A Property of Continuous Mapping from a Sphere to the Euclidean Space and Its Applications

Yu Hong LIU

College of Science, Guangdong Ocean University, Guangdong 524088, P. R. China

Abstract In this paper, we study the property of continuous mappings from a sphere to the Euclidean space. By using the theory of the periodic transformation in algebraic topology, we obtain a generalized Borsuk-Ulam theorem and then give some applications of the theorem.

Keywords Smith special index; fixed point free periodic transformation; equivariant mapping.

Document code A MR(2000) Subject Classification 55M20; 55M35; 57P99 Chinese Library Classification 0189.2

1. Introduction

The classical Borsuk-Ulam theorem says that [1]: for every continuous map $f: S^m \to R^k$ (from the *m*-sphere to the Euclidean *k*-space), there exists a point $x \in S^m$ such that f(x) = f(-x), if $k \leq m$. It is a well-known theorem and has been generalized in many ways. Conner and Floyd [2] generalized the Borsuk-Ulam theorem to one in which the Euclidean *k*-space was replaced by a differentiable *k*-manifold M^k . Pedro et al. [3] generalized the theorem to a situation where the Euclidean *k*-space was replaced by a wide class of topological spaces. Munkholm showed in [4] that all differentiability hypotheses in the theorem can be removed by changing the assumption that M^k is compact, differentiable manifold to that M^k is a closed topological manifold, and Carlos Biasi et al. [5] further extended the result of Munkholm to a more generalized form via replacing the compact *k*-manifold by a generalized manifold.

In the present paper, we focus on the study of the property of continuous mapping from a sphere to the Euclidean space, and obtain a generalized Borsuk-Ulam theorem in a different form by using the theory of the periodic transformation. We then give some applications of the theorem.

2. Main results

Lemma 2.1 ([6]) If t is a fixed point free periodic transformation on S^m whose period is n, p is a prime number and n can be divided by p, then $I(S^m, Z_p) = m + 1$.

Lemma 2.2 ([6]) If X and Y are arcwise connected Hausdorff space, T is a fixed point free

Received April 6, 2008; Accepted January 5, 2009 E-mail: lyhd@sina.com

periodic transformation group on X and Y, and $f: X \to Y$ is an equivariant mapping about T, then $I(X,T) \leq I(Y,T)$.

Theorem 2.1 If $f: S^m \to R^k$ is a continuous mapping from an *m*-sphere to the Euclidean k-space and t is a fixed point free periodic transformation on S^m whose period is p^i , p is a prime number, $(i, p^i) = 1$ and $m \ge kp^i - 1$, then there exists a point $x \in S^m$ such that $f(x) = f(tx) = \cdots = f(t^{p^i-1}x).$

Proof Suppose the conclusion of theorem is not true. Let

$$\varphi: S^m \to R^k \times R^k \times \dots \times R^k = R^{p^i k},$$
$$\varphi(x) = (f(x), f(tx), \dots, f(t^{p^i - 1}x)).$$

Then φ is a continuous mapping and $\varphi(S^m) \subset R^{p^ik} - \triangle_{p^i}^k$, where

$$\triangle_{p^i}^k = \{(a_1, a_2, \dots, a_{p^i}) | a_j \in \mathbb{R}^k, a_1 = a_2 = \dots = a_{p^i}, \ 1 \le j \le p^i\}.$$

For any $y \in R^{p^i k} - \triangle_{p^i}^k, y = (y_1, y_2, \dots, y_{p^i})$, let

$$\begin{split} \psi : R^{p^*k} &- \triangle_{p^i}^k \to S^{kp^*-1}, \\ \psi(y) &= \psi(y_1, y_2, \dots, y_{p^i}) \\ &= (y_1 - \frac{y_1 + y_2 + \dots + y_{p^i}}{p^i}, y_2 - \frac{y_1 + y_2 + \dots + y_{p^i}}{p^i}, \dots, y_{p^i} - \frac{y_1 + y_2 + \dots + y_{p^i}}{p^i}) \\ &\quad (y_1^2 + y_2^2 + \dots + y_{p^i}^2 - \frac{(y_1 + y_2 + \dots + y_{p^i})^2}{p^i})^{-\frac{1}{2}} \\ &= (z_1, z_2, \dots, z_{p^i}). \end{split}$$

Then ψ is a continuous mapping and

$$z_1 + z_2 + \dots + z_{p^i} = 0, \ |z_1|^2 + |z_2|^2 + \dots + |z_{p^i}|^2 = 1.$$

Hence \widetilde{S}^{kp^i-1} is a (kp^i-1) -sphere. Let

$$g = \psi \circ \varphi : S^m \to \widetilde{S}^{kp^i - 1}.$$

Then g is a continuous mapping. Let

$$t: \widetilde{S}^{kp^i-1} \to \widetilde{S}^{kp^i-1},$$

$$t(z_1, z_2, \dots, z_{p^i}) = (z_2, z_3, \dots, z_{p^i}, z_1).$$

Then t is a periodic transformation on \widetilde{S}^{kp^i-1} whose period is p^i . Suppose for $1 < i < p^i$, t^i has a fixed point, i.e.,

$$t^{i}(z_{1}, z_{2}, \dots, z_{p^{i}}) = (z_{i+1}, z_{i+2}, \dots, z_{p^{i}}, z_{1}, z_{2}, \dots, z_{i}) = (z_{1}, z_{2}, \dots, z_{p^{i}}).$$

Then

$$z_1 = z_{i+1} = z_{2i+1} = \dots = z_{p^i - i + 1},$$

$$z_2 = z_{i+2} = z_{2i+2} = \dots = z_{p^i - i+2},$$

$$z_i = z_{2i} = z_{3i} = \dots = z_{p^i}$$

Since $(i, p^i) = 1$, there exists integral number a and b such that $ai + bp^i = 1$. For any $1 \le j \le p^i$,

$$z_j = z_{j+|ai|} = z_{j+|1-bp^i|} = \begin{cases} z_{j-1}, & b > 0\\ z_{j+1}, & b < 0. \end{cases}$$

Then $z_1 = z_2 = \cdots = z_{p^i}$. This contradicts the assumption. Then t is a fixed point free periodic transformation on \widetilde{S}^{kp^i-1} and gt(x) = tg(x). By Lemmas 2.1 and 2.2

$$m + 1 = I(S^m, Z_p) \le I(\tilde{S}^{kp^i - 1}, Z_p) = kp^i$$

i.e., $m < kp^i - 1$. This contradicts to the condition of Theorem 2.1 and the proof of Theorem 2.1 is completed. \Box

Remark While i = 1, p = 2, t(x) = -x and m = k, Theorem 2.1 is the Borsuk-Ulam Theorem. Hence Theorem 2.1 generalizes the Borsuk-Ulam Theorem.

In the following we give two applications of the theorem.

Corollary 2.1 Let $f: S^m \to M^k$ be a continuous mapping from the *m*-sphere S^m to a smooth *k*-manifold M^k and *t* is a fixed point free periodic transformation on S^m whose period is p^i . Suppose *p* is a prime number, $(i, p^i) = 1$ and $m \ge (2k + 1)p^i - 1$. Then there exists a point $x \in S^m$ such that $f(x) = f(tx) = f(t^2x) = \cdots = f(t^{p^{i-1}}x)$.

Proof Whitney has proved [7] that any smooth k-manifold can be embedded in \mathbb{R}^{2k+1} as a submanifold. Hence there exists a single smooth mapping $h: M^k \to \mathbb{R}^{2k+1}$ such that (h, M^k) is an embedding submanifold of \mathbb{R}^{2k+1} . Let

$$\widetilde{f} = h \circ f : S^m \to R^{2k+1}.$$

Then, by Theorem 2.1, there exists a point $x \in S^m$ such that $\tilde{f}(x) = \tilde{f}(tx) = \tilde{f}(t^2x) = \cdots = \tilde{f}(t^{p^i-1}x)$. Since *h* is single, there exists a point $x \in S^m$ such that $f(x) = f(tx) = f(t^2x) = \cdots = f(t^{p^i-1}x)$. Hence the conclusion of the corollary follows.

Corollary 2.2 If S^m is covered by k + 1 closed sets and t is a fixed point free periodic transformation on S^m whose period is p^i , p is a prime number, $(i, p^i) = 1$, $m \ge kp^i - 1$, then there exists a point $x \in S^m$ such that one of the sets contains points $x, tx, t^2x, \ldots, t^{p^i-1}x$.

Proof Suppose $A_1, A_2, \ldots, A_{k+1}$ are closed subsets of S^m whose union is all of S^m . Define $f: S^m \to \mathbb{R}^k$ by

$$f(x) = (d(x, A_1), d(x, A_2), \dots, d(x, A_k)), x \in S^m,$$

where $d(x, A_i)$ is the distance of the point x from A_i . Then f is continuous. By Theorem 2.1, there exists a point $x \in S^m$ such that $f(x) = f(tx) = f(t^2x) = \cdots = f(t^{p^i-1}x)$. In the other words, we can find a point x in S^m with the property $d(x, A_i) = d(tx, A_i) = \cdots = d(t^{p^i-1}x, A_i)$ for $1 \le i \le k$. If $d(x, A_i) > 0$ for $1 \le i \le k$, then $x, tx, t^2x, \ldots, t^{p^i-1}x$ lie in A_{k+1} , since A_1 , A_2, \ldots, A_{k+1} cover S^m . If $d(x, A_i) = 0$ for some *i*, since each A_i is closed, we know that all *x*, $tx, t^2x, \ldots, t^{p^i-1}x$ are in A_i .

References

- [1] ARMSTRONG M A. Basic Topology [M]. McGraw-Hill Book Co. (UK), Ltd., London-New York, 1979.
- [2] CONNER P E, FLOYD E E. Fixed point free involutions and equivariant maps [J]. Bull. Amer. Math. Soc., 1960, 66: 416–441.
- [3] PERGHER P L Q, DE MATTOS D, DOS S. et al. The Borsuk-Ulam theorem for general spaces [J]. Arch. Math. (Basel), 2003, 81(1): 96–102.
- [4] MUNKHOLM H J. A Borsuk-Ulam theorem for maps from a sphere to a compact topological manifold [J]. Illinois J. Math., 1969, 13: 116–124.
- [5] CARLOS BIASI, DENNISE DE MATTOS, EDIVALDO L. DOS SANTOS. A Borsuk-Ulam Theorem forMaps from a Sphere to a Generalized Manifold [J]. Geometriae Dedicata, 2004, 107(1): 101–110.
- [6] HE Baihe. Continuous mappings from spheres to Euclidean spaces [J]. Chinese Ann. Math., 1981, 2(2): 233-242. (in Chinese)
- [7] AUSLANDER L, MACKENZIE R E. Introduction to Differentiable Manifolds [M]. McGraw-Hill Book Co., Inc., New York-Toronto-London, 1963.