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1. Introduction

During the last several years, considerable attention has been paid to the study of bound-

edness of multilinear singular integral operators on function spaces [5–7]. Lu [11] studied Lp

boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel; Meng

[12] introduced multilinear Calderón-Zygmund operators on the product of Lebesgue spaces and

Hardy-type spaces with non-doubling measures. Let K(x; y1, . . . , ym), m ≥ 1, be a locally in-

tegrable function defined on R(m+1)n\{(x, y1, . . . , ym) : x = y1 = · · · = ym; x, y1, . . . , ym ∈ Rn}
and γ ∈ (0, 1] be two constants. We say that K is a kernel in m-CZK(A, ǫ) if it satisfies the size

condition that for all (x, y1, . . . , ym) with x 6= yj for some j with 1 ≤ j ≤ m,

|K(x; y1, . . . , ym)| ≤ A

(|x − y1| + · · · + |x − ym|)mn (1.1)

and satisfies the regularity condition that

|K(x; y1, . . . , ym) − K(x′; y1, . . . , ym)| ≤ A|x − x′|γ
(|x − y1| + · · · + |x − ym|)mn+γ (1.2)

whenever max1≤j≤m |x − yj| ≥ 2|x − x′|, and also that for each fixed j with 1 ≤ j ≤ m,

|K(x; y1, . . . , yj, . . . , ym)− K(x; y1, . . . , y′
j , . . . , ym)| ≤

A|yj − y′
j |γ

(|x − y1| + · · · + |x − ym|)mn+γ (1.3)
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whenever max1≤j≤m |x − yj| ≥ 2|yj − y′
j|. Let T be an m-linear operator. We say that T is an

operator with Calderón-Zygmund kernel K if for f1, . . . , fm ∈ L2(Rn) with compact supports,

and for x 6∈ ∩m
j=1supp fj

T (f1, f2, . . . , fm)(x) =

∫

(Rn)m

K(x; y1, . . . , ym)f1(y1), . . . , fm(ym)dy1, . . . , dym, (1.4)

and K is in m-CZK(A, ǫ) for some constants A and ǫ. It is obvious that when m = 1, this operator

is just the classical Calderón-Zygmund operator. For the case of m ≥ 2, this operator has intimate

connections with operator theory and partial differential equations, and was considered first by

Coifman and Meyer [1, 2], and then by many authors. In the remarkable work [6], Grafakos and

Torrea considered the mapping properties of T on the space of type Lp1(Rn) × · · · × Lpm(Rn)

with 1 ≤ p1, . . . , pm < ∞, and established a T 1 type theorem for the operator T . Grafakos and

Kalton [5] established the H1(Rn)×H1(Rn)× · · · ×H1(Rn) → L
1
m (Rn) boundedness of T . For

other works about m-linear operaor with Calderón-Zygmund, see [7] and the references therein.

The purpose of this paper is to give some weighted norm inequalities for the m-linear operator

with Calderón-Zygmund kernel, in analogy with the weighted estimate for the classical Calderón-

Zygmund operators which were established by Pérez [8] and Cruz-Uribe and Pérez [3]. To state

our results, we first recall some notations.

By a weight w we mean that w is a nonnegative and locally integrable function. For a

measurable set E and a weight w, w(E) denotes the integral of w over E, namely, w(E) =
∫

E w(x)dx. For p ∈ (0, ∞) and a suitable function f , ‖f‖Lp,∞(Rn, w) denotes the weighted weak

Lp “norm” with respect to the weight w, that is,

‖f‖p
Lp,∞(Rn, w) = sup

λ>0
λpw({x ∈ R

n : |f(x)| > λ}).

Let E be a measurable set with µ(E) < ∞. For fixed p ∈ (1, ∞) and δ ≥ 0 and suitable function

f , set

‖f‖Lp(log L)δ, E = inf
{

λ :
1

µ(E)

∫

E

( |f(x)|
λ

)p

logδ
(

e +
|f(x)|

λ

)

dx ≤ 1
}

.

The maximal operator MLp(log L)δ is defined by

MLp(log L)δf(x) = sup
Q∋x

‖f‖Lp(log L)δ, Q,

where the sup is taken over all cubes containing x. In the following, we denote ML1(log L)δ by

ML(log L)δ for simplicity. It is easy to see that for δ = 0, ML(log L)δ is just the operator M , the

standard maximal operator.

Our main result can be stated as follows.

Theorem 1 Let m ≥ 1, T be an m-linear operator with Calderón-Zygmund kernel. Suppose that

for some q1, q2, . . . , qm ∈ [1, ∞] and some q ∈ (0, ∞) with 1/q =
∑m

k=1 1/qk, T is bounded from

Lq1(Rn)×Lq2(Rn)×· · ·×Lqm(Rn) to Lq(Rn). Then for any δ > 0, there exists a constant C > 0

depending only on n and δ, such that for all weight w and all bounded functions f1, f2, . . . , fm
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with compact support,

‖T (f1, f2, . . . , fm)‖L1/m, ∞(Rn, w) ≤ C

m
∏

k=1

‖fk‖L1(Rn, M
L(log L)δ

w).

As an application of Theorem 1, we have the following weighted estimate with general weight

for the m-linear operator with Calderón-Zygmund kernel.

Corollary 1 Let m ≥ 2, T be an m-linear operator with Calderón-Zygmund kernel. Let

p1, p2, . . . , pm ∈ [1, ∞) with max1≤k≤m pk > 1 and p ∈ (0, ∞) with 1/p = 1/p1 + 1/p2 +

· · · + 1/pm. Suppose that for some q1, q2, . . . , qm ∈ [1, ∞] and some q ∈ (0, ∞) with 1/q =
∑m

k=1 1/qk, T is bounded from Lq1(Rn)×Lq2(Rn)× · · ·×Lqm(Rn) to Lq(Rn). Then there exists

a constant C > 0 depending only on n, m, p1, . . . pm and δ, such that for any weight w and any

bounded functions f1, f2, . . . , fm with compact supports,

‖T (f1, f2, . . . , fm)‖Lp(Rn, w) ≤ C

m
∏

k=1

‖fk‖Lpk(Rn, M
L(log L)p0−1+δ w),

where p0 = min1≤k≤m pk.

(1) If p1, p2, . . . , pm ∈ [1,∞) with 1 = min1≤j≤m pj < max1≤j≤m pj, and p ∈ (0,∞) with

1/p =
∑m

j=1 1/pj, then for any δ > 0, there exisits a constant C > 0 such that for any weight

w,T is bounded from Lp1(Rn, ML(log L)δw) × Lp2(Rn, ML(log L)δw) × · · ·Lpm(Rn, ML(log L)δw) to

Lp(Rn, w);

(2) If p1, p2, . . . , pm ∈ [1,∞) with 1 < min1≤j≤m pj, and p ∈ (0,∞) with 1/p =
∑m

j=1 1/pj.

Then for any j0 with pj0 ∈ (1,∞), there exists a constant C > 0 depending on δ, such that for

any weight w and all bounded functions f1, f2, . . . , fm with compact support,

‖T (f1, f2, . . . , fm)‖Lp(Rn,w) ≤C‖f‖L
pj0 (Rn,M

L(log L)
pj0

−1+δ
w

)×
∏

1≤j≤m,j 6=j0

‖fk‖Lpj (Rn,M
L(log L)δw

).

To give another application of Theorem 1, we consider the two-weight, weighted norm esti-

mate for the m-linear operator with Calderón-Zygmund kernel. Let u, v be two weights on R
n.

We say that (u, v) ∈ Ap, (log L)σ(Rn) with some σ > 0, if there exists a constant C > 0 such that

for any cube Q,

‖u‖L(logL)σ, Q

( 1

|Q|

∫

Q

(

v(x)
)p′/p

dx
)p−1

≤ C.

Corollary 2 Let m ≥ 1, T be an m-linear operator with Calderón-Zygmund kernel. Suppose

that for some q1, q2, . . . , qm ∈ [1, ∞] and some q ∈ (0, ∞) with 1/q =
∑m

k=1 1/qk, T is bounded

from Lq1(Rn) × Lq2(Rn) × · · · × Lqm(Rn).

(i) If p ∈ (1/m, ∞) and (u, v) ∈ Amp, (log L)mp−1+σ(Rn) for some σ > 0, then for any bounded

functions f1, f2, . . . , fm with compact supports,

‖T (f1, f2, . . . , fm)(x)‖Lp, ∞(Rn, u) ≤ C

m
∏

k=1

‖fk‖Lmp(Rn, v);
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(ii) If p1, p2, . . . , pm ∈ (1, ∞) and p ∈ (0, ∞) with 1/p = 1/p1 + 1/p2 + · · · + 1/pm and

1 < p0 = min1≤k≤m pk < max1≤k≤n pk, and if (u, v) ∈ Ap0, (log L)p0−1+σ (Rn) for σ > 0, then for

any bounded functions f1, f2, . . . , fm with compact supports,

‖T (f1, f2, . . . , fm)‖Lp(Rn, u) ≤ C
m
∏

k=1

‖fk‖Lpk (Rn, v).

We now make some conventions. Throughout this paper, we always denote by C a positive

constant which is independent of the main parameters, but it may vary from line to line. Constant

with subscript, say, C1, does not change in different occurrences. For a measurable set E, χ
E

denotes the characteristic function of E. Given λ > 0 and a cube Q, λQ denotes the cube with

the same center as Q and whose side length is λ times that of Q. For a fixed p with p ∈ [1,∞),

p′ denotes the dual exponent of p, namely, p′ = p/(p − 1). For a locally integrable function

f on R
n and bounded measurable set E, mE(f) denotes the mean value of f over E, that is,

mE(f) = 1
|E|

∫

E
f(x)dx.

2. Proof of Theorem 1

We begin with some preliminary lemmas.

Lemma 1 Let m ≥ 2, T be an m-linear operator with Calderón-Zygmund kernel K in m-

CZK(A, ǫ). Then for all positive integer l with 1 ≤ l < m and all bounded functions f1, f2, . . . , fl

with compact support, the operator Tf1, f2, ..., fl
defined by

Tf1, f2, ..., fl
(fl+1, . . . , fm)(x) = T (f1, f2, . . . , fm)(x)

is an (m − l)-linear operator with kernel in (m − l)-CZK(A
∏l

j=1 ‖fj‖L∞(Rn), ǫ). Moreover, if T

is bounded from Lq1(Rn)×Lq2(Rn)× · · · ×Lqm(Rn) to Lq(Rn) for some q1, q2, . . . , qm ∈ [1, ∞]

and q ∈ (0, ∞) with 1/q =
∑m

k=1 1/qk. Then

‖Tf1, f2, ..., fl
(fl+1, . . . fm)‖Lp(Rn) ≤ C

l
∏

k=1

‖fk‖L∞(Rn)

m
∏

k=l+1

‖fk‖Lpk(Rn)

with pk ∈ (1, ∞) (l + 1 ≤ k ≤ m) and 1/p =
∑m

k=l+1 1/pk.

This lemma is a combination of Lemma 3 and Theorem 2 in [6].

Lemma 2 Let q ∈ (1, ∞), (u, v) be a pair of weights and (u, v) ∈ Aq, (log L)q−1+σ (Rn) for some

σ > 0. Then for any δ ∈ (0, σ/q), there exists a constant C > 0 such that

‖ML(log L)δf‖Lq′(Rn, v−q′/q) ≤ C‖f‖Lq′(Rn, u−q′/q).

For a proof, see [3, p.424].

Lemma 3 Let q0, δ > 0. S be an operator from S (Rn) × · · · × S (Rn) to M (the set of

measurable functions on R
n). Suppose that there exists a constant C > 0 such that for any
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weight w,

w({x ∈ R
n : |S(f1, f2, . . . , fm)(x)| > λ}) ≤ Cλ−q0

m
∏

k=1

‖fk‖q0

L1(Rn, M
L(log L)δ

w).

Then for any q > q0 and σ > δq/q0, there exists a constant C > 0 such that for any weight w,

‖S(f1, f2, . . . , fm)‖Lq, ∞(Rn, w) ≤ C

m
∏

k=1

‖fk‖Lq/q0(Rn, M
L(log L)q/q0−1+σ w). (2.1)

Proof We will employ the idea of Cruz-Uribe and Pérez [4]. Let q > q0 and set r = q/q0. For

any fixed λ > 0, set

Fλ = {x ∈ R
n : |S(f1, f2, . . . , fm)(x)| > λ}.

By duality and our hypothesis,

{

w(Fλ)}/ = ‖χFλ
‖L (R, ) = sup

‖h‖
Lr′ (Rn, w)

≤1

∣

∣

∣

∫

Fλ

h(x)w(x)dx
∣

∣

∣

≤ Cλ−q0

m
∏

k=1

‖fk‖q0

L1
(

Rn, M
L(log L)δ

(hw)
). (2.2)

For any fixed σ > δr, set η = σ − δr. As it was pointed out in [3, p.424], we have

t log−δ(2 + t) ≤ t1/r

logδ+(r−1+η)/r(2 + t)
× t1/r′

log(r−1+η)/r(2 + t).

This via the generalization of Hölder inequality [10, p.64] in turn implies that

ML(log L)δ (hw)(x) ≤ CMLr(log L)(1+δ)r−1+η (w1/r)(x)MLr′ (log L)−1−(r′−1)η (hw1/r′

)(x)

≤ C
{

ML(log L)r−1+σw(x)
}1/r

MLr′(log L)−1−(r′−1)η (hw1/r′

)(x).

It then follows from the Hölder inequality that for each k with 1 ≤ k ≤ m,

‖fk‖q0

L1
(

Rn, M
L(log L)δ

(hw)
) ≤C

(

∫

Rn

|fk(x)|rML(log L)r−1+ǫw(x)dx
)q0/r

×
(

∫

Rn

(

MLr′(log L)−1−(r′−1)η (hw1/r′

)(x)
)r′

dx
)q0/r′

≤C
(

∫

Rn

|fk(x)|rML(log L)r−1+σw(x)dx
)q0/r

, (2.3)

where in the last inequality, we have invoked the fact that the operator MLr′(log L)−1−(r′−1)η

is bounded on Lr′

(Rn) ([9]). Combining the estimates (2.2) and (2.3) yields (2.1) and then

completes the proof of Lemma 3. 2

Proof of Theorem 1 We will proceed by an induction argument on m. If m = 1, Theorem

1 is just Theorem 1 in [8]. Now let m ≥ 1 be a positive integer. We assume that Theorem 1

holds for any l-linear operator with Calderón-Zygmund kernel for any l with 1 ≤ l ≤ m. Let

f1, f2, . . . , fm, fm+1 ∈ L1(Rn, ML(log L)δw) such that

‖f1‖L1(Rn, M
L(log L)δ

w) = ‖f2‖L1(Rn, M
L(log L)δ

w) = · · · = ‖fm+1‖L1(Rn, M
L(log L)δ

w) = 1.
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For each fixed λ > 0 and each fixed k with 1 ≤ k ≤ m + 1, applying the Calderón-Zygmund

decomposition to each fj at level λ1/(m+1), we then obtain a sequence of cubes {Qk
kj
}j with

disjoint interiors, such that

(i) For any fixed j,

λ1/(m+1) ≤ 1

|Qk
kj
|

∫

Qk
kj

|fk(y)|dy ≤ 2nλ1/(m+1).

(ii) |fk(x)| ≤ Cλ1/(m+1) a.e., x ∈ R
n\ ∪j Qk

kj
.

Set

gk(x) = fk(x)χ
Rn\∪jQk

kj

(x) +
∑

j

mQk
kj

(fk)χQk
kj

(x)

and

bk(x) =
∑

j

(

fk(x) − mQk
kj

(fk)
)

χQk
kj

(x).

Lemma 1, together with our inductive hypothesis, tells us that

w({x ∈ R
n : |T (f1, f2, . . . , fm, gm+1)(x) > λ/2})

≤ Cλ−1/m‖gm+1‖1/m
L∞(Rn)

m
∏

j=1

‖fj‖1/m
L1(Rn, M

L(log L)δ
w)

≤ Cλ−1/(m+1).

Let Ω =
⋃m+1

k=1 ∪j4
√

nQk
kj

. A trivial computation leads to that

w(Ω) ≤
m+1
∑

k=1

∑

j

w(Qk
kj

)

|Qk
kj
| |Qk

kj
|

≤ λ−1/(m+1)
m+1
∑

k=1

∑

j

∫

Qk
kj

|fk(x)|dx inf
y∈Qk

kj

Mw(y)

≤ C(m + 1)λ−1/(m+1).

Set w∗(x) = w(x)χRn\Ω(x). The proof of Theorem 1 is now reduced to proving that

w∗({x ∈ R
n\Ω : |T (f1, f2, . . . , fm, bm+1)(x)| > λ/2}) ≤ Cλ−1/(m+1). (2.4)

We now prove (2.4). Let Λj (1 ≤ j ≤ 2m) be a nonempty subset of {1, 2, . . . , m} and set

Ej = {x ∈ R
n\Ω : |T (h1, h2, . . . , hm, bm+1)(x)| > λ/2m+2 : where hl = gl when l ∈ Λj,

hl = bl when l 6∈ Λj , 1 ≤ l ≤ m}.

Denote by Nj the cardinal number of Λj . Lemma 1, together with our inductive hypothesis, tells

us that for any j with 1 ≤ j ≤ 2m,

w∗(Ej) ≤ Cλ−1/(m+1−Nj)
∏

k∈Λj

‖gk‖1/(m+1−Nj)

L∞(Rn)

∏

1≤k≤m+1, k 6∈Λj

‖bk‖1/(m+1−Nj)

L1(Rn, M
L(log L)δ

w∗)

≤ Cλ−1/(m+1)
∏

1≤k≤m+1, k 6∈Λj

‖bk‖1/(m+1−Nj)

L1(Rn, M
L(log L)δ

w∗).
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Recall that suppw∗ ⊂ R
n\Ω. There exists a constant C > 0 such that for any k and j,

sup
x∈Qk

kj

ML(log L)δw(x) ≤ C inf
y∈Qk

kj

ML(log L)δw(y)

(see [8]). Thus, for any k with 1 ≤ k ≤ m + 1,

‖bk‖L1(Rn, M
L(log L)δ

w∗) ≤
∑

j

∫

Qk
kj

|fk(y)|dy inf
y∈Qk

kj

ML(log L)δw(y)

≤ C

∫

Rn

|fk(y)|ML(log L)δw(y)dy.

This, in turn, implies that

w
(

2m
⋃

j=1

Ej

)

≤ Cλ−1/(m+1). (2.5)

Now we claim that

w∗({x ∈ R
n\Ω : |T (b1, b2, . . . , bm, bm+1)(x)| > λ/4}) ≤ Cλ−1/(m+1). (2.6)

In fact, for each fixed k and kj , denote by ck
kj

and l(Qk
kj

) the center and side length of Qk
kj

,

respectively. By an estimate of Grafakos and Torres [6, pp.137–138], we know that for any

x ∈ R
n\Ω,

|T (b1, b2, . . . , bm, bm+1)(x)| ≤ Cλ

m+1
∏

k=1

Mk(x),

where Mk is the Marcinkiewicz function defined by

Mk(x) =
∑

j

{l(Qj)}n+ǫ/(m+1)

(

l(Qj) + |x − ck
kj
|
)n+ǫ/(m+1)

.

On the other hand, a straightforward computation leads to that for any k with 1 ≤ k ≤ m + 1,
∫

Rn

Mk(x)w(x)dx ≤
∑

j

∫

Rn

{l(Qj)}n+ǫ/(m+1)

(

l(Qj) + |x − ck
kj
|
)n+ǫ/(m+1)

w(x) dx

≤ C
∑

j

|Qk
kj
| inf
y∈Qk

kj

Mw(y)

≤ Cλ−1/(m+1)

∫

Rn

f(y)Mw(y)dy.

Therefore,

w∗({x ∈ R
n\Ω : |T (b1, b2, . . . , bm, bm+1)(x)| > λ})

≤ λ−1/(m+1)

∫

Rn\Ω

∣

∣

∣
T (b1, b2, . . . , bm, bm+1)(x)

∣

∣

∣

1/(m+1)

w∗(x)dx

≤ C

m+1
∏

k=1

(

∫

Rn\Ω

Mk(x)w∗(x)dx
)1/(m+1)

≤ Cλ−1/(m+1),

and so (2.6) holds. Combining the estimates (2.5) and (2.6) then leads to our desired inequality

(2.4).



336 G. Q. PENG

Proof of Corollary 1 We only consider the case m = 2. The conclusion for the case m ≥ 3

can be proved in the same way, along with an inductive argument involving Lemma 1. By

Theorem 1, we see that for any δ > 0 and weight w, T is bounded from L1(Rn, ML(log L)δw) ×
L1(Rn, ML(log L)δw) to L1/2,∞(Rn, w). On the other hand, the weighted weak type endpoint

estimated for the Calderon-Zygmund operater [7, Theorem 1.6], together with Lemma 1, states

that T is bounded from L1(Rn, ML(log L)δw) × L∞(Rn) to L1,∞(Rn, w). Therefore, by the

classical interpolation theorem of Marcinkiewicz, it follows that for any p ∈ (1,∞)

‖T (f1, f2‖Lp/(p+1)(Rn, w) ≤ C‖f1‖L1(Rn, M
L(log L)δ

w)‖f2‖Lp(Rn, M
L(log L)δ

w). (2.4)

Now let p1, p2 ∈ (1,∞). Again by Lemma 1 and the weighted Lp2 estimate for the Calderon-

Zygmund operator [7, Theorem 1.1], we know that for any δ and weight w,

‖T (f1, f2)‖Lp2(Rn, w) ≤ C‖f1‖L∞(Rn)‖f2‖Lp2(Rn, M
L(log L)p2−1+δ w). (2.5)

Interpolation between the equalities (2.5) and the trivial estimate give that

‖T (f1, f2)‖Lp2/(p2+1)(Rn, w) ≤ ‖f1‖L1(Rn, M
L(log L)δ

w)‖f2‖Lp2(Rn, M
L(log L)p2−1+δ w). (2.6)

It then follows that p ∈ (0,∞) with 1/p = 1/p1 + 1/p2,

‖T (f1, f2)‖Lp(Rn, w) ≤ C‖f1‖Lp1(Rn, M
L(log L)δ

w)‖f2‖Lp2(Rn, M
L(log L)p2−1+δ w).

Similarly, interpolating the equality

‖T (f1, f2)‖Lp1(Rn, w) ≤ C‖f1‖Lp1(Rn, M
L(log L)p1−1+δ w)‖f2‖L∞(Rn)

and the inequality

‖T (f1, f2)‖Lp1/(p1+1)(Rn, w) ≤ C‖f1‖Lp1(Rn, M
L(log L)p1−1+δ w)‖f2‖L1(Rn, M

L(log L)δ
w)

yields

‖T (f1, f2)‖Lp(Rn, w) ≤ C‖f1‖Lp1(Rn, M
L(log L)p1−1+δ w)‖f2‖Lp2(Rn, M

L(log L)δ
w).

This completes the proof of Corollary 1. 2

Proof of Corollary 2 The proof of (i) follows from the same argument used in the proof of

Theorem 1.2 in [3]. Let

Ωλ = {x ∈ R
n : |T (f1, f2, . . . , fm)(x)| > λ}.

Not that |Ωλ| < ∞ for any λ > 0. By duality, we know that

{u(Ωλ)}1/(mp) = ‖u1/(mp)χΩλ
‖Lmp(Rn) = sup

‖h‖
L(mp)′ (Rn)

≤1

∫

Ωλ

(

u(x)
)1/(mp)

h(x)dx.

An application of Theorem 1 yields that when h ∈ L(mp)′(Rn) with ‖h‖L(mp)′(Rn) ≤ 1,

∫

Ωλ

(

u(x)
)1/(mp)

h(x)dx ≤ Cλ−1/m
m
∏

k=1

‖fk‖1/m
L1(Rn, M

L(log L)δ
)

≤ Cλ−1/m
m
∏

k=1

‖fk‖1/m
Lmp(Rn, v)

∥

∥

∥
ML(log L)δ(u1/(mp)h)

∥

∥

∥

1/m

L(mp)′ (Rn, v−(mp)′/(mp))
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≤ C
(

λ−p
m
∏

k=1

‖fk‖p
Lmp(Rn, v)

)1/(mp)

.

Our desired conclusion (i) then follows directly.

We turn our attention to (ii). We only consider the case that m = 2. For the case that

m ≥ 2, (ii) can be proved by the same argument, along with the induction argument on m. Let

p1, p2 ∈ (1, ∞) and p ∈ (0, ∞) with 1/p = 1/p1 + 1/p2. Without loss of generality, we may

assume that p1 < p2. By conclusion (i), we have

‖T (f1, f2)‖Lp1/2, ∞(Rn, u) ≤ C
2

∏

k=1

‖fk‖Lp1(Rn, v). (2.11)

On the other hand, Lemma 1 states that for f2 ∈ L∞(Rn) with compact support,

‖T (f1, f2)‖Lp1, ∞(Rn, u) ≤ C‖f1‖Lp1(Rn, v)‖f2‖L∞(Rn). (2.12)

Interpolating the inequalities (2.11) and (2.12) then gives

‖T (f1, f2)‖Lp(Rn, u) ≤ C

2
∏

k=1

‖fk‖Lpk(Rn, v).

This completes the proof of Corollary 2. 2
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