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Abstract It is well-known that the direction generated by Hestenes-Stiefel (HS) conjugate

gradient method may not be a descent direction for the objective function. In this paper, we

take a little modification to the HS method, then the generated direction always satisfies the

sufficient descent condition. An advantage of the modified Hestenes-Stiefel (MHS) method is

that the scalar βHS∗

k keeps nonnegative under the weak Wolfe-Powell line search. The global

convergence result of the MHS method is established under some mild conditions. Preliminary

numerical results show that the MHS method is a little more efficient than PRP and HS methods.
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1. Introduction

Consider the unconstrained optimization problem min{f(x)|x ∈ ℜn}, where f : ℜn → ℜ is

a continuously differentiable function whose gradient is denoted by g. The conjugate gradient

method can be described by the iterative scheme:

xk+1 = xk + tkdk, (1.1)

where the positive step-size tk is obtained by some line search, and the direction dk is generated

by the rule:

dk =

{

−gk, if k = 1,

−gk + βkdk−1, if k ≥ 2,
(1.2)

where gk denotes g(xk), βk is a scalar. Some well-known formulas for βk are given as follows:

βFR
k =

‖gk‖
2

‖gk−1‖2

[7]

; βHS
k =

gT
k (gk − gk−1)

(gk − gk−1)Tdk−1

[11]

; βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖2

[18,19]

,

where ‖·‖ denotes the ℓ2-norm. Their corresponding conjugate gradient methods will be abbrevi-

ated as FR, HS and PRP methods. Although the above mentioned conjugated gradient methods
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are identical when f is a strongly convex quadratic function and the line search is exact, the

behavior of these methods differs markedly when f is a general function and the line search is

inexact. Usually, two major inexact line searches are the weak Wolfe-Powell (WWP) line search,

i.e.,

f(xk + tkdk) − f(xk) ≤ δtkgT
k dk, (1.3)

and

g(xk + tkdk)Tdk ≥ σgT
k dk, (1.4)

and the strong Wolfe-Powell (SWP) line search, namely, (1.3) and

|g(xk + tkdk)Tdk| ≤ σ|gT
k dk|, (1.5)

where 0 < δ < σ < 1.

For the FR method, if a bad direction and tinny step from xk−1 to xk are generated, the next

direction and the next step are also likely to be poor unless a restart along the gradient direction

is performed. In spite of such a defect, Zoutendijk [27] proved that the FR method with exact

line search is globally convergent. Al-Baali [1] extended this result to inexact line searches. On

the other hand, the PRP and HS methods perform similarly in terms of theoretical property.

Both two methods perform better than the FR method in numerical computation, because these

two methods essentially perform a restart if a bad direction occurs. Nevertheless, Powell [17]

showed that PRP and HS methods can cycle infinitely without approaching a solution, which

implies that they are not globally convergent. Gibert and Nocedal [9] firstly proved that the

PRP conjugate gradient method converges globally when the sufficiently decreasing condition,

namely,

gT
k dk < −c‖gk‖

2, (1.6)

where c is a positive constant, and the so-called Property (∗) [9] are satisfied. Dai and Yuan

[4–6] gave further study of the convergence of the PRP method when βk is defined by βk =

max{0, βPRP
k }. The global convergence of related PRP methods was also studied in Wei [23–25]

and Li [14]. In order to match the requirement for the convergence theory, some modified PRP

methods [10, 13, 16] add some strong assumptions or use complicated line searches. Recently,

Hager and Zhang [12] developed a new conjugate gradient method which always generates descent

directions and reduces to the HS method if the exact line search is adopted.

Birgin and Martinez [3] proposed a spectral conjugate gradient method by combining conju-

gate gradient method and spectral gradient method [20] in the following way:

dk = −ϑkgk + βkdk−1,

where ϑk is a parameter and

βk =
(ϑkyk−1 − sk−1)

Tgk

dT
k−1yk−1

.

The reported numerical results show that the above method performs very well if ϑk is defined

by

ϑk =
sT

k−1sk−1

sT
k−1yk−1

,
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where sk−1 = xk − xk−1 and yk−1 = gk − gk−1. Unfortunately, the spectral conjugate gradient

method [3] cannot guarantee to generate descent directions. In other words, the generated

direction dk does not satisfy the following condition:

gT
k dk < 0. (1.7)

Therefore, based on the quasi-Newton BFGS update formula, Andrei [2] developed scaled con-

jugate gradient algorithm and proved its global convergence under Wolfe-Powell line search.

In this paper, we take a little modification to the HS method, then the directions generated

by the MHS method with the SWP line search always satisfy sufficient descent condition. Under

some mild conditions, we prove that the modified method is globally convergent.

The paper is organized as follows. In the next section, we present the modified HS method.

In Section 3, we establish global convergence results of the MHS method with the SWP line

search. Preliminary numerical results are reported in Section 4. Finally, Section 5 contains some

conclusions.

2. Algorithm and preliminaries

It is well-known that PRP and HS methods perform similarly and are regarded as the most

efficient conjugate gradient methods. Unfortunately, these two methods are not globally conver-

gent even for the exact line search; see the counterexample of Powell [17]. These facts motivate

us to design a new conjugate gradient method that performs similarly to PRP and HS methods

and has global convergence. Motivated by Wei [25] and the convergence analysis for the PRP

method by Gilbert and Nocedal [9], we propose a MHS method, in which the scalar βk is defined

by

βHS∗
k =

gT
k (gk −

gT
k gk−1

‖gk−1‖2 gk−1)

dT
k−1(gk − gk−1)

. (2.1)

An important feature of this new choice of βk is that, when the WWP line search is adopted,

the value of βk is greater than zero. From (1.4) and (1.7), we have

dT
k−1(gk − gk−1) ≥ (σ − 1)gT

k−1dk−1 ≥ 0, (2.2)

which, along with (2.1), gives

βHS∗
k =

gT
k gk −

gT
k gk−1

‖gk−1‖2 gT
k gk−1

dT
k−1(gk − gk−1)

=

gT
k gk‖gk−1‖

2−gT
k gk−1gT

k gk−1

‖gk−1‖2

dT
k−1(gk − gk−1)

=

‖gk‖
2‖gk−1‖

2−‖gk‖
2‖gk−1‖

2 cos2 αk

‖gk−1‖2

dT
k−1(gk − gk−1)

=

‖gk‖
2‖gk−1‖

2(1−cos2 αk)
‖gk−1‖2

dT
k−1(gk − gk−1)

≥ 0,

where αk is the angle between gk and gk−1.

Our modified HS conjugate gradient method algorithm is given below.

Algorithm 2.1 (Modified HS method: MHS)

Step 0. Given x1 ∈ ℜn, set d1 = −g1, k = 1. If g1 = 0, then stop.

Step 1. Find a tk > 0 satisfying strong Wolfe-Powell line search (SWP).
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Step 2. Let xk+1 = xk + tkdk and gk+1 = g(xk+1). If gk+1 = 0, then stop.

Step 3. Compute βk by the formula (2.1) and generate dk+1 by (1.2).

Step 4. Set k:=k+1, go to Step 1.

For our later analysis, we make the following basic assumptions on the objective function.

Assumption A The level set Ω = {x ∈ Rn | f(x) ≤ f(x1)} is bounded, where x1 is given by

Algorithm 2.1.

Assumption B In some neighborhood N of Ω, f is continuously differentiable, and its gradient

is Lipschitz continuously differentiable, that is, there exists a constant L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, (2.3)

for all x, y ∈ Ω.

Lemma 2.1 Suppose that Assumptions A and B hold. Consider any method of the form

(1.1)–(1.2) with dk satisfying (1.7) for all k, and tk satisfying (1.3) and (1.4). Then

∑

k≥1

(gT
k dk)2

‖dk‖2
< +∞. (2.4)

This result was essentially proved by Zoutendijk [27] and Wolfe [21, 22]. We shall refer to

(2.4) as the Zoutendijk condition.

Lemma 2.2 Suppose that Assumptions A and B hold. Consider any method of the form

(1.1)–(1.2) with dk satisfying (1.7) for all k, and tk satisfying (1.3) and (1.5), then either

lim inf
k→∞

‖gk‖ = 0, (2.5)

or
∑

k≥1

‖gk‖
4

‖dk‖2
< +∞.

Corollary 2.1 Suppose that Assumptions A and B hold. Consider any method of the form

(1.1)–(1.2) with dk satisfying (1.7) for all k, and tk satisfying (1.3) and (1.5). If

∞
∑

k

‖gk‖
t

‖dk‖2
= +∞

for any t ∈ [0, 4], then the method converges in the sense that (2.5) is true.

3. Global convergence results

In this section we discuss convergence properties of the proposed method in conjunction with

strong Wolfe-Powell line search. The following result gives conditions on the line search that

guarantee that all search directions satisfy the sufficient descent condition (1.6).

Theorem 3.1 Suppose that Assumptions A and B hold. Consider the method of the form (1.1)–

(1.2) with βk satisfying (2.1), and the step-size tk satisfying (1.3) and (1.5) with 0 < σ < 1/2.
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Then the method generates descent directions dk that satisfy the following inequalities:

−2σ − 1

1 + σ
≤

gT
k dk

‖gk‖2
≤

2σ − 1

1 − σ
, k = 1, 2, . . . . (3.1)

Proof The proof is by induction. The result clearly holds for k = 1, since the middle term

equals −1 and 0 < σ < 1/2. Assume that (3.1) holds for some k ≥ 1. This implies that (1.7)

holds, since 2σ−1
1−σ < 0, by the condition 0 < σ < 1/2. Combining with (1.5), it follows that

σgT
k dk ≤ g(xk+1)

Tdk ≤ −σgT
k dk, (3.2)

which implies that

(g(xk+1) − gk)Tdk ≥ (σ − 1)gT
k dk ≥ 0. (3.3)

From (1.2) and (2.1), we have

gT
k+1dk+1 = −‖gk+1‖

2 + βHS∗
k+1gT

k+1dk

= −‖gk+1‖
2 +

gT
k+1(gk+1 −

gT
k+1gk

‖gk‖2 gk)

dT
k (gk+1 − gk)

gT
k+1dk

= −‖gk+1‖
2 +

gT
k+1dk‖gk+1‖

2

dT
k (gk+1 − gk)

(1 −
(gT

k+1gk)2

‖gk+1‖2‖gk‖2
)

= −‖gk+1‖
2 +

gT
k+1dk‖gk+1‖

2

dT
k (gk+1 − gk)

(1 − cos2 αk+1), (3.4)

where αk+1 is the angle between gk+1 and gk. Dividing both sides of the equality (3.4) by ‖gk+1‖
2

and combining (3.2) with (3.3), we obtain

gT
k+1dk+1

‖gk+1‖2
= −1 +

gT
k+1dk

dT
k (gk+1 − gk)

(1 − cos2 αk+1)

≤ −1 − σ
gT

k dk

(σ − 1)gT
k dk

(1 − cos2 αk+1)

= −1 +
σ(1 − cos2 αk+1)

1 − σ
≤ −1 +

σ

1 − σ
=

2σ − 1

1 − σ
,

and

gT
k+1dk+1

‖gk+1‖2
= −1 +

gT
k+1dk

dT
k (gk+1 − gk)

(1 − cos2 αk+1)

≥ −1 − σ
gT

k dk

(σ + 1)gT
k dk

(1 − cos2 αk+1)

= −1 −
σ(1 − cos2 αk+1)

1 + σ
≥ −1 −

σ

1 + σ
=

−2σ − 1

1 + σ
.

We conclude that (3.1) holds for k + 1. The proof is completed. 2

Lemma 3.1 Suppose that Assumptions A and B hold. Consider the method of the form (1.1)–

(1.2) with βk satisfying (2.1) and tk satisfying (1.3) and (1.5). Then (2.4) holds.

Proof From the line search condition (1.5), we have

(gk+1 − gk)Tdk ≥ (σ − 1)gT
k dk. (3.5)
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By the Lipschitz condition (2.3), we obtain (gk+1 − gk)Tdk ≤ Ltk‖dk‖
2, which, along with (3.5),

gives

tk ≥
σ − 1

L

gT
k dk

‖dk‖2
. (3.6)

By (1.3) and (3.6), we get

f(xk) − f(xk+1) ≥ −δtkgT
k dk ≥ δ

1 − σ

L

(gT
k dk)2

‖dk‖2
. (3.7)

Since the level set Ω is bounded and {f(xk)} is a decreasing sequence, by summing both

sides of the inequality (3.7), we have

∑

k≥1

δ
1 − σ

L

(gT
k dk)2

‖dk‖2
≤

∑

k≥1

(f(xk) − f(xk+1)) < +∞.

The proof is completed. 2

For the remaining section, we assume that convergence does not occur in a finite number of

steps, i.e., gk 6= 0 for all k.

Lemma 3.2 Suppose that Assumptions A and B hold. Consider any method of the form (1.1)–

(1.2) with the following three properties: (i) βk ≥ 0; (ii) tk satisfies (1.3) and (1.4); (iii) dk

satisfies the sufficient decrease condition (1.6). If there exists a constant γ > 0 such that

‖gk‖ ≥ γ, (3.8)

then dk 6= 0 and
∑

k≥2

‖uk − uk−1‖
2 < ∞, (3.9)

where uk = dk

‖dk‖
.

The proof of the Lemma can be found in [4]. Of course, condition (3.9) does not imply the

convergence of the sequence uk, but shows that the search directions uk change slowly.

When a small step-size is generated from the PRP method, the next search direction ap-

proaches to the steepest direction automatically. Furthermore, the small step-sizes are not pro-

duced successively. Such property essentially owes to the property: βPRP
k tends to zero as the

step-size is sufficiently small. This property was firstly introduced and called Property (∗) by

Gilbert and Nocedal [9].

Property (∗) Consider any method of the form (1.1)–(1.2) and suppose that

0 < γ ≤ ‖gk‖ ≤ γ (3.10)

for all k ≥ 1. Then we say that the method has Property (∗) if there exist constants b > 1 and

λ > 0 such that, for all k: |βk| ≤ b, and ‖sk−1‖ ≤ λ ⇒ |βk| ≤
1
2b .

The following Lemma shows that the modified method has Property (∗).

Lemma 3.3 Suppose that Assumptions A and B hold. Consider the method of the form (1.1)–

(1.2) with βk satisfying (2.1) and tk satisfying (1.3) and (1.5). Then Property (∗) holds.
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Proof Consider any constant γ and γ of satisfying (3.10). We choose b = 4γ2

c(1−σ)γ2 > 1, and

λ = (1−2σ)γ2

4bLγ > 0, where c = 1−2σ
1−σ and 0 < σ < 1/2. Then, from (2.1), (2.2) and (3.10), we have

|βHS∗
k | =

|gT
k (gk −

gT
k gk−1

‖gk−1‖2 gk−1)|

|dT
k−1(gk − gk−1)|

≤
|gT

k (gk − gk−1 + gk−1 −
gT

k gk−1

‖gk−1‖2 gk−1)|

|(σ − 1)gT
k−1dk−1|

≤
‖gk‖‖(gk − gk−1 + gk−1 −

gT
k gk−1

‖gk−1‖2 gk−1)‖

|(σ − 1)gT
k−1dk−1|

≤
‖gk‖(‖gk − gk−1‖ + ‖gk−1 −

gT
k gk−1

‖gk−1‖2 gk−1‖)

|(σ − 1)gT
k−1dk−1|

≤
‖gk‖(‖gk − gk−1‖ +

|‖gk−1‖
2−gT

k gk−1|
‖gk−1‖2 ‖gk−1‖)

|(σ − 1)gT
k−1dk−1|

≤
‖gk‖(‖gk − gk−1‖ + ‖gk−1−gk‖

‖gk−1‖2 ‖gk−1‖
2
)

|(σ − 1)gT
k−1dk−1|

=
2‖gk‖‖gk − gk−1‖

|(σ − 1)gT
k−1dk−1|

≤
2‖gk‖(‖gk‖ + ‖gk−1‖)

c(1 − σ)‖gk−1‖2

≤
4γ2

c(1 − σ)γ2
= b.

When ‖sk−1‖ ≤ λ, we have from (2.3),

|βHS∗
k | ≤

‖gk‖(‖gk − gk−1‖ + ‖gk−1−gk‖
‖gk−1‖2 ‖gk−1‖

2
)

|(σ − 1)gT
k−1dk−1|

=
2‖gk‖‖gk − gk−1‖

|(σ − 1)gT
k−1dk−1|

≤
2‖gk‖‖gk − gk−1‖

c(1 − σ)‖gk−1‖2

≤ 2
Lλ‖gk‖

(1 − 2σ)‖gk−1‖2
≤ 2

Lλγ

(1 − 2σ)γ2
=

1

2b
.

The proof is completed. 2

The next Lemma shows that if the gradients are bounded away from zero, and if the method

has Property (∗), then a fraction of the steps cannot be too small. Otherwise we can prove that

‖dk‖ increases linearly at most. We will consider groups of ∆ consecutive iterates, and for this

purpose we define κλ
k,∆ = {i ∈ Z+ : k ≤ i ≤ k+∆−1, ‖si−1‖ ≥ λ}. Let |κλ

k,∆| denote the number

of elements of κλ
k,∆ and let ⌊·⌋ and ⌈·⌉ denote, respectively, the floor and ceiling operations.

Lemma 3.4 Suppose that Assumptions A and B hold. Consider any method of the form (1.1)–

(1.2) with the following three properties: (i) dk satisfies the sufficient condition (1.6); (ii) tk

satisfies (1.3) and (1.4); (iii) Property (∗) holds. Then if (3.8) holds, there exists λ > 0 such
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that, for any ∆ ∈ Z+ and any index k0, there is a greater index k ≥ k0 such that

| κλ
k,∆ |>

∆

2
.

The proof of Lemma 3.4 can be found in [4]. Finally we give the convergence result for the

MHS method with βHS∗
k . Its proof is similar to Theorem 3.3.3 in [4].

Theorem 3.2 Suppose that assumptions A and B hold. Consider the method of the form

(1.1)–(1.2) with the following four properties: (i) βk satisfies (2.1); (ii) tk satisfies (1.3) and

(1.4); (iii) dk satisfies (1.6) with c = 1−2σ
1−σ > 0; (iv) Property (∗) holds. Then we have

lim inf
k→∞

‖gk‖ = 0.

Proof We proceed by contradiction. Since infk→∞ ‖gk‖ > 0, (3.8) must hold. The MHS method

has Property (∗) and βHS∗
k is nonnegative, therefore, the conditions of Lemmas 3.2 and 3.4 hold.

Define ui = di/‖di‖. We have, for any two indices l, k, with l ≥ k:

xl − xk =

l
∑

i=k

‖si−1‖ui−1 =

l
∑

i=k

‖si−1‖uk−1 +

l
∑

i=k

‖si−1‖(ui−1 − uk−1),

where si−1 = xi − xi−1. Taking its norms, we obtain

l
∑

i=k

‖si−1‖ ≤ ‖xl − xk‖ +
l

∑

i=k

‖si−1‖‖ui−1 − uk−1‖.

By Assumptions A and B, we have that the sequence {xk} is bounded, and thus there exists

a positive constant ξ such that ‖xk‖ ≤ ξ, for all k ≥ 1. Thus

l
∑

i=k

‖si−1‖ ≤ 2ξ +

l
∑

i=k

‖si−1‖‖ui−1 − uk−1‖. (3.11)

Let λ > 0 be given by Lemma 3.4. Following the notion of this lemma, we define ∆ = ⌈8ξ/λ⌉

to be the smallest integer not less than 8ξ/λ. By Lemma 3.2, there exists an index k0 ≥ 1 such

that
∑

i≥k0

‖uk − uk−1‖
2 <

1

4∆
. (3.12)

With this ∆ and k0, Lemma 3.4 gives an index k ≥ k0 such that

|κλ
k,∆| >

∆

2
. (3.13)

Next, by the Cauchy-Schwarz inequality and (3.12), we have, for any index i ∈ [k, k +∆−1],

‖ui−1 − uk−1‖ ≤
i−1
∑

j=k

‖uj − uj−1‖ ≤ (i − k)1/2(
i−1
∑

j=k

‖uj − uj−1‖
2)1/2

≤ ∆1/2(
1

4∆
)1/2 =

1

2
.

By this relation, (3.13) and (3.11) with l = k + ∆ − 1, we have

2ξ ≥
1

2

k+∆−1
∑

i=k

‖si−1‖ >
λ

2
|κλ

k,∆| >
λ∆

4
.
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Thus ∆ < 8ξ
λ , which contradicts the definition of ∆. Therefore, the result follows. 2

4. Numerical experiments

In this section we compare MHS (modified Hestenes-Stiefel) and HS (Hestenes-Stiefel) meth-

ods with the PRP method on the collection of test problems that are from [15]. The parameters

in the strong Wolfe-Powell line search were chosen to be δ = 10−2 and σ = 0.1. For each test

problem, the termination criterion is ‖g(xk)‖ ≤ 10−5.

In order to rank the iterative numerical methods, we can compute the total numbers of

function and gradient evaluations by the formula

Ntotal = NF + m ∗ NG, (4.1)

where NF, NG denote the number of function evaluations and gradient evaluations, respectively,

and m is some integer. According to the results on automatic differentiation [8], the value of

m can be set to m = 5. That is to say, one gradient evaluation is equivalent to m number of

function evaluations if by automatic differentiation.

As we know that the PRP method is considered to be the most efficient one among all the

conjugate gradient methods. Therefore, in this part, we compare HS and MHS methods with

the PRP method as follows: for each testing example i, compute the total numbers of function

evaluations and gradient evaluations required by the evaluated method j (EM(j)) and the PRP

method by formula (4.1), and denote them by Ntotal,i(EM(j)) and Ntotal,i(PRP); then calculate

the ratio

ri(EM(j)) =
Ntotal,i(EM(j))

Ntotal,i(PRP)
.

If EM(j0) does not work for example i0, then we replace the Ntotal,i0(EM(j0)) by a positive

constant τ which is defined as τ = max{ri(EM(j)) : (i, j) 6∈ S1}, where

S1 = {(i, j) : method j does not work for example i}.

The geometric meaning of these ratios for method EM(j) over all the test problems is defined by

r(EM(j)) = (
∏

i∈S

ri(EM(j)))1/|S|,

where S denotes the set of the test problems and |S| is the cardinality of S. One advantage of

the above rule is that, the comparison is relative and hence is not dominated by a few problems

for which the method requires a great deal of function evaluations and gradient functions.

The numerical results are summarized in Table 4.1. In Table 4.1, Problem denotes the name

of the test problem in MATLAB, Dim denotes the dimension of the problem, NI denotes the

number of iterations, NF denotes the number of function evaluations, NG denotes the number

of gradient evaluations, − denotes the failure to compute the step-size under the same given

conditions.
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PRP HS MHS

Problem Dim NI/NF/NG NI/NF/NG NI/NF/NG

ROSE 2 29/502/65 40/574/117 33/467/71

FROTH 2 12/30/20 7/68/14 15/36/26

BADSCP 2 - - -

BADSCB 2 13/80/22 13/80/24 -

BEALE 2 9/126/21 11/81/21 19/94/34

JENSAM 2 - - 11/30/20

HELIX 3 49/255/83 26/258/50 41/197/73

BARD 3 23/98/37 65/277/105 82/161/121

GAUSS 3 4/57/6 3/8/6 4/9/5

MEYER 3 - - -

GULF 3 1/2/2 1/2/2 1/2/2

BOX 3 - - -

SING 4 199/611/338 110/425/176 123/445/197

WOOD 4 169/1103/302 265/1500/466 96/419/170

KOWOSB 4 55/300/94 193/676/310 28/297/46

BD 4 - - -

OSB1 5 - - -

BIGGS 6 264/875/423 155/502/253 -

OSB2 11 254/1061/418 185/799/308 3908/15695/6505

OSB3 20 - 2380/7312/3799 -

ROSEX 8 23/402/59 38/510/108 27/193/66

50 31/533/77 25/359/60 39/537/103

100 - - 38/436/82

SINGX 4 199/611/338 110/425/176 123/445/197

PEN1 2 - - 5/18/12

PEN2 4 12/134/28 11/177/31 17/142/34

50 613/2795/1063 1099/3541/1806 141/1105/260

VARDIM 2 3/9/7 2/52/5 3/9/7

50 - - 10/52/36

TRIG 3 12/81/24 12/84/26 13/177/23

50 41/279/72 38/224/68 37/224/70

100 46/342/87 50/393/92 51/436/91

BV 3 12/25/16 10/20/13 12/25/16

10 75/241/117 50/148/81 47/188/70

IE 3 5/12/7 5/12/7 5/12/7

50 6/13/7 6/13/7 6/13/7

100 6/13/8 6/13/8 6/13/8

200 6/13/8 6/13/8 6/61/8

500 6/13/8 6/13/8 6/13/8

Table 4.1 Test results for PRP, HS and MHS methods
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PRP HS MHS

Problem Dim NI/NF/NG NI/NF/NG NI/NF/NG

TRID 3 10/75/16 12/29/17 15/85/22

50 26/55/31 27/57/31 26/103/30

100 30/67/36 30/67/36 30/67/36

200 30/66/36 30/66/37 32/70/38

BAND 3 9/68/13 10/70/14 7/64/12

50 - - 21/866/28

100 - - 21/865/28

200 - - 21/827/29

LIN 2 1/3/3 1/3/3 1/3/3

50 1/3/3 1/3/3 1/3/3

500 1/3/3 1/3/3 1/3/3

1000 1/3/3 1/3/3 1/3/3

LIN1 2 1/51/2 1/51/2 1/51/2

10 1/3/3 1/3/3 1/3/3

LIN0 4 1/3/3 1/3/3 1/3/3

Table 4.1 (continuous) Test results for PRP, HS and MHS methods

PRP HS MHS

1 1.028 0.976

Table 4.2 Relative efficiency of PRP, HS and MHS methods

According to the above rule, it is clear that r(PRP)= 1. The values of r(HS) and r(MHS)

are listed in Tables 4.2. From Table 4.2 we can see that the average performances of the HS

method is similar to PRP method, and the average performances of the MHS method is a little

better than PRP and HS methods. An explanation of this behavior may be that we take a

little modification to the HS method such that the generated direction always satisfies sufficient

descent condition (1.6), whereas the search directions generated by PRP and HS methods do not

guarantee to satisfy the descent property (1.7) for some problems.

5. Conclusion

In this paper, we have proposed a new conjugate gradient algorithm for solving unconstrained

optimization problems. The new method is a modification of the HS conjugate gradient method

such that the direction generated by the resulting algorithm satisfies the sufficient descent condi-

tion. The global convergence result of the modified method with strong Wolfe-Powell line search

is established. Preliminary numerical results show that the performance of the MHS method is

a little more efficient than PRP and HS methods for given test problems.
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