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Abstract A weighted weak type endpoint estimate is established for the m-linear operator with
Calderén-Zygmund kernel, which was introduced by Coifman and Meyer. As applications, the
mapping properties on weighted LP!(R™) X - - - x LP™(R"™) with weight Mpw for certain maximal
operator Mp and general weight w, and a two-weight weighted norm estimate for this operator,
are obtained.
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1. Introduction

During the last several years, considerable attention has been paid to the study of bound-
edness of multilinear singular integral operators on function spaces [5-7]. Lu [11] studied LP
boundedness of multilinear oscillatory singular integrals with Calderén-Zygmund kernel; Meng
[12] introduced multilinear Calderén-Zygmund operators on the product of Lebesgue spaces and
Hardy-type spaces with non-doubling measures. Let K(x;y1,...,Ym), m > 1, be a locally in-
tegrable function defined on R™D™\ {(z,y1,...,Ym) : T = Y1 = -+ = Ym; T, Y1, - - -, Ym € R"}
and v € (0, 1] be two constants. We say that K is a kernel in m-CZK(A, ¢) if it satisfies the size
condition that for all (z,y1,...,ym) with z # y; for some j with 1 < j < m,

A
e

and satisfies the regularity condition that
Alx —2'|7
(|2 =yl + o = ym )™

whenever maxi<;<m | — y;| > 2|z — 2’|, and also that for each fixed j with 1 < j <m,

|K (x5 91, s Ym) — K (@5 91, o0y ym)| < (1.2)

Aly; —y;|7
(Jz = yi| 4+ + |2 — ym]

|K(.’L’, Y1, -5 Yjy ooy ym)_K($7 Y1, "'7y;'7 sy ym)' S )mn+’y (13)
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whenever maxi<j<m |z — y;| > 2|y; — yj|. Let T be an m-linear operator. We say that 7" is an
operator with Calderén-Zygmund kernel K if for fi, ..., f,, € L?(R™) with compact supports,
and for z ¢ N7 supp f;

Tfos oo ) = [ K g i) ), (L)

and K is in m-CZK(A, ¢) for some constants A and €. It is obvious that when m = 1, this operator
is just the classical Calderén-Zygmund operator. For the case of m > 2, this operator has intimate
connections with operator theory and partial differential equations, and was considered first by
Coifman and Meyer [1,2], and then by many authors. In the remarkable work [6], Grafakos and
Torrea considered the mapping properties of T on the space of type LP*(R™) x --- x LPm(R™)
with 1 <pq, ..., pm < 00, and established a T'1 type theorem for the operator T. Grafakos and
Kalton [5] established the H'(R™) x HY(R™) x --- x H*(R") — L# (R") boundedness of T For
other works about m-linear operaor with Calderén-Zygmund, see [7] and the references therein.

The purpose of this paper is to give some weighted norm inequalities for the m-linear operator
with Calderén-Zygmund kernel, in analogy with the weighted estimate for the classical Calderén-
Zygmund operators which were established by Pérez [8] and Cruz-Uribe and Pérez [3]. To state
our results, we first recall some notations.

By a weight w we mean that w is a nonnegative and locally integrable function. For a
measurable set E and a weight w, w(F) denotes the integral of w over E, namely, w(F) =
S w(z)dz. For p € (0, co) and a suitable function f, || f||r. = ®n, ») denotes the weighted weak

LP “norm” with respect to the weight w, that is,
11 p o0 @,y = sup Nw({z € R™ : [f(xz)] > A}).

Let E be a measurable set with u(E) < co. For fixed p € (1, 00) and § > 0 and suitable function
f, set

Ifllrog )5, & = inf{)\ : ﬁ/E (lf(;)l)plogé (e+ @)dx < 1}.

The maximal operator My (o )5 is defined by
MLP(logL)éf(‘T) = ZUP ||f||LP(1ogL)6,Q7
Sx

where the sup is taken over all cubes containing x. In the following, we denote M1 (1o 1)s by
M (10g 1ys for simplicity. It is easy to see that for 6 = 0, My 1,g s is just the operator M, the
standard maximal operator.

Our main result can be stated as follows.

Theorem 1 Let m > 1, T be an m-linear operator with Calderén-Zygmund kernel. Suppose that
for some q1, q2, ..., qm € [1, 00| and some g € (0, co) with1/q=>"}", 1/qy, T is bounded from
L1 (R™) x L2(R™) X -+ - x L9 (R™) to LY(R™). Then for any é > 0, there exists a constant C > 0
depending only on n and ¢, such that for all weight w and all bounded functions fi, fa, ..., fm
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with compact support,

IT(frs for s )l rsm oo,y < C H 15l e

L(log L)“”)

As an application of Theorem 1, we have the following weighted estimate with general weight

for the m-linear operator with Calderén-Zygmund kernel.

Corollary 1 Let m > 2, T be an m-linear operator with Calderon-Zygmund kernel. Let
D1, P2, -« -, Pm € [1, 00) with maxi<g<mpr > 1 and p € (0, 00) with 1/p = 1/p1 + 1/p2 +

-+ 1/pm. Suppose that for some q1, g2, ..., gm € [1, 00] and some q € (0, o) with 1/q =
>owey 1/qx, T is bounded from L% (R™) x L9 (R™) x --- x L% (R™) to LY(R"). Then there exists
a constant C' > 0 depending only on n, m, p1, ... pnm and 6§, such that for any weight w and any

bounded functions fi1, fa, ..., fm with compact supports,

HT(fh f27 ceey fm)HLP(R” w) < CH ka”ka L(logL)PO 14swW))
k=1

where pg = minj<x<m Pk-

(1) If p1,p2,...,pm € [1,00) with 1 = mini<j<m, p; < Maxi<j<m pj, and p € (0,00) with
1/p = Z;n:l 1/p;, then for any § > 0, there exisits a constant C' > 0 such that for any weight
w,T is bounded from LP'(R™, M (165 1y50) X LP2(R™, M [ (10g £y50) X - - LP™ (R™, M[,10g 1,)51) tO
LP(R™, w);

(2) Ifpi,pa,...,pm € [1,00) with 1 < mini<j<, pj, and p € (0,00) with 1/p = 327", 1/p;.
Then for any jo with p;, € (1,00), there exists a constant C' > 0 depending on ¢, such that for
any weight w and all bounded functions f1, fa, ..., fm with compact support,

HT(f17 fos oo, fm)HLP(R”W) §C||f||l‘pj0 (Rn’ML(log L)pj071+5w) .
T fellzes (R, M 1os 1y60)"
1<5<m,j#jo

To give another application of Theorem 1, we consider the two-weight, weighted norm esti-
mate for the m-linear operator with Calderén-Zygmund kernel. Let u, v be two weights on R”™.
We say that (u, v) € Ay (10g )7 (R™) with some o > 0, if there exists a constant C' > 0 such that

p—1
llull £og L), |Q| / p/pdac) <C.

Corollary 2 Let m > 1, T be an m-linear operator with Calderén-Zygmund kernel. Suppose

for any cube @,

that for some q1, g2, ..., gm € [1, 0] and some ¢ € (0, co) with 1/q = ;", 1/qx, T is bounded
from L9 (R™) x L2(R™) x --- x LI (R™).

(i) Ifp € (1/m, 00) and (u, v) € Ay, (10g £ymr—1+- (R™) for some o > 0, then for any bounded
functions f1, fa, ..., fm with compact supports,

IT(f1, for - F) @) |z oe @,y < C T Ifullme @, v

k=1
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(ii) If p1, p2, ..., pm € (1, 0) and p € (0, 00) with 1/p = 1/p1 + 1/pa + -+ + 1/p,, and
1 < po = Minj<p<m pr < MaX1<k<n Pk, and if (u, v) € A, (1og Lyro—1+o (R™) for o > 0, then for

any bounded functions f1, fa, ..., fm with compact supports,

m
IT(f1, f25 -5 )l r@n,u) < C H | frllLew (e, v)-
k=1
We now make some conventions. Throughout this paper, we always denote by C' a positive
constant which is independent of the main parameters, but it may vary from line to line. Constant
with subscript, say, C;, does not change in different occurrences. For a measurable set E, x,
denotes the characteristic function of E. Given A > 0 and a cube @, AQ denotes the cube with
the same center as () and whose side length is A times that of Q. For a fixed p with p € [1, c0),
p’ denotes the dual exponent of p, namely, p’ = p/(p — 1). For a locally integrable function

f on R™ and bounded measurable set E, mg(f) denotes the mean value of f over E, that is,

ma(f) =ty fy S @)da.
2. Proof of Theorem 1

We begin with some preliminary lemmas.

Lemma 1 Let m > 2, T be an m-linear operator with Calderén-Zygmund kernel K in m-
CZK(A, €). Then for all positive integer | with 1 < I < m and all bounded functions fi, fa, ..., fi
with compact support, the operator Ty, ¢, ..., s, defined by

Tflyf27---7fl(fl+1’ coos fm)(@) = T(f1, fo, -5 fm) (@)

is an (m — l)-linear operator with kernel in (m — 1)-CZK(A H;Zl il Lo ®ny, €). Moreover, if T
is bounded from L9 (R™) x L% (R™) x - -+ x L9 (R"™) to L4(R") for some q1, q2, - .-, ¢m € [1, 0]
and ¢ € (0, co) with 1/qg=>"7", 1/qi. Then

l m
T for o i (it F)lveny < C T Ifsllzeny T 1xloon@n
k=1 k=Il+1

with pp € (1, 00) (I+1<k<m)and 1/p=>3 ", 1 1/pk.

This lemma is a combination of Lemma 3 and Theorem 2 in [6].

Lemma 2 Let g € (1, ), (u, v) be a pair of weights and (u, v) € Ay (10g £ys—1++ (R") for some
o > 0. Then for any ¢ € (0, 0/q), there exists a constant C > 0 such that

||ML(logL)5f||Lq’(Rn,U*Q’/Q) < C”f”Lq’(R",u*q’/Q)'

For a proof, see [3, p.424].

Lemma 3 Let qp, d > 0. S be an operator from ./ (R") x --- x #(R™) to .# (the set of

measurable functions on R™). Suppose that there exists a constant C > 0 such that for any



Mulilinear Calderén-Zygmund operators 333

weight w,

L(log L)5“’)'

w({z €R" ¢ |S(fr, fa - fu)(@)] > A1) < OX© T 1Al %, as
k=1
Then for any q > qo and o > 6q/qo, there exists a constant C' > 0 such that for any weight w,

IS(f1, for - Fm)llze @, w) < C ] Il pasaoen, ar (2.1)

k=1

L(log L)Q/QO*IJrG'w) :

Proof We will employ the idea of Cruz-Uribe and Pérez [4]. Let ¢ > ¢ and set r = ¢q/qo. For
any fixed A > 0, set

Ir={x €R": [S(f1, f2, -+, fm)(@)] > A}.

By duality and our hypothesis,

(w(Z)Y = Ixslle@,=  sup /h(:c)w(:c)dx‘
Fa

(s

< —qo q0 .
sox [Ty, (2:2)

(e, Moy 15 ()
For any fixed o > 0r, set n = o — dr. As it was pointed out in [3, p.424], we have
tl/r
log‘H(T*H")/T@ +1)

This via the generalization of Holder inequality [10, p.64] in turn implies that

tlog°(2+1) < x Y7 1og" 1M/ (2 4 ¢).

ML(log L) (hw) (I) < C(‘]\4LT(10g L)(+8)r—1+4n (wl/rx‘r)ML“(log L)-1-('=1)n (hwl/rl)(x)
1/r /
< C{ML(logL)T*H”w(x)} Myt tog 1)1 - (R ) ().

It then follows from the Holder inequality that for each k£ with 1 < k < m,

r Q/T
<c( / @) Miyog 1y rsew(@)de)  x
) Re

(/n (ML’",(IOgL)*FW—l)n(hwl/r’)(x))r,dx> ao/r’

qo/T

<O [ 1) Mygog iy ssowioiae) ™ (2.3

where in the last inequality, we have invoked the fact that the operator M " (log L)~1-(+' ~n
is bounded on L™ (R™) ([9]). Combining the estimates (2.2) and (2.3) yields (2.1) and then

completes the proof of Lemma 3. O

1l

L (Rr My, 16 (hw)

Proof of Theorem 1 We will proceed by an induction argument on m. If m = 1, Theorem
1 is just Theorem 1 in [8]. Now let m > 1 be a positive integer. We assume that Theorem 1
holds for any I-linear operator with Calderén-Zygmund kernel for any [ with 1 < [ < m. Let
f1, fos ooy s fma1 € LYR™, M0 1)sw) such that

11l 2o e, ae Ifallr@n, aay g, sy = -+ = Wfmeallor@e, ary g, ) = 1

L(log L)5“’) =
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For each fixed A > 0 and each fixed k with 1 < k < m + 1, applying the Calderén-Zygmund
decomposition to each f; at level A/(m+1) we then obtain a sequence of cubes {Q’,j] }; with
disjoint interiors, such that

(i) For any fixed 7,

AN/l < %/ | fre(y)ldy < 2nAV/mHD),
|ij| Q’,:j

(ii) [fr(z)] < OAV D ae x € R™\ U; Q%,-
Set
gr(x) = fk(iU)XRn\ungj (@) +Y_mar (fr)xgr ()
j J J

and

bu(@) = 3 (ful@) = may (1)) xay (@),

J

Lemma 1, together with our inductive hypothesis, tells us that

w{z € R" : [T(f1, f2, - fm7 Im+1)(x) > A/2})

< ON Y™l g | H“fJ”Ll(R" M g 1)

< C/\—l/(m-‘rl)-

Let Q = Um+1 U, 4\/_Qk A trivial computation leads to that

m—+1

Py |Qk|'Q’“'

m—+1

< AT m“)ZZ/ | fx(z |dx 1nf Mw( )

< C(m + 1A~V D),

Set w*(x) = w(x)xrm\o(x). The proof of Theorem 1 is now reduced to proving that
w*({z € RN\Q: [T (f1, fo -y fons b)) (@)] > A/2}) < OATV D, (2.4)
We now prove (2.4). Let A; (1 < j <2™) be a nonempty subset of {1, 2, ..., m} and set
E; ={x e R"\Q: |T(h1, hay ..., huny bns1) ()| > A/2™F2 ¢ where hy = g; when [ € A;,
hi=b, whenl ¢ Aj, 1 <l <m}.

Denote by N; the cardinal number of A;. Lemma 1, together with our inductive hypothesis, tells
us that for any j with 1 < 5 < 2™,

. —1/(m 1/(m+1— 1/(m+1
w*(EBy) < Ot H lgx ”L/og R™) H 1b ||L/1(R" ML(I)gL)‘Fw*)
kEA; 1<k<m+1, kgA;
—1/(m 1/(m+1
< o\~ V(mtD) H ”bk”L/l(R" L(]:gL)éw*)-

1<k<m+1, kgA,



Mulilinear Calderén-Zygmund operators 335
Recall that supp w* C R™\Q. There exists a constant C' > 0 such that for any k and j,

sup ML(logL)éw(x) <C infk ML(logL)éw(y)
meQﬁj yGij

(see [8]). Thus, for any k with 1 <k <m+1,

1Bkl L2 @@, 1, 15 0%) < Zj:/@tj | fx(y)|dy yé%f’gj My 10g Lysw(y)

<c / k)M 1 og 1w ()dy.
RTL

This, in turn, implies that

-
w( | E;) < eaxt/omin, (2.5)
j=1
Now we claim that
w*({x € R™\Q: |T(by, ba, - .., by bns1)(x)] > A/4}) < CAH/(mHD), (2.6)

In fact, for each fixed k and k;, denote by cﬁj and l(Qﬁj) the center and side length of Qﬁj,
respectively. By an estimate of Grafakos and Torres [6, pp.137-138], we know that for any
x € R™M\Q,

m+1
T (by, ba, ..., b, bmgr)(@)] < CX [ Mu(2),
k=1
where My, is the Marcinkiewicz function defined by
{Z(Qj)}n-i-e/(m-i-l)

(:E): n+e/(m :
' Z (1Qy) + | — cf )"/

On the other hand, a straightforward computation leads to that for any k with 1 <k <m+1,

M dx <
(a)ulo) Z/ E e
<O 10k inf Mu(y)

}nJrE/(erl)

R ok [) D w(w)de

<OXNTVmED [ f(y) Mw(y)dy.
R'Vl

Therefore,

w*({x e R"\Q: |T(b1, ba, ..., b, bs1)(@)| > A})

1/(m+1)
< /\71/(m+1)/ ’T(bl, ba, -y by bpt1)(2) w*(z)dz
R™M\Q
mtl 1/(m+1)
<C (x)w* (z)dz
IT(/L, M )
< O)\ 1/ erl)7

and so (2.6) holds. Combining the estimates (2.5) and (2.6) then leads to our desired inequality
(2.4).
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Proof of Corollary 1 We only consider the case m = 2. The conclusion for the case m > 3
can be proved in the same way, along with an inductive argument involving Lemma 1. By
Theorem 1, we see that for any § > 0 and weight w, T is bounded from L!(R", My (16g Lysw) X
LY(R™, M 10g 1ysw) to L'/2°°(R™ w). On the other hand, the weighted weak type endpoint
estimated for the Calderon-Zygmund operater [7, Theorem 1.6], together with Lemma 1, states
that 7' is bounded from L'(R", My (oq 1ysw) X L°(R™) to L'*°(R", w). Therefore, by the

classical interpolation theorem of Marcinkiewicz, it follows that for any p € (1, 00)

IT(f1s fellprroro@n,wy < Clfillren, m

Now let p1,p2 € (1,00). Again by Lemma 1 and the weighted LP? estimate for the Calderon-

L(logL)éw)HszLp(R"*ML(logL)“”)' (2'4)

Zygmund operator [7, Theorem 1.1], we know that for any § and weight w,
IT(fr, fo)llLre@n,wy < Cllfillzoe @ | fallore @, a, v —1ssw)- (25)
Interpolation between the equalities (2.5) and the trivial estimate give that

1T (f1s f2)llr2/matn @n,wy < L fillLr@e, ar

It then follows that p € (0,00) with 1/p = 1/p; + 1/po,

L(log L)“w)H‘fQ”Lm(Rn’ML(log P21+ W) (2.6)
IT(frs flle@n,w) < CllAllLos@n, vy, sl follLoe@enry (s aisw)-
Similarly, interpolating the equality
IT(frs fo)llos @r,wy < Cllfilloes@e,nay oy —1ssw) 12l Lo )
and the inequality
IT(frs F)llporronen @n,wy < Cllfilles@nar, oy —asw [ follr@n, sy, 45w

yields

1T (f1, fo)llLe®n,wy < CllfillLe @n, M I f2llLe2 (e

This completes the proof of Corollary 1. O

L(log L)P1*1+5“’ My (15 1) W) "

Proof of Corollary 2 The proof of (i) follows from the same argument used in the proof of
Theorem 1.2 in [3]. Let

QA = {.I € Rn : |T(f17 an ct fm)($)| > )\}
Not that |Q5] < co for any A > 0. By duality, we know that

m. m 1/(m
{u(Q)}/ ) = [t/ p)XQ)\”LM:D(Rn) = sup /Q (u(z)) /( p)h(x)d:t.
A

IBI (g <1

An application of Theorem 1 yields that when h € L(mp)/(R") with ||h||L(mpy(Rn) <1,
(u(@) " h(@)de < CATHm H I ill
Qx LYR™, My 10g 1y8)

1/m

< CA\™ 1/m H ||fk||me(]Rn v) ML(logL) (

1/(mp)p, H
) L(mp)’(]Rn,U*(mp)//(mp))



Mulilinear Calderén-Zygmund operators 337

< C(/\Z"kH1 ||fk||ZL)mp(R",v))l "

Our desired conclusion (i) then follows directly.

We turn our attention to (ii). We only consider the case that m = 2. For the case that
m > 2, (ii) can be proved by the same argument, along with the induction argument on m. Let
p1, p2 € (1, 00) and p € (0, co) with 1/p = 1/p1 4+ 1/pa. Without loss of generality, we may

assume that p; < pa. By conclusion (i), we have

2
IT(frs f)llporse o, uy < C TT 1ol oo @, o)- (2.11)
k=1

On the other hand, Lemma 1 states that for fo € L°°(R"™) with compact support,

1T (f1, f2)llzer o @n,w) < CllfillLer e, o)l f2ll Lo ) (2.12)

Interpolating the inequalities (2.11) and (2.12) then gives

2

1T (f1, f2)llLemn,uy <C H | fll Lok (&7, v)-
k=1

This completes the proof of Corollary 2. O
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