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Abstract In this paper, we study the property of continuous mappings from a sphere to the

Euclidean space. By using the theory of the periodic transformation in algebraic topology, we

obtain a generalized Borsuk-Ulam theorem and then give some applications of the theorem.
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1. Introduction

The classical Borsuk-Ulam theorem says that [1]: for every continuous map f : Sm → Rk

(from the m-sphere to the Euclidean k-space), there exists a point x ∈ Sm such that f(x) =

f(−x), if k ≤ m. It is a well-known theorem and has been generalized in many ways. Conner

and Floyd [2] generalized the Borsuk-Ulam theorem to one in which the Euclidean k-space

was replaced by a differentiable k-manifold Mk. Pedro et al. [3] generalized the theorem to

a situation where the Euclidean k-space was replaced by a wide class of topological spaces.

Munkholm showed in [4] that all differentiability hypotheses in the theorem can be removed by

changing the assumption that Mk is compact, differentiable manifold to that Mk is a closed

topological manifold, and Carlos Biasi et al. [5] further extended the result of Munkholm to a

more generalized form via replacing the compact k-manifold by a generalized manifold.

In the present paper, we focus on the study of the property of continuous mapping from

a sphere to the Euclidean space, and obtain a generalized Borsuk-Ulam theorem in a different

form by using the theory of the periodic transformation. We then give some applications of the

theorem.

2. Main results

Lemma 2.1 ([6]) If t is a fixed point free periodic transformation on Sm whose period is n, p

is a prime number and n can be divided by p, then I(Sm, Zp) = m+ 1.

Lemma 2.2 ([6]) If X and Y are arcwise connected Hausdorff space, T is a fixed point free
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periodic transformation group on X and Y , and f : X → Y is an equivariant mapping about T ,

then I(X,T ) ≤ I(Y, T ).

Theorem 2.1 If f : Sm → Rk is a continuous mapping from an m-sphere to the Euclidean

k-space and t is a fixed point free periodic transformation on Sm whose period is pi, p is a

prime number, (i, pi) = 1 and m ≥ kpi − 1, then there exists a point x ∈ Sm such that

f(x) = f(tx) = · · · = f(tp
i−1x).

Proof Suppose the conclusion of theorem is not true. Let

ϕ : Sm → Rk ×Rk × · · · ×Rk = Rpik,

ϕ(x) = (f(x), f(tx), . . . , f(tp
i−1x)).

Then ϕ is a continuous mapping and ϕ(Sm) ⊂ Rpik −△k
pi , where

△k
pi = {(a1, a2, . . . , api)|aj ∈ Rk, a1 = a2 = · · · = api , 1 ≤ j ≤ pi}.

For any y ∈ Rpik −△k
pi , y = (y1, y2, . . . , ypi), let

ψ : Rpik −△k
pi → S̃kpi−1,

ψ(y) = ψ(y1, y2, . . . , ypi)

= (y1 −
y1 + y2 + · · · + ypi

pi
, y2 −

y1 + y2 + · · · + ypi

pi
, . . . , ypi −

y1 + y2 + · · · + ypi

pi
)·

(y2
1 + y2

2 + · · · + y2

pi −
(y1 + y2 + · · · + ypi)2

pi
)−

1

2

= (z1, z2, . . . , zpi).

Then ψ is a continuous mapping and

z1 + z2 + · · · + zpi = 0, |z1|
2 + |z2|

2 + · · · + |zpi |2 = 1.

Hence S̃kpi−1 is a (kpi − 1)-sphere. Let

g = ψ ◦ ϕ : Sm → S̃kpi−1.

Then g is a continuous mapping. Let

t : S̃kpi−1 → S̃kpi−1,

t(z1, z2, . . . , zpi) = (z2, z3, . . . , zpi , z1).

Then t is a periodic transformation on S̃kpi−1 whose period is pi. Suppose for 1 < i < pi, ti has

a fixed point, i.e.,

ti(z1, z2, . . . , zpi) = (zi+1, zi+2, . . . , zpi , z1, z2, . . . , zi) = (z1, z2, . . . , zpi).

Then

z1 = zi+1 = z2i+1 = · · · = zpi−i+1,

z2 = zi+2 = z2i+2 = · · · = zpi−i+2,
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...

zi = z2i = z3i = · · · = zpi .

Since (i, pi) = 1, there exists integral number a and b such that ai+ bpi = 1. For any 1 ≤ j ≤ pi,

zj = zj+|ai| = zj+|1−bpi| =

{
zj−1, b > 0

zj+1, b < 0.

Then z1 = z2 = · · · = zpi . This contradicts the assumption. Then t is a fixed point free periodic

transformation on S̃kpi−1 and gt(x) = tg(x). By Lemmas 2.1 and 2.2

m+ 1 = I(Sm, Zp) ≤ I(S̃kpi−1, Zp) = kpi

i.e., m < kpi − 1. This contradicts to the condition of Theorem 2.1 and the proof of Theorem

2.1 is completed. 2

Remark While i = 1, p = 2, t(x) = −x and m = k, Theorem 2.1 is the Borsuk-Ulam Theorem.

Hence Theorem 2.1 generalizes the Borsuk-Ulam Theorem.

In the following we give two applications of the theorem.

Corollary 2.1 Let f : Sm →Mk be a continuous mapping from the m-sphere Sm to a smooth

k-manifold Mk and t is a fixed point free periodic transformation on Sm whose period is pi.

Suppose p is a prime number, (i, pi) = 1 and m ≥ (2k + 1)pi − 1. Then there exists a point

x ∈ Sm such that f(x) = f(tx) = f(t2x) = · · · = f(tp
i−1

x).

Proof Whitney has proved [7] that any smooth k-manifold can be embedded in R2k+1 as a

submanifold. Hence there exists a single smooth mapping h : Mk → R2k+1 such that (h,Mk) is

an embedding submanifold of R2k+1. Let

f̃ = h ◦ f : Sm → R2k+1.

Then, by Theorem 2.1, there exists a point x ∈ Sm such that f̃(x) = f̃(tx) = f̃(t2x) = · · · =

f̃(tp
i−1x). Since h is single, there exists a point x ∈ Sm such that f(x) = f(tx) = f(t2x) =

· · · = f(tp
i−1x). Hence the conclusion of the corollary follows.

Corollary 2.2 If Sm is covered by k + 1 closed sets and t is a fixed point free periodic trans-

formation on Sm whose period is pi, p is a prime number, (i, pi) = 1, m ≥ kpi − 1, then there

exists a point x ∈ Sm such that one of the sets contains points x, tx, t2x, . . . , tp
i−1x.

Proof Suppose A1, A2, . . . , Ak+1 are closed subsets of Sm whose union is all of Sm. Define

f : Sm → Rk by

f(x) = (d(x,A1), d(x,A2), . . . , d(x,Ak)), x ∈ Sm,

where d(x,Ai) is the distance of the point x from Ai. Then f is continuous. By Theorem 2.1,

there exists a point x ∈ Sm such that f(x) = f(tx) = f(t2x) = · · · = f(tp
i−1x). In the other

words, we can find a point x in Sm with the property d(x,Ai) = d(tx,Ai) = · · · = d(tp
i−1x,Ai)

for 1 ≤ i ≤ k. If d(x,Ai) > 0 for 1 ≤ i ≤ k, then x, tx, t2x, . . . , tp
i−1x lie in Ak+1, since A1,
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A2, . . . , Ak+1 cover Sm. If d(x,Ai) = 0 for some i, since each Ai is closed, we know that all x,

tx, t2x, . . . , tp
i−1x are in Ai.
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