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1. Introduction

Let Ω be an open bounded subset of R
2 with sufficiently smooth boundary ∂Ω. In this paper

we study the following initial-boundary value problem

utt + △2u + △2ut + ku+ + f(u) = g(x, t), in Ω × R
+, (1)

u = △u = 0, on ∂Ω, (2)

u|t=τ = uτ (x), ∂tu|t=τ = pτ (x), τ ∈ R, (3)

where u(x, t) is the unknown function, which represents the deflection of the road bed in the

vertical plane, k > 0 denotes the spring constant.

The suspension bridge equations were presented by Lazer and McKenna as the new problems

in fields of nonlinear analysis [1]. For (1), there are many classical results. For instance, existence,

multiplicity and property of the travelling wave solutions etc., were studied by the most of

authors, we refer the reader to [1–5] and the references therein. In [9], we investigated the

existence of global attractors in H2
0 (Ω)×L2(Ω) for the autonomous suspension bridge equations,

that is, g(x, t) = g(x). In the sequel, using the condition (C) introduced in [6] and combining

with techniques of the energy estimates, we also achieved the existence of strong solutions and
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the global attractors in D(A) × H2
0 (Ω) [10]. In this paper, what we are interested in is the

uniform compact attractors for the non-autonomous systems (1)–(3).

In the last two decades, the autonomous dynamical systems and their attractors have been

extensively studied. There are many classical and significant literatures and works. We refer

the reader to [6–12]. Recently, the study of the uniform attractors for the non-autonomous

dynamical systems has attracted much attention and made fast progress, see [13–15] and the

references therein. As we know, the most general method to consider the existence of the uniform

attractors for the non-autonomous dynamical systems was presented by Chepyzhov and Vishik

[14]. However, their approaches can only be used to deal with the problems with translation

compact symbols while in applications symbols of many problems do not satisfy this condition.

Motivated by [6], the authors of [15] gave the necessary and sufficient conditions of existence of

the uniform attractors for the non-autonomous infinite-dimensional dynamical systems making

use of the concept of noncompactness measure, and successfully proved the existence of the

uniform attractors for non-autonomous 2D Navier-Stokes equations with normal external forces

in L2
loc(R, L2) which is translation bounded but not translation compact. Recently, a new class

of functions was introduced in [13] for weakly dissipative dynamical systems, which are also more

general than translation compact. Moreover, the authors obtained the uniform attractors of the

weakly damped non-autonomous hyperbolic equations with this new class of time dependent

external forces. Inspired by [13], we show in the present paper the existence of the uniformly

absorbing set for the strong damping non-autonomous suspension bridge equations, and then

prove the existence of the uniform attractors for the family of processes corresponding to the

equation in H2
0 × L2 using the methods in [13].

Assume that the nonlinear function f ∈ C2(R, R) satisfies the following general conditions:

There exists a constant C1 > 0 such that

(F1) lim inf |s|→∞
F (s)
s2 ≥ 0, F (s) =

∫ s

0
f(τ)dτ ;

(F2) lim sup|s|→∞
|f ′(s)|
|s|γ = 0, ∀0 ≤ γ < ∞;

(F3) lim inf |s|→∞
sf(s)−C1F (s)

s2 ≥ 0.

With the usual notation, we introduce the spaces H = L2(Ω), V = H2
0 (Ω), and endow these

spaces with the usual scalar products and norms, (·, ·), | · |, ((·, ·)), ‖ · ‖, respectively, where

(u, v) =

∫

Ω

u(x)v(x)dx, ((u, v)) =

∫

Ω

△u(x) △ v(x)dx.

2. Non-Autonomous systems and their attractors

In this section, we iterate some notations and theorems in [13–15], which are important to

get our main results.

Let E be a Banach space, and let a two-parameter family of mappings {U(t, τ)} = {U(t, τ) |

t ≥ τ, τ ∈ R} act on E:

U(t, τ) : E → E, t ≥ τ, τ ∈ R.

Definition 1 Let Σ be a parameter set. {Uσ(t, τ) | t ≥ τ , τ ∈ R}, σ ∈ Σ is said to be a family of
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processes in Banach space E, if for each σ ∈ Σ, {Uσ(t, τ)} is a process, that is, the two-parameter

family of mappings {Uσ(t, τ)} from E to E satisfy:

Uσ(t, s) ◦ Uσ(s, τ) = Uσ(t, τ), ∀t ≥ s ≥ τ, τ ∈ R, (4)

Uσ(τ, τ) = Id is the identity operator, τ ∈ R, (5)

where Σ is called the symbol space and σ ∈ Σ is the symbol.

A set B0 ⊂ E is said to be uniformly (w.r.t. σ ∈ Σ) absorbing set for the family of processes

{Uσ(t, τ)}, σ ∈ Σ, if for any τ ∈ R and B ∈ B(E), there exists t0 = t0(τ, B) ≥ τ such that

∪σ∈ΣUσ(t, τ)B ⊂ B0 for all t ≥ t0. A set Y ⊂ E is said to be uniformly (w.r.t. σ ∈ Σ) attracting

for the family of processes {Uσ(t, τ)}, σ ∈ Σ, if for any fixed τ ∈ R and every B ∈ B(E)

lim
t→∞

sup
σ∈Σ

distE(Uσ(t, τ)B, Y ) = 0, (6)

where B(E) is the set of all bounded subset of E.

Assumption I Let {T (h)|h ≥ 0} be a family of operators acting on Σ and satisfy:

i) T (h)Σ = Σ, ∀h ∈ R
+;

ii) translation identity:

Uσ(t + h, τ + h) = UT (h)σ(t, τ), ∀ σ ∈ Σ, t ≥ τ, τ ∈ R, h ≥ 0. (7)

Definition 2 A family of processes {Uσ(t, τ)}, σ ∈ Σ is said to satisfy the uniform (w.r.t. σ ∈ Σ)

condition (C) if for any fixed τ ∈ R, B ∈ B(E) and ε > 0, there exist a t0 = t0(τ, B, ε) ≥ τ and

a finite dimensional subspace Em of E such that

i) Pm(∪σ∈Σ ∪t≥t0 Uσ(t, τ)B) is bounded; and

ii) ‖ (I − Pm)(∪σ∈Σ ∪t≥t0 Uσ(t, τ)x) ‖E≤ ε, ∀x ∈ B,

where dimEm = m and Pm : E → Em is a bounded projector.

Theorem 1 Let Σ be a complete metric space, and under assumption I. A family of processes

{Uσ(t, τ)}, σ ∈ Σ possesses the compact uniform (w.r.t. σ ∈ Σ) attractor AΣ in E satisfying

AΣ = ω0,Σ(B0) = ωτ,Σ(B0), ∀τ ∈ R,

if it

i) has a bounded uniformly (w.r.t. σ ∈ Σ) absorbing set B0; and

ii) satisfies uniform (w.r.t. σ ∈ Σ) condition (C).

Moreover, if E is a uniformly convex Banach space, then the converse is true.

Remark 1 The Theorem 1 is true without any continuous assumption on {Uσ(t, τ)}, σ ∈ Σ

and {T (t)}t≥0.

Definition 3 Let X be a Hilbert space. A function g ∈ L2
b(R; X) is said to satisfy Condition

(C∗) if for any ε > 0, there exists a finite dimensional subspace X1 of X such that

sup
t∈R

∫ t+1

t

‖ (I − Pm)g(x, s) ‖2
X ds < ε,
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where Pm : X → X1 is the canonical projector.

Denote by L2
c∗(R; X) the set of all functions satisfying Condition (C∗).

Lemma 1 If h ∈ L2
c∗(R; X), then for any ε > 0 and τ ∈ R, we have

sup
t≥τ

∫ t

τ

e−α(t−s) ‖ (I − Pm)h(s) ‖2
X ds ≤ ε,

where Pm is the same as that in Definition 3.

3. Uniformly (w.r.t. σ ∈ Σ) absorbing set and uniform (w.r.t. σ ∈ Σ)

attractor in V × H

For the existence of the solutions for (1)–(3), since the time-dependent term makes no essential

complications, we directly give the following results of the existence and uniqueness of the solution

without proof. In fact, the proof is based on the Faedo-Galerkin approximation approaches, see

[1, 7] for the details. Denote Rτ = [τ, +∞].

Theorem 2 If g, uτ , pτ are given satisfying g ∈ L2
loc(R; H), uτ ∈ V , pτ ∈ H , then (1)–(3) have

a unique solution

u(t) ∈ C(Rτ ; V ), ∂tu ∈ C(Rτ ; H).

Now we will write (1), (3) as an evolutionary system by introducing y(t) = (u(t), p(t)) and

yτ = (uτ , pτ ) for brevity. We denote by E = V × H the space of vector functions y(x) =

(u(x), p(x)) with the finite norms ‖y‖E = {‖u‖2 + |p|2}
1

2 , which is equivalent to ‖y‖E = ‖u‖2 +

|p + εu|2. Then the system (1), (3) is equivalent to the following system

∂tu = p, ∂tp = −Ap − Au − ku+ − f(u) + g(x, t), ∀ t ≥ τ ;

u|t=τ = uτ , p|t=τ = pτ ,
(9)

which can be rewritten in the operator form

∂ty = Aσ(t)(y), y|t=τ = yτ , (10)

where σ(s) = g(x, s) is the symbol of equation (10). Thus if yτ ∈ E, then (10) has a unique

solution y(t) ∈ Cb(Rτ ; E). This implies that the process {Uσ(t, τ)} given by the formula

Uσ(t, τ)yτ = y(t) is well defined in E.

We now give a fixed external force g0 in L2
b(R; X) and define the symbol space H(σ0) for

(10). Let a fixed symbol σ0(s) = g0(s) = g0(·, s) satisfy Condition (C*) in L2
loc(R; X); that is, the

family of translation {g0(s+h), h ∈ R} forms a function set satisfying Condition (C*). Therefore

H(σ0) = H(g0) = [g0(x, s + h)|h ∈ R]L2,w

loc
(R;X),

where [ ] denotes the closure of a set in a topological space L
2,w
loc (R; X).

Thus, for any g(x, t) ∈ H(g0), the problem (9) with g instead of g0 possesses a corresponding

processes {Ug(t, τ)} acting on E.

Proposition 1 ([13, 14]) If X is a reflexive separable, then



Existence of the uniform attractors 281

1) For all g1 ∈ H(φ), ‖g1‖
2
L2

b
(R;X)

≤ ‖g‖2
L2

b
(R;X)

;

2) The translation group {T (t)} is weakly continuous on H(g);

3) T (t)H(g) = H(g) for all t ∈ R.

Therefore, the family of processes {Ug(t, τ)}, g ∈ H(g0): Ug(t, τ) : E → E, t ≥ τ , τ ∈ R

are defined. Furthermore, the translation semigroup {T (h)|h ∈ R
+} satisfies that ∀h ∈ R

+,

T (h)H(g0) = H(g0), and the following translation identity holds:

Ug(t + h, τ + h) = UT (h)g(t, τ), ∀ g ∈ H(g0), t ≥ τ, τ ∈ R, h ≥ 0.

For (10), we give a fixed external force g0 ∈ L2
C∗(R; H) and H(σ0) = H(g0) = [g0(x, s+h)|h ∈

R]L2,w

loc
(R;H).

3.1 A priori estimates

By (F1) and (F3), for any 0 < ε < 1
2 , there exist constants K1, K2 > 0 such that

∫

Ω

F (u(x))dx +
1 − ε

4
‖u‖2 ≥ −K1, ∀u ∈ V, (11)

∫

Ω

uf(u)dx − C1

∫

Ω

F (u(x))dx +
1 − ε

4
‖u‖2 ≥ −K2, ∀u ∈ V. (12)

Taking the scalar product in H of equation (1) with v = ∂tu + εu, after a computation, we

find
1

2

d

dt

(

(1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2

∫

Ω

F (u(x))dx
)

+ ε(1 − ε)‖u‖2+

‖v‖2 − ε|v|2 + ε2(u, v) + εk|u+|2 + ε(f(u), u) = (g(t), v).

(13)

Using the Poincaré inequality

‖v‖ ≥ λ1|v|, ∀v ∈ V, (14)

where λ1 is the first eigenvalue of △2 in V , together with (12)–(13) and exploiting the Young

inequality and the Hölder inequality, we have

1

2

d

dt

(

(1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2

∫

Ω

F (u(x))dx
)

+
3ε(1 − ε)

4
‖u‖2+

(
λ1

2
− ε)|v|2 + ε2(u, v) + εk|u+|2 + εC1

∫

Ω

F (u(x))dx

≤ εK2 +
|g(t)|2

2λ1
.

(15)

Since
3ε(1 − ε)

4
‖u‖2 + (

λ1

2
− ε)|v|2 + ε2(u, v)

≥
3ε(1 − ε)

4
‖u‖2 + (

λ1

2
− ε)|v|2 −

ε2

λ1
‖u‖ · |v|

≥
ε(1 − ε)

2
‖u‖2 + (

λ1

2
−

ε3

λ2
1(1 − ε)

− ε)|v|2

≥
ε(1 − ε)

2
‖u‖2 + (

λ1

2
−

ε2

λ2
1

− ε)|v|2,

(16)
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we take ε small enough such that λ1

2 − ε2

λ2

1

− ε > λ1

4 . Collecting with (15) and (16) leads to

d

dt

(

(1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2

∫

Ω

F (u(x))dx
)

+ ε(1 − ε)‖u‖2+

λ1

2
|v|2 + 2εk|u+|2 + 2εC1

∫

Ω

F (u(x))dx ≤ 2εK2 +
|g(t)|2

λ1
.

(17)

Take α = min{ε, λ1

2 , εC1}, then it follows that

d

dt

(

(1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2

∫

Ω

F (u(x))dx
)

+

α
(

(1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2

∫

Ω

F (u(x))dx
)

≤ 2εK2 +
|g(t)|2

λ1
.

(18)

Denote Y (t) = (1 − ε)‖u‖2 + |v|2 + k|u+|2 + 2
∫

Ω
F (u(x))dx + 2K1, in the light of (11) we

have Y (t) > 0, and

d

dt
Y (t) + αY (t) ≤ C +

|g(t)|2

λ1
, C = 2(αK1 + εK2).

From Proposition 1, recall that

‖g‖2
L2

b
≤ ‖g0‖

2
L2

b
, for all g ∈ H(g0),

and using the Gronwall lemma [14, p35, Lemma 1.3], we obtain

Y (t) ≤ Y (τ) exp(−α(t − τ)) + (1 + α−1)(C +
1

λ1
‖g0‖

2
L2

b
). (19)

According to (11) again, we achieve

(1 − ε)‖u‖2 + |v|2 ≤ 2Y (t) ≤ 8(1 + α−1)(C +
1

λ1
‖g0‖

2
L2

b
),

that is

(1 − ε)‖u‖2 + |v|2 ≤ µ2
0, (20)

where µ2
0 = 8(1 + α−1)(C + 1

λ1

‖g0‖
2
L2

b

).

Therefore, we obtain a bounded uniformly (w.r.t. g ∈ H(g0)) absorbing set B0 = {y =

(u, p) : ‖y‖2
E ≤ µ2

0} in E, i.e., for every B ∈ B(E) and for all g ∈ H(g0), there exists a

t0 = t0(τ, B) ≥ τ such that
⋃

g∈H(g0)

Ug(t, τ)B ⊂ B0, ∀t ≥ t0.

Thus, we have the following results immediately.

Theorem 3 Under assumptions (F1)–(F3), if g0(x, s) ∈ L2
C∗(R; H), then the family of processes

{Ug(t, τ)}, g ∈ H(h0) corresponding to the problem (10) has a bounded uniformly(w.r.t. g ∈

H(h0)) absorbing set B0 in E.
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3.2 Uniform attractor in V × H

In order to obtain the uniform attractors of the family of processes {Ug(t, τ)}, g ∈ H(g0),

we also need the following compactness for the nonlinear term f .

Lemma 2 ([9]) Let f be a C2 function from R to R satisfying (F2). Then f : V → H is

continuously compact.

Now we prove the existence of compact uniform (w.r.t. h ∈ H(g0)) attractor for system

(1)–(3) with external forces g0 ∈ L2
C∗(R; H) in E.

Theorem 4 Let k > 0, and assume that (F1)–(F3) hold. If g0(x, t) ∈ L2
c∗(R, H), then the

family of processes {Ug(t, τ)}, g ∈ H(g0) corresponding to the problem (1) possesses a compact

uniform(w.r.t. g ∈ H(g0)) attractor AH(g0) in E satisfying

AH(g0) = ω0,H(g0)(B0) = ωτ,H(g0)(B0), (21)

where B0 is the uniformly(w.r.t. h ∈ H(g0)) absorbing set in E.

Proof By Theorem 1, we need only to verify that the family of processes {Ug(t, τ)}, g ∈ H(g0)

satisfies the uniform (w.r.t. g ∈ H(g0)) condition (C).

Since A−1 is a continuous compact operator in H , by the classical spectral theorem, there

exists a sequence {λj}
∞
j=1 with

0 < λ1 ≤ λ2 ≤ · · · ≤ λj ≤ · · · , λj → +∞, as j → ∞,

and a family of elements {ωj}
∞
j=1 of V which are orthonormal in H with

Aωj = λjωj, ∀j ∈ N.

Let Hm = span{ω1, ω2, . . . , ωm}, and Pm : H → Hm be an orthogonal projector. For any

u ∈ V , we write

u = Pmu + (I − Pm)u , u1 + u2.

Since f : V → H is a compact operator by Lemma 2, for any ε > 0, there exists some m such

that

|(I − Pm)f(u)|H ≤
ε

8
, ∀u ∈ B0(0, µ0), (22)

where µ0 is given by (19).

Choosing 0 < σ < 1, and taking the scalar product with v2 = ∂tu2 + σu2 of equation (1) in

H , we have
1

2

d

dt
((1 − σ)‖u2‖

2 + |v2|
2) + σ(1 − σ)‖u2‖

2 + ‖v2‖
2 − σ|v2|

2+

σ2(u2, v2) + k((u+)2, v2) + (f(u), v2) = (g(t), v2).

By (14) we get

1

2

d

dt
((1 − σ)‖u2‖

2 + |v2|
2) + σ(1 − σ)‖u2‖

2 + (λ1 − σ)|v2|
2+

σ2(u2, v2) + k((u+)2, v2) + (f(u), v2) = (g(t), v2).
(23)
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Due to the uniform boundedness of u in V , and the Sobolev embedding inequality, making

use of |u+| ≤ |u|, it follows that |(u+)2| < ε, for any ε > 0. Therefore

|(k(u+)2, v2)| ≤
λ1

4
|v2|

2 +
k2ε2

λ1
. (24)

Combining with (23) yields

1

2

d

dt
((1 − σ)‖u2‖

2 + |v2|
2) + σ(1 − σ)‖u2‖

2 + (
3λ1

4
− σ)|v2|

2+

σ2(u2, v2) + (f(u), v2) ≤
k2ε2

λ1
+ (g(t), v2).

(25)

Let σ be small enough such that 3λ1

4 − σ2

λ2

1

− σ ≥ λ1

4 . Then

σ(1 − σ)‖u2‖
2 + (

3λ1

4
− σ)|v2|

2 + σ2(u2, v2)

≥ σ(1 − σ)‖u2‖
2 + (

3λ1

4
− σ)|v2|

2 −
σ2

λ1
‖u2‖ · |v2|

≥
3σ(1 − σ)

4
‖u2‖

2 + (
3λ1

4
−

σ2

λ2
1

− σ)|v|2

≥
3σ(1 − σ)

4
‖u2‖

2 +
λ1

4
|v2|

2,

(26)

which together with (22)–(26) leads to

1

2

d

dt
((1 − σ)‖u2‖

2 + |v2|
2) +

3σ(1 − σ)

4
‖u2‖

2 +
λ1

4
|v2|

2

≤
ε

8
|v2| +

k2ε2

λ1
+ (g(t), v2)

≤
ε

8
|v2| +

k2ε2

λ1
+ |(I − Pm)g(t)| · |v2|

≤
λ1

8
|v2|

2 +
(4 + k2)ε2

λ1
+

4

λ1
|(I − Pm)g(t)|2,

that is
d

dt
((1 − σ)‖u2‖

2 + |v2|
2) +

3σ(1 − σ)

2
‖u2‖

2 +
λ1

4
|v2|

2

≤
2(4 + k2)ε2

λ1
+

8

λ1
|(I − Pm)g(t)|2.

(27)

Take α0 = min{ 3σ
2 , λ1

4 } such that

d

dt
((1 − σ)‖u2‖

2 + |v2|
2) + α0(‖u2‖

2 + |v2|
2) ≤ Cε2 +

8

λ1
|(I − Pm)g(t)|2, (28)

where C = 2(4+k2)
λ1

.

By the Gronwall Lemma, we obtain

(1 − σ)‖u2(t)‖
2 + |v2(t)|

2 ≤
(

(1 − σ)‖u2(τ)‖2 + |v2(τ)|2
)

e−α0(t−τ)+

Cε2

α0
+

8

λ1

∫ t

τ

e−α0(t−s)|(I − Pm)g(s)|2ds.
(29)
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Since g ∈ L2
c∗(R, H), by Lemma 1, for any ε1 = ε1(ε) > 0, there exists an m large enough

such that
8

λ1

∫ t

τ

e−α0(t−s)|(I − Pm)g(s)|2ds ≤
ε1

3
, ∀g ∈ H(h0), ∀t ≥ τ. (30)

Let t1 = τ + 1
α0

ln
3µ2

0

ε1

. Then we conclude that

((1 − σ)‖u2(τ)‖2 + |v2(τ)|2)e−α0(t−τ) ≤ µ2
0e

−α0(t−τ) ≤
ε1

3
, ∀t ≥ t1. (31)

Obviously, we can choose ε = ε(ε1) such that

Cε2

α0
≤

ε1

3
. (32)

Therefore, combining with (29)–(32) leads to

(1 − σ)‖u2(t)‖
2 + |v2(t)|

2 ≤ ε1, ∀t ≥ t1, g ∈ H(g0),

which indicates that the family of processes {Ug(t, τ)}, g ∈ H(g0) satisfies uniform (w.r.t. g ∈

H(g0)) condition (C) in E.

The proof is completed. 2
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