = t−
1
4 and Lemma 2.2.

Remarks In [6] and [8], one can find a proof of the above lemma. Here we give an elementary

proof by applying the relations between the Jones polynomial and the Kauffman polynomial.

Lemma 2.4 Let K be an oriented knot and ψn(K) = V (n)(K; 1). Then

(1) ψ0(K) = 1, ψ1(K) = 0;

(2) ψ2(K) ∈ 6Z;

(3) ψn(K) ∈ 6nZ, for any n ≥ 3.

Proof The first is clear by Lemma 2.1.

For (2), assume that K = K+. By Lemma 2.3 and simple computations, one can get

ψ2(K+) − ψ2(K−) = (ψ1(K−) − ψ1(K∞) − 6lψ0(K∞) = −6l.

So ψ2(K+) − ψ2(K−) ∈ 6Z. Furthermore, ψ2(K) ∈ 6Z since any knot can be changed into

unknot by switching some crossings.

For (3), suppose that K = K+ without loss of generality. By Lemma 2.3, V (K+; t) −
tV (K−; t) = (1 − t)t3lV (K∞; t).

We will prove the lemma by using induction on n. Taking nth derivatives on both sides gives

V (n)(K+; t) =
n∑

i=0

Ci
nV

(n−i)(K−; t)t(i) +
n∑

j=0

Cj
nV

(n−j)(K∞; t)(t3l − t3l+1)(j)
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= tV (n)(K−; t) + nV (n−1)(K−; t) +

n∑

j=0

Cj
nV

(n−j)(K∞; t)[3l(3l− 1) · · ·

(3l − j + 2)][(3l − j + 1) − (3l+ 1)t]t3l−j .

Let t = 1. Then

ψn(K+) − ψn(K−) = n(ψn−1(K−) − ψn−1(K∞)) −
n∑

j=2

jCj
nψn−j(K∞)

j−2∏

m=0

(3l −m)

= n(ψn−1(K−) − ψn−1(K∞)) −
n−1∑

j=2

jCj
nψn−j(K∞)

j−2∏

m=0

(3l−m)−

n

n−2∏

m=0

(3l−m).

(i) n = 3, by Lemma 2.1, ψ3(K+) − ψ3(K−) = 3(ψ2(K−) − ψ2(K∞)) − 9l(3l − 1). Thus

ψ3(K+) − ψ3(K−) ∈ 18Z by Lemma 2.4 and l ∈ Z. The lemma is true. If n = 4, the proof of

the lemma can be finished by using the same arguments.

(ii) Suppose the lemma is right if 3 ≤ m ≤ n− 1, that is ψm(K) ∈ 6mZ (of course,

ψm(K) ∈ Z). One knows that jCj
n = nC

j−1
n−1, so jCj

nψn−j(K∞) ∈ 6nZ since ψm(K) ∈ 6Z. It

is obvious that n
∏n−2

m=0 = 3nl(3l − 1)
∏n−2

m=2 ∈ 6nZ if n ≥ 4. Thus ψn(K+) − ψn(K−) ∈ 6nZ,

hence ψn(K) ∈ 6nZ. This completes the proof of the lemma. 2

Remarks The further research on the properties of derivative of the Jones polynomial con-

tributes to study the polynomial invariant of integral homology 3-spheres [9-11].

3. Main results

In the section, a polynomial of degree n (n ∈ Z, n ≥ 0) means that the exponent of each term

of the polynomial is a non-negative integer. A polynomial of degree −n (n ∈ Z, n ≥ 0) means

that the exponent of each term of the polynomial is a non-positive integer. Let deg(f(t)) denote

the degree of a polynomial f(t) and let span(f(t)) denote the difference between the maximal

and minimal degrees of a polynomial f(t).

Theorem 3.1 Any polynomial of degree 2 with integral coefficients is not the Jones polynomial

of a certain knot.

Proof Let f(t) = at2 + bt+ c, where a 6= 0, b, c ∈ Z. If f(t) is the Jones polynomial of some

knot, then by Lemmas 2.1 and 2.4, f(1) = 1, that is, a + b + c = 1, f ′(1) = 0. So 2a+ b = 0,

f ′′(1) ∈ 6Z, hence 2a ∈ 6Z. By (3) of Lemma 2.1, one can obtain that a = 0. This completes

the proof. 2

Corollary 3.1 Any polynomial of degree-2 with integral coefficients is not the Jones polynomial

of any knot.

The result can be proved by Lemma 2.2.
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Theorem 3.2 Any polynomial of degree-3 with integral coefficients is not the Jones polynomial

of any knot.

Proof Let f(t) = a3t
3 + a2t

2 + a1t + a0 (a3 6= 0, ai ∈ Z, i = 0, 1, 2, 3). If f(t) is the Jones

polynomial of some knot, by Lemmas 2.1, 2.4 and 2.5, one can get the following properties:

(1) f(1) = 1, so, a3 + a2 + a1 + a0 = 1;

(2) f ′(1) = 0, so, 3a3 + 2a2 + a1 = 0;

(3) f ′′(1) ∈ 6Z, so, 6a3 + 2a2 ∈ 6Z;

(4) f ′′′(1) ∈ 18Z, so, 6a3 ∈ 18Z.

From (4) and (3), one obtains that a3 = 3k(k ∈ Z), a2 = 3l(l ∈ Z). By (2) and (1),

a1 = −9k− 6l, a0 = 6k+3l+1. Hence f(t) = 3kt3 +3lt2 +(−9k− 6l)t+6k+3l+1. By Lemma

2.1, f(e2πi/3) = 1, which implies that k = 0, l = 0. Therefore a3 = 0. The proof is completed. 2

Corollary 3.2 Any polynomial of degree -3 with integral coefficients is not the Jones polynomial

of any knot.

One knows that △(trefoil; t) = t2 − t+ 1,△(figure− eight; t) = t2 − 3t+ 1,△(stevedore; t) =

2t2 − 5t + 2 ([4]). But these polynomials are not the Jones polynomial of knots. We comment

again that the Alexander polynomial is only determined up to multiplication by ±tk. In fact,

the polynomials multiplied by ±tk are not the Jones polynomials of knots either, which can be

proved by using Theorem 3.4 below. Here some differences between the Alexander polynomial

and the Jones polynomial of knots are exhibited . Can one conclude that if a polynomial f(t)

(perhaps the Alexander polynomial) is not the Jones polynomial, then so is the case for the

polynomial multiplied ±tk? We will answer the question below.

Theorem 3.3 Let f(t) = a4t
4 + a3t

3 + a2t
2 + a1t + a0 (ai ∈ Z, i = 0, 1, 2, 3, 4, a4 6= 0). Then

f(t) is the Jones polynomial of some knot if and only if a4 = −1, a3 = 1, a2 = 0, a1 = 1, a0 = 0.

Proof The sufficiency is clear since the Jones polynomial of the trefoil satisfies the conditions

of the theorem.

Suppose that f(t) is the Jones polynomial of a certain knot K. By Lemmas 2.1, 2.4 and 2.5,

we have the following properties:

(1) f(1) = 1, so, a4 + a3 + a2 + a1 + a0 = 1;

(2) f ′(1) = 0, so, 4a4 + 3a3 + 2a2 + a1 = 0;

(3) f ′′(1) ∈ 6Z, so, 12a4 + 6a3 + 2a2 ∈ 6Z;

(4) f ′′′(1) ∈ 18Z, so, 24a4 + 6a3 ∈ 18Z.

By (4) and (3), one can obtain that a3 = 3k, a2 = 3l, so a1 = −4a4 − 9k − 6l and a0 =

3a4 + 6k + 3l+ 1 from (2) and (1). Hence

f(t) = a4t
4 + 3kt3 + 3lt2 − (4a4 + 9k + 6l)t+ 3a4 + 6k + 3l+ 1.

By Lemma 2.1, f(e2πi/3) = 1 implies that
√

3
2 i(−3a4−9k−9l)+ 3

2 (3a4 +9k+3l) = 0. Therefore,

a4 + 3k + 3l = 0,
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a4 + 3k + l = 0.

We get that l = 0, a3 = −a4. Furthermore, a2 = 0, a1 = −a4, a0 = 1 + a4, f(t) = a4t
4 −

a4t
3 − a4t+ 1 + a4. So f(i) = 2a4 + 1. By Lemma 2.1, f(i) = (−1)Arf(K) = −1 since f(t) is the

Jones polynomial of a certain knot and a4 6= 0. This implies that a4 = −1. This completes the

proof. 2

Corollary 3.3 Let f(t) = a−4t
−4 + a−3t

−3 + a−2t
−2 + a−1t

−1 + a0 (a−i ∈ Z, i = 0, 1, 2, 3, 4).

Then f(t) is the Jones polynomial of a knot if and only if a−4 = −1, a−3 = 1, a−2 = 0, a−1 = 1,

a0 = 0.

Corollary 3.4 Let K be a knot in S3. If V (K; t) = −t4 + t3 + t, then Arf(K) = 1.

Corollary 3.5 Arf(trefoil) = 1.

Corollary 3.6 Let K be an alternating knot in S3. Then V (K; t) = −t4 + t3 + t if and only if

K is the trefoil.

Lemma 3.1 ([4]) Let f(x) = ant
n+an−1t

n−1+· · ·+a1t+a0 (a0 6= 0) be a polynomial with integer

coefficients. If f(x) is the Alexander polynomial of some knot, then ai = an−i (i = 0, 1, ..., n).

By Theorem 3.3, we know that the polynomial f(t) = −t4 + t3 + t is the Jones polynomial

of some knot (for example, trefoil). But the polynomial is not the Alexander polynomial of a

certain knot by Lemma 3.1. It is clear that −t3 + t2 + 1 is neither the Alexander polynomial nor

the Jones polynomial. However t(−t3 + t2 + 1) remains the Jones polynomial of a knot.

Conjecture 3.1 If K is a non-alternating knot, then V (K; t) 6= −t4 + t3 + t.

Theorem 3.4 Let f(t) = a−1t
−1 + a0 + a1t (a−1 6= 0) be a polynomial with integer coefficients.

Then f(t) is not the Jones polynomial of any knot.

Proof Suppose that f(t) is the Jones polynomial of some knot. Then one obtains the following

properties by Lemmas 2.1 and 2.4.

(1) f(1) = a−1 + a0 + a1 = 1.

(2) f ′(1) = −a−1 + a1 = 0, so a−1 = a1.

(3) f ′′(1) = 2a−1 ∈ 6Z, so a−1 = 3k, k ∈ Z.

Hence f(t) = 3kt−1 + (1 − 6k) + 3kt. Thus f(i) = 1 − 6k = −1 or 1 by Lemma 2.1. This is in

contradiction to k ∈ Z and a−1 6= 0.

Theorem 3.5 Let f(t) = a−2t
−2 + a−1t

−1 + a0 + a1t (a−2 6= 0) be a polynomial with integer

coefficients. Then f(t) is not the Jones polynomial of any knot.

Proof Suppose that f(t) is the Jones polynomial of a certain knot. Then one obtains the

following properties by Lemmas 2.1, 2.4 and 2.5.

(1) f(1) = a−2 + a−1 + a0 + a1 = 1.

(2) f ′(1) = −2a−2 − a−1 + a1 = 0.
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(3) f ′′(1) = 6a−2 + 2a−1 ∈ 6Z, so a−1 = 3l (l ∈ Z).

(4) f ′′′(1) = −24a−2 − 6a−1 ∈ 18Z, so a−2 = 3k (k ∈ Z) and a1 = 6k+ 3l, a0 = 1− 9k− 6l.

Hence f(t) = 3kt−2 +3lt−1 +1−9k−6l+(6k+3l)t, f(i) = 6ki+1−12k−6l. One can complete

the proof similarly to Theorem 3.4.

Corollary 3.7 Let f(t) = a−1t
−1 + a0 + a1t + a2t

2 be a polynomial with integer coefficients.

Then the polynomial is not the Jones polynomial of any knot.

Corollary 3.8 Let f(t) be a polynomial with integer coefficients. If |deg f(±t)| ≤ 3, and

span(f(t)) ≤ 3, then the polynomial is not the Jones polynomial of any knot.

Theorem 3.6 Let f(t) = a−2t
−2+a−1t

−1+a0+a1t+a2t
2 (a−2 6= 0, a2 6= 0) be a polynomial with

integer coefficients. Then f(t) is the Jones polynomial of some knot if and only if a−2 = a2 = 1,

a−1 = a1 = −1, a0 = 1.

Proof The sufficiency is clear since the Jones polynomial of the figure-eight knot satisfies the

conditions of the theorem.

Assume that f(t) is the Jones polynomial of a certain knot K. By Lemmas 2.1, 2.4 and 2.5,

we have the following properties.

(1) f(1) = a−2 + a−1 + a0 + a1 + a2 = 1.

(2) f ′(1) = −2a−2 − a−1 + a1 + 2a2 = 0.

(3) f ′′(1) = 6a−2 + 2a−1 + 2a2 ∈ 6Z.

(4) f ′′′(1) = −24a−2 − 6a−1 ∈ 18Z.

So one cannot determine the properties of the coefficients a−2 from (4) as in the proof of Theorem

3.5. There are three situations as follows.

Case 1 If a−2 = 3k (k ∈ Z), that is, the coefficient is divided by 3. Then a−1 = 3l (l ∈ Z) from

(4), so a2 = 3m (m ∈ Z) by the property (3) and a1 = 6k+3l−6m, a0 = 1−9k−6l+3m from (2)

and (1). Therefore f(t) = 3kt−2 +3lt−1 +1− 9k− 6l+3m+(6k+3l− 6m)t+3mt2. By Lemma

2.1, f(e2πi/3) = 3ke−4πi/3 + 3le−2πi/3 + 1− 9k− 6l+ 3m+ (6k+ 3l− 6m)e2πi/3 + 3me4πi/3 = 1.

So
√

3
2 (9k − 9m)i− 3

2 (9k + 6l − 3m) = 0. This implies that k = m, k + l = 0 and a0 = 1. One

gets f(t) = 3kt−2 +3lt−1 +1+3lt+3kt2. Then f(i) = 1− 6k = (−1)Arf(K) by Lemma 2.1. This

is a contradiction as in Theorem 3.4. So the situation is impossible.

Case 2 If a−2 = 3k + 2 (k ∈ Z), that is, a−2 ≡ 2mod3. Then a−1 = 3l + 1, a2 = 3m + 2,

a1 = 6k + 3l − 6m + 1, a0 = −9k − 6l + 3m − 5 (l,m ∈ Z) from (4) to (1). So f(t) =

(3k + 2)t−2 + (3l+ 1)t−1 − 9k − 6l + 3m− 5 + (6k + 3l − 6m+ 1)t+ (3m+ 2)t2. f(e2πi/3) = 1

implies that
√

3
2 (9k − 9m)i− 3

2 (9k + 6l − 3m+ 6) = 0. Hence k = m, k + l + 1 = 0 and a0 = 1,

a1 = a−1 = 3l+1, a2 = a−2 = 3k+2. So f(t) = (3k+2)t−2+(3l+1)t−1+1+(3l+1)t+(3k+2)t2.

Then f(i) = −6k − 3 = (−1)Arf(K) by Lemma 2.1. This is in contradiction with k ∈ Z. The

situation is impossible too.

Case 3 If a−2 = 3k + 1 (k ∈ Z), that is, a−2 ≡ 1mod3. Then a−1 = 3l + 2, a2 = 3m + 1,
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a1 = 6k+3l−6m+2, a0 = −9k−6l+3m−5. So f(t) = (3k+1)t−2+(3l+2)t−1−9k−6l+3m−5+

(6k+3l−6m+2)t+(3m+1)t2. f(e2πi/3) = 1 implies that
√

3
2 (9k−9m)i− 3

2 (9k+6l−3m+6) = 0.

Hence k = m, k + l + 1 = 0 and a0 = 1, a1 = a−1 = 3l + 2, a2 = a−2 = 3k + 1. So

f(t) = (3k+ 1)t−2 + (3l+ 2)t−1 + 1 + (3l+ 2)t+ (3k+ 1)t2. Then f(i) = −6k− 1 = (−1)Arf(K)

by Lemma 2.1. So f(i) = 1 or −1 since f(t) is the Jones polynomial of a certain knot. One can

determine that f(i) = −6k − 1 = (−1)Arf(K) = −1 since k ∈ Z. So k = 0, l = −1, m = 0 and

a−2 = a2 = 1, a−1 = a1 = −1, a0 = 1. This completes the proof. 2

Corollary 3.9 Let K be a knot in S3. If V (K; t) = t−2 − t−1 + 1 − t+ t2, then Arf(K) = 1.

Corollary 3.10 Arf(the figure knot) = 1.

Corollary 3.11 Let K be an alternating knot in S3. Then V (K; t) = t−2 − t−1 + 1 − t+ t2 if

and only if K is the figure knot.

One knows that V (41; t) = △(51; t) = t−2 − t−1 + 1 − t + t2. It is right that △(51; t) =

1+ t+ t2− t3 + t4 (not the Jones polynomial by Theorem 3.3) by the properties of the Alexander

polynomial. But t−2△(51; t) is the Jones polynomial of some knot (for example, the figure-eight).

Conjecture 3.2 If K is a non-alternating knot, then V (K; t) 6= t−2 − t−1 + 1 − t+ t2.
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