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1. Introduction

The metric projection operators in Hilbert and Banach space have been used in many different

areas of mathematics, such as functional and numerical analysis, optimization theory, fixed point

theorem, nonlinear programming, variational inequality and complementarity problem, etc. [1–7,

10].

Recently, Wu and Huang [6, 7] extended the definition of the generalized projection operators

introduced by Alber [1] and Li [4], and introduced and studied a new class of generalized f -

projection operator in Banach space. In [6], they studied the existence of the solution for the

following mixed variational inequality MVI(T, K) in Banach space: Find x ∈ K such that

〈Tx, y − x〉 + f(y) − f(x) ≥ 0, ∀y ∈ K, (1.1)

which was introduced and studied in Hilbert space by Noor [8], and it was proved that:

Theorem 1 ([6]) Let K be a nonempty closed convex subset of a reflexive and smooth Banach

space X with dual space X∗. Let mappings T : K → X∗ be continuous and f : K ⊂ X →

R∪ {+∞} be proper, convex and lower semi-continuous. If there exists an element y0 ∈ K such

Received April 3, 2008; Accepted July 7, 2008
Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 07ZA098),

a grant from the “project 211(Phase III)” and the Scientific Research Fund of the Southwestern University of

Finance and Economics.
* Corresponding author

E-mail address: zhangqingbang@126.com (Q. B. ZHANG)



324 Q. B. ZHANG and L. LIU

that

{x ∈ K : 2〈Jy0 −
1

2
Ty0), y0 − x〉 + ‖x‖2 + f(x) ≤ ‖y0‖

2 + f(y0)

is a compact subset of K. Then Problem (1.1) has a solution.

In this paper, by using the property of the generalized f -projection operator and FKKM

theorem [9], we consider the existence of the solution for the following mixed variational inequality

MVI(T − ξ, K): Find x ∈ K such that

〈Tx − ξ, y − x〉 + f(y) − f(x) ≥ 0, ∀y ∈ K.

Our conclusions improve and extend the above theorem 1 and the corresponding results in [5]

and [4].

2. Preliminaries

Throughout the paper, let X be a real Banach space with dual space X∗ and K be a

nonempty closed and convex subset of a real Banach space X , and 2X stand for the family of all

the nonempty subsets of X . Let 〈·, ·〉 be the dual pair between X and X∗, R be the field of real

numbers.

For any fixed ρ > 0, let the functional G : X∗ × K → R ∪ {+∞} be defined by

G(ϕ, x) = ‖ϕ‖2 − 2〈ϕ, x〉 + ‖x‖2 + 2ρf(x),

where ϕ ∈ X∗, x ∈ X and f : K ⊂ X → R ∪ {+∞} is proper, convex, lower semi-continuous. It

is easy to have the properties of G as follows [7]:

(i) (‖ϕ‖ − ‖x‖)2 + 2ρf(x) ≤ G(ϕ, x) ≤ (‖ϕ‖ + ‖x‖)2 + 2ρf(x);

(ii) G(ϕ, x) is convex and continuous with respect to ϕ when x is fixed;

(iii) G(ϕ, x) is convex and lower semi-continuous with respect to x when ϕ is fixed.

Definition 1 ([6]) Let X be a Banach space with dual space X∗ and K be a nonempty closed

convex subset of X . The operator π
f
K : X∗ → 2K is called the generalized f -projection operator

if

π
f
Kϕ = {u ∈ K : G(ϕ, u) = inf

y∈K
G(ϕ, y)}, ∀ϕ ∈ X∗.

Note that if f(x) = 0 for all x ∈ K, the generalized f -projection operator reduces to the

generalized projection operator defined by Alber [1] and Li [4].

Lemma 1 ([7]) If X is a reflexive Banach space with dual space X∗ and K is a nonempty closed

convex subset of X , then the following conclusions hold:

(i) For any given ϕ ∈ X∗, π
f
Kϕ is a nonempty, closed and convex subset of K;

(ii) If X is smooth, then for any given ϕ ∈ X∗, x ∈ π
f
Kϕ if and only if

〈ϕ − Jx, x − y〉 + ρf(y) − ρf(x) ≥ 0, ∀ y ∈ K;

(iii) If f : K → R ∪ {+∞} is positively homogeneous, i.e., f(tx) = tf(x) for all t > 0 and

x ∈ K with tx ∈ K, and X is strictly convex, then the operator π
f
K : X∗ → 2K is single-valued.

Lemma 2 ([7]) Let X be a reflexive strictly convex Banach space with dual space X∗ and K
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be a nonempty compact convex subset of X . If f : K → R ∪ {+∞} is proper, convex, lower

semi-continuous and positively homogeneous, then π
f
K : X∗ → K is continuous.

3. Existence theorem

Proposition 1 Let K be a nonempty closed convex subset of a reflexive and smooth Banach

space X with dual space X∗ and ρ > 0 be any given constant. If f : K → R ∪ {+∞} is proper,

convex and lower semi-continuous, then the following states are equivalent:

(i) x is a solution of MVI(T − ξ, K);

(ii) x ∈ π
f
K(Jx − ρ(Tx − ξ));

(iii) G(Jx − ρ(Tx − ξ), x) ≤ G(Jx − ρ(Tx − ξ), y), ∀y ∈ K.

Proof For any given positive number ρ > 0, by Lemma 1(ii) and Definition 1, it is easy to show

that the proposition holds. 2

Proposition 2 Let K be a nonempty closed convex subset of a reflexive and smooth Banach

space X with dual space X∗. Let mapping f : K ⊂ X → R ∪ {+∞} be proper, convex,

lower semi-continuous. For any given ξ ∈ X∗ and constant ρ > 0, suppose that there exists a

nonempty weakly compact subset D of K and y0 ∈ K such that 〈Jy0 − ρ(T (y0) − ξ), y0 − x〉 >
1

2
(‖y0‖2 − ‖x‖2) + ρ(f(y0) − f(x)), for all x ∈ K \ D. Then there exists x̄ ∈ D ⊂ K such that

G(Jy − ρ(T (y) − ξ), x̄) ≤ G(Jy − ρ(T (y) − ξ), y), ∀y ∈ K.

Proof Define a multi-valued mapping F : K → 2K by

F (y) = {x ∈ K : G(Jy − ρ(T (y) − ξ), x) ≤ G(Jy − ρ(T (y) − ξ), y)}, for all y ∈ K.

Then F (y) is nonempty, since y ∈ F (y) for each y ∈ K. For each fixed y ∈ K, from the property

of G, it follows that the mapping x 7→ G(Jy−ρ(Ty− ξ), x) is lower semi-continuous and convex.

Therefore for all y ∈ K, the set F (y) is closed and convex, and F (y) is weakly closed and convex.

Next, we shall show that the mapping F : K → 2K is a KKM mapping in K. Indeed, suppose

that N = {y1, y2, . . . , yn} is an arbitrary finite subset in K, then, for any v ∈ coN , there exist

{λi}n
i=1 satisfying 0 ≤ λi ≤ 1 and

∑n

i=1
λi = 1 such that v =

∑n

i=1
λiyi. Hence, for any yj ∈ N ,

we have

G(Jyj − ρ(T (yj) − ξ), v) = G(Jyj − ρ(T (yj) − ξ),
n∑

i=1

λiyi)

≤
n∑

i=1

λiG(Jyj − ρ(T (yj) − ξ), yi) ≤ max
1≤i≤n

G(Jyj − ρ(T (yj) − ξ), yi).

Hence there is yj0 ∈ N such that G(Jyj − ρ(T (yj) − ξ), v) ≤ G(Jyj − ρ(T (yj) − ξ), yj0), for all

j = 1, 2, . . . , n. In special,

G(Jyj0 − ρ(T (yj0) − ξ), v) ≤ G(Jyj0 − ρ(T (yj0) − ξ), yj0),

i.e., v ∈ F (yj0) ⊂
⋃n

j=1
F (yj).

From the assumption, it follows that there is y0 ∈ K such that F (y0) ⊂ D ⊂ K. Indeed, for
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all x ∈ K \ D, we have that

‖Jy0 − ρ(Ty0 − ξ)‖2 − 2〈Jy0 − ρ(Ty0 − ξ), x〉 + ‖x‖2 + 2ρf(x)

> ‖Jy0 − ρ(Ty0 − ξ)‖2 − 2〈Jy0 − ρ(Ty0 − ξ), y0〉 + ‖y0‖
2 + 2ρf(y0).

By the definition of G, we have x 6∈ F (y0).

Since F (y0) is weakly closed and D is weakly compact, F (y0) is also weakly compact. There-

fore, it follows from FKKM Theorem [9] that
⋂

y∈K F (y) 6= ∅, i.e., there exists x̄ ∈ D ⊂ K such

that

G(Jy − ρ(T (y) − ξ), x̄) ≤ G(Jy − ρ(T (y) − ξ), y), ∀y ∈ K.

This completes the proof. 2

Proposition 3 Let X be a reflexive smooth Banach space with the dual space X∗ and K be a

nonempty convex subset of X . Let ρ > 0 be any given constant and T : K → X∗ be continuous

from the line segments in K to the weak∗ topology of X∗. Let

A = {x ∈ K : G(Jx − ρ(Tx − ξ), x) ≤ G(Jx − ρ(Tx − ξ), y)}.

Then for each fixed y ∈ K, the intersection of A with any line segment is closed in K.

Proof For x1, x2 ∈ K, let [x1, x2] denote the line segment [x1, x2] = {tx1 +(1− t)x2 : t ∈ [0, 1]}.

Let {xn} ⊂ A ∩ [x1, x2] such that xn → x0 ∈ [x1, x2]. Since T : K → X∗ is continuous from

the line segments in K to the weak∗ topology of X∗, {Txn} converges to Tx0 in the weak∗

topology. Since J is continuous from the strong topology of X to the weak∗ topology of X∗ in

K ⊂ X , {Jxn} converges to Jx0 in the weak∗ topology. Hence, {Jxn − ρ(Txn − ξ)} converges

to Jx0 − ρ(Tx0 − ξ) in the weak∗ topology. Thus, it is bounded in the weak∗ topology and so is

bounded in norm by the uniform boundedness principle. Now, for any fixed y ∈ K, from xn ∈ A

and the definition of G, we obtain

‖Jxn − ρ(Txn − ξ)‖2 − 2〈Jxn − ρ(Txn − ξ), xn〉 + ‖xn‖
2 + 2ρf(xn)

≤ ‖Jxn − ρ(Txn − ξ)‖2 − 2〈Jxn − ρ(Txn − ξ), y〉 + ‖y‖2 + 2ρf(y),

which is equivalent to the following inequality:

2〈Jxn − ρ(Txn − ξ), y − xn〉 + ‖xn‖
2 + 2ρf(xn) ≤ ‖y‖2 + 2ρf(y).

We observe that

| 〈Jxn − ρ(Txn − ξ), y − xn〉 − 〈Jx0 − ρ(Tx0 − ξ), y − x0〉 |

≤| 〈Jxn − ρ(Txn − ξ), y − xn − (y − x0)〉 | +

| 〈Jxn − ρ(Txn − ξ) − (Jx0 − ρ(Tx0 − ξ)), y − x0〉 |

≤ ‖Jxn − ρ(Txn − ξ)‖‖xn − x0‖+

| 〈Jxn − ρ(Txn − ξ) − (Jx0 − ρ(Tx0 − ξ)), y − x0〉 | .

This implies that

lim
n→∞

〈Jxn − ρ(Txn − ξ), y − xn〉 = 〈Jx0 − ρ(Tx0 − ξ), y − x0〉.
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Therefore,

2〈Jx0 − ρ(Tx0 − ξ), y − x0〉 + ‖x0‖
2 + 2ρf(x0)

≤ lim
n→∞

2〈Jxn − ρ(Txn − ξ), y − xn〉 + lim
n→∞

‖xn‖
2 + 2ρ lim inf

n→∞
f(xn)

= lim inf
n→∞

{2〈Jxn − ρ(Txn − ξ), y − xn〉 + ‖xn‖
2 + 2ρf(xn)}

≤ ‖y‖2 + 2ρf(y),

that is,

G(Jx0 − ρ(Tx0 − ξ), x0) ≤ G(Jx0 − ρ(Tx0 − ξ), y).

Thus x0 ∈ A. Hence the intersection of A with any line segment is closed in K. This completes

the proof. 2

Theorem 2 Let X be a reflexive and smooth Banach space with dual space X∗, K be a nonempty

closed convex subset of X . Let ρ > 0 be any given constant and f : K ⊂ X → R ∪ {+∞} be a

proper, convex and lower semi-continuous mapping. Suppose that the following conditions are

satisfied:

(i) T : K → X∗ is continuous from the line segments in K to the weak∗ topology of X∗;

(ii) There exists a nonempty weakly compact subset D of K and y0 ∈ K such that

〈Jy0 − ρ(Ty0 − ξ), y0 − x〉 >
1

2
(‖y0‖

2 − ‖x‖2) + ρ(f(y0) − f(x)),

for all x ∈ K \ D. Then Problem MVI(T − ξ, K) has a solution x̄ ∈ D ⊂ K.

Proof From Proposition 2, there exists x̄ ∈ D ⊂ K such that

G(Jy − ρ(T (y) − ξ), x̄) ≤ G(Jy − ρ(T (y) − ξ), y), ∀y ∈ K. (1)

We claim that

G(Jx̄ − ρ(T (x̄) − ξ), x̄) ≤ G(Jx̄ − ρ(T (x̄) − ξ), y), ∀y ∈ K. (2)

Indeed, suppose that there exists ȳ ∈ K such that

G(Jx̄ − ρ(T (x̄) − ξ), x̄) > G(Jx̄ − ρ(T (x̄) − ξ), ȳ). (3)

Let yt = tȳ + (1 − t)x̄ ∈ K, ∀t ∈ [0, 1]. In view of (1), we have

G(Jyt − ρ(T (yt) − ξ), x̄) ≤ G(Jyt − ρ(T (yt) − ξ), yt), (4)

for all t ∈ [0, 1]. From the definition of G and (4), it follows that

2t〈Jyt − ρ(Tyt − ξ), ȳ − x̄〉 + ‖x̄‖2 + 2tρf(x̄)

= 2〈Jyt − ρ(Tyt − ξ), yt − x̄〉 + ‖x̄‖2 + 2tρf(x̄)

≤ ‖yt‖
2 + 2tρf(ȳ) ≤ 2t‖ȳ‖2 + 2(1 − t)‖x̄‖2 + 2tρf(ȳ).

Hence,

2t〈Jyt − ρ(Tyt − ξ), ȳ − x̄〉 + (2t − 1)‖x̄)‖2 + 2tρf(x̄) ≤ 2t‖ȳ‖2 + 2tρf(ȳ), ∀t ∈ [0, 1]. (5)

In addition, by Proposition 3 and (3), the set

U = {x ∈ K : G(Jx − ρ(T (x) − ξ), x) > G(Jx − ρ(T (x) − ξ), ȳ)}
⋂

[ȳ, x̄]
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is open in [ȳ, x̄] and contains x̄. Since yt → x̄ as t → 0+, there exists t0 ∈ (0, 1] such that yt ∈ U

for all t ∈ (0, t0). Thus

G(Jyt − ρ(T (yt) − ξ), yt) > G(Jyt − ρ(T (yt) − ξ), ȳ), ∀t ∈ (0, t0).

From the definition of G, it follows that, for each t ∈ (0, t0),

‖Jyt − ρ(Tyt − ξ)‖2 − 2〈Jyt − ρ(Tyt − ξ), yt〉 + ‖yt‖
2 + 2ρf(yt)

> ‖Jyt − ρ(Tyt − ξ)‖2 − 2〈Jyt − ρ(Tyt − ξ), ȳ〉 + ‖ȳ‖2 + 2ρf(ȳ).

Since yt − ȳ = (1 − t)(x̄ − ȳ), it follows that, for each t ∈ (0, t0),

2(1 − t)〈Jyt − ρ(Tyt − ξ), x̄ − ȳ〉 + ‖ȳ‖2 + 2(1 − t)ρ(f(ȳ) − f(x̄))

= 2〈Jyt − ρ(Tyt − ξ), yt − ȳ〉 + ‖ȳ‖2 + 2(1 − t)ρ(f(ȳ) − f(x̄))

< ‖yt‖
2 ≤ 2t‖ȳ‖2 + 2(1 − t)‖x̄‖2.

Therefore,

2t〈Jyt − ρ(Tyt − ξ), ȳ − x̄〉 + (2t − 1)‖x̄‖2 + 2tρf(x̄) > 2t‖ȳ‖2 + 2tρf(ȳ), ∀t ∈ (0, t0),

which contradicts (5). Hence,

G(Jx̄ − ρ(T (x̄) − ξ), x̄) ≤ G(Jx̄ − ρ(T (x̄) − ξ), y), ∀y ∈ K.

Therefore, according to Proposition 1, problem MVI(T − ξ, K) has a solution x̄ ∈ D ⊂ K. This

completes the proof. 2

Remark Theorem 2 weakens the continuity of T and the compactness assumption in Theo-

rem 3.1 of Wu and Huang [6] and extends the corresponding results of Zeng and Yao [5] and Li [4].
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