A Weighted Weak Type Endpoint Estimate for the Multilinear Calderón-Zygmund Operators and Its Applications

Guo Qiang PENG

Department of Applied Mathematics, Information Engineering University, Henan 450002, P. R. China

Abstract A weighted weak type endpoint estimate is established for the m-linear operator with Calderón-Zygmund kernel, which was introduced by Coifman and Meyer. As applications, the mapping properties on weighted $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_m}(\mathbb{R}^n)$ with weight $M_B w$ for certain maximal operator M_B and general weight w, and a two-weight weighted norm estimate for this operator, are obtained.

Keywords multilinear Calderón-Zygmund operator; maximal operator; weighted norm inequality; interpolation.

Document code A MR(2000) Subject Classification 42B20; 46B70; 47B38 Chinese Library Classification O174.2

1. Introduction

During the last several years, considerable attention has been paid to the study of boundedness of multilinear singular integral operators on function spaces [5–7]. Lu [11] studied L^p boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel; Meng [12] introduced multilinear Calderón-Zygmund operators on the product of Lebesgue spaces and Hardy-type spaces with non-doubling measures. Let $K(x; y_1, \ldots, y_m)$, $m \geq 1$, be a locally integrable function defined on $R^{(m+1)n} \setminus \{(x, y_1, \ldots, y_m) : x = y_1 = \cdots = y_m; x, y_1, \ldots, y_m \in R^n\}$ and $\gamma \in (0, 1]$ be two constants. We say that K is a kernel in m-CZK (A, ϵ) if it satisfies the size condition that for all (x, y_1, \ldots, y_m) with $x \neq y_j$ for some j with $1 \leq j \leq m$,

$$|K(x; y_1, \dots, y_m)| \le \frac{A}{(|x - y_1| + \dots + |x - y_m|)^{mn}}$$
 (1.1)

and satisfies the regularity condition that

$$|K(x; y_1, ..., y_m) - K(x'; y_1, ..., y_m)| \le \frac{A|x - x'|^{\gamma}}{(|x - y_1| + ... + |x - y_m|)^{mn + \gamma}}$$
 (1.2)

whenever $\max_{1 \le j \le m} |x - y_j| \ge 2|x - x'|$, and also that for each fixed j with $1 \le j \le m$,

$$|K(x; y_1, \dots, y_j, \dots, y_m) - K(x; y_1, \dots, y'_j, \dots, y_m)| \le \frac{A|y_j - y'_j|^{\gamma}}{(|x - y_1| + \dots + |x - y_m|)^{mn + \gamma}}$$
(1.3)

Received November 23, 2007; Accepted May 21, 2008

Supported by the National Natural Science Foundation of China (Grant No. 10671210).

 $\hbox{E-mail address: } pswswbb@yahoo.com.cn\\$

whenever $\max_{1 \leq j \leq m} |x - y_j| \geq 2|y_j - y_j'|$. Let T be an m-linear operator. We say that T is an operator with Calderón-Zygmund kernel K if for $f_1, \ldots, f_m \in L^2(\mathbb{R}^n)$ with compact supports, and for $x \notin \bigcap_{j=1}^m \operatorname{supp} f_j$

$$T(f_1, f_2, \dots, f_m)(x) = \int_{(\mathbb{R}^n)^m} K(x; y_1, \dots, y_m) f_1(y_1), \dots, f_m(y_m) dy_1, \dots, dy_m,$$
(1.4)

and K is in m-CZK (A, ϵ) for some constants A and ϵ . It is obvious that when m=1, this operator is just the classical Calderón-Zygmund operator. For the case of $m \geq 2$, this operator has intimate connections with operator theory and partial differential equations, and was considered first by Coifman and Meyer [1,2], and then by many authors. In the remarkable work [6], Grafakos and Torrea considered the mapping properties of T on the space of type $L^{p_1}(\mathbb{R}^n) \times \cdots \times L^{p_m}(\mathbb{R}^n)$ with $1 \leq p_1, \ldots, p_m < \infty$, and established a T1 type theorem for the operator T. Grafakos and Kalton [5] established the $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n) \times \cdots \times H^1(\mathbb{R}^n) \to L^{\frac{1}{m}}(\mathbb{R}^n)$ boundedness of T. For other works about m-linear operaor with Calderón-Zygmund, see [7] and the references therein.

The purpose of this paper is to give some weighted norm inequalities for the m-linear operator with Calderón-Zygmund kernel, in analogy with the weighted estimate for the classical Calderón-Zygmund operators which were established by Pérez [8] and Cruz-Uribe and Pérez [3]. To state our results, we first recall some notations.

By a weight w we mean that w is a nonnegative and locally integrable function. For a measurable set E and a weight w, w(E) denotes the integral of w over E, namely, $w(E) = \int_E w(x) dx$. For $p \in (0, \infty)$ and a suitable function f, $||f||_{L^{p,\infty}(\mathbb{R}^n, w)}$ denotes the weighted weak L^p "norm" with respect to the weight w, that is,

$$||f||_{L^{p,\infty}(\mathbb{R}^n,w)}^p = \sup_{\lambda > 0} \lambda^p w(\{x \in \mathbb{R}^n : |f(x)| > \lambda\}).$$

Let E be a measurable set with $\mu(E) < \infty$. For fixed $p \in (1, \infty)$ and $\delta \ge 0$ and suitable function f, set

$$||f||_{L^p(\log L)^{\delta}, E} = \inf \left\{ \lambda : \frac{1}{\mu(E)} \int_E \left(\frac{|f(x)|}{\lambda} \right)^p \log^{\delta} \left(e + \frac{|f(x)|}{\lambda} \right) dx \le 1 \right\}.$$

The maximal operator $M_{L^p(\log L)^{\delta}}$ is defined by

$$M_{L^p(\log L)^\delta}f(x) = \sup_{Q\ni x} \|f\|_{L^p(\log L)^\delta, Q},$$

where the sup is taken over all cubes containing x. In the following, we denote $M_{L^1(\log L)^{\delta}}$ by $M_{L(\log L)^{\delta}}$ for simplicity. It is easy to see that for $\delta = 0$, $M_{L(\log L)^{\delta}}$ is just the operator M, the standard maximal operator.

Our main result can be stated as follows.

Theorem 1 Let $m \ge 1$, T be an m-linear operator with Calderón-Zygmund kernel. Suppose that for some $q_1, q_2, \ldots, q_m \in [1, \infty]$ and some $q \in (0, \infty)$ with $1/q = \sum_{k=1}^m 1/q_k$, T is bounded from $L^{q_1}(\mathbb{R}^n) \times L^{q_2}(\mathbb{R}^n) \times \cdots \times L^{q_m}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$. Then for any $\delta > 0$, there exists a constant C > 0 depending only on n and δ , such that for all weight w and all bounded functions f_1, f_2, \ldots, f_m

with compact support,

$$||T(f_1, f_2, \ldots, f_m)||_{L^{1/m}, \infty(\mathbb{R}^n, w)} \le C \prod_{k=1}^m ||f_k||_{L^1(\mathbb{R}^n, M_{L(\log L)^\delta}w)}.$$

As an application of Theorem 1, we have the following weighted estimate with general weight for the m-linear operator with Calderón-Zygmund kernel.

Corollary 1 Let $m \geq 2$, T be an m-linear operator with Calderón-Zygmund kernel. Let $p_1, p_2, \ldots, p_m \in [1, \infty)$ with $\max_{1 \leq k \leq m} p_k > 1$ and $p \in (0, \infty)$ with $1/p = 1/p_1 + 1/p_2 + \cdots + 1/p_m$. Suppose that for some $q_1, q_2, \ldots, q_m \in [1, \infty]$ and some $q \in (0, \infty)$ with $1/q = \sum_{k=1}^m 1/q_k$, T is bounded from $L^{q_1}(\mathbb{R}^n) \times L^{q_2}(\mathbb{R}^n) \times \cdots \times L^{q_m}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$. Then there exists a constant C > 0 depending only on n, m, p_1, \ldots, p_m and δ , such that for any weight w and any bounded functions f_1, f_2, \ldots, f_m with compact supports,

$$||T(f_1, f_2, \ldots, f_m)||_{L^p(\mathbb{R}^n, w)} \le C \prod_{k=1}^m ||f_k||_{L^{p_k}(\mathbb{R}^n, M_{L(\log L)^{p_0-1+\delta w}})},$$

where $p_0 = \min_{1 \le k \le m} p_k$.

- (1) If $p_1, p_2, \ldots, p_m \in [1, \infty)$ with $1 = \min_{1 \le j \le m} p_j < \max_{1 \le j \le m} p_j$, and $p \in (0, \infty)$ with $1/p = \sum_{j=1}^m 1/p_j$, then for any $\delta > 0$, there exisits a constant C > 0 such that for any weight w,T is bounded from $L^{p_1}(\mathbb{R}^n, M_{L(\log L)^{\delta_w}}) \times L^{p_2}(\mathbb{R}^n, M_{L(\log L)^{\delta_w}}) \times \cdots L^{p_m}(\mathbb{R}^n, M_{L(\log L)^{\delta_w}})$ to $L^p(\mathbb{R}^n, w)$;
- (2) If $p_1, p_2, \ldots, p_m \in [1, \infty)$ with $1 < \min_{1 \le j \le m} p_j$, and $p \in (0, \infty)$ with $1/p = \sum_{j=1}^m 1/p_j$. Then for any j_0 with $p_{j_0} \in (1, \infty)$, there exists a constant C > 0 depending on δ , such that for any weight w and all bounded functions f_1, f_2, \ldots, f_m with compact support,

$$||T(f_1, f_2, \dots, f_m)||_{L^p(\mathbb{R}^n, w)} \le C||f||_{L^{p_{j_0}}(\mathbb{R}^n, M_{L(\log L)^{p_{j_0} - 1 + \delta_w}})} \times \prod_{1 \le j \le m, j \ne j_0} ||f_k||_{L^{p_j}(\mathbb{R}^n, M_{L(\log L)^{\delta_w}})}.$$

To give another application of Theorem 1, we consider the two-weight, weighted norm estimate for the m-linear operator with Calderón-Zygmund kernel. Let u, v be two weights on \mathbb{R}^n . We say that $(u, v) \in A_{p, (\log L)^{\sigma}}(\mathbb{R}^n)$ with some $\sigma > 0$, if there exists a constant C > 0 such that for any cube Q,

$$||u||_{L(\log L)^{\sigma}, Q} \left(\frac{1}{|Q|} \int_{Q} \left(v(x)\right)^{p'/p} dx\right)^{p-1} \le C.$$

Corollary 2 Let $m \geq 1$, T be an m-linear operator with Calderón-Zygmund kernel. Suppose that for some $q_1, q_2, \ldots, q_m \in [1, \infty]$ and some $q \in (0, \infty)$ with $1/q = \sum_{k=1}^m 1/q_k$, T is bounded from $L^{q_1}(\mathbb{R}^n) \times L^{q_2}(\mathbb{R}^n) \times \cdots \times L^{q_m}(\mathbb{R}^n)$.

(i) If $p \in (1/m, \infty)$ and $(u, v) \in A_{mp, (\log L)^{mp-1+\sigma}}(\mathbb{R}^n)$ for some $\sigma > 0$, then for any bounded functions f_1, f_2, \ldots, f_m with compact supports,

$$||T(f_1, f_2, \ldots, f_m)(x)||_{L^{p,\infty}(\mathbb{R}^n, u)} \le C \prod_{k=1}^m ||f_k||_{L^{mp}(\mathbb{R}^n, v)};$$

(ii) If $p_1, p_2, \ldots, p_m \in (1, \infty)$ and $p \in (0, \infty)$ with $1/p = 1/p_1 + 1/p_2 + \cdots + 1/p_m$ and $1 < p_0 = \min_{1 \le k \le m} p_k < \max_{1 \le k \le n} p_k$, and if $(u, v) \in A_{p_0, (\log L)^{p_0 - 1 + \sigma}}(\mathbb{R}^n)$ for $\sigma > 0$, then for any bounded functions f_1, f_2, \ldots, f_m with compact supports,

$$||T(f_1, f_2, \ldots, f_m)||_{L^p(\mathbb{R}^n, u)} \le C \prod_{k=1}^m ||f_k||_{L^{p_k}(\mathbb{R}^n, v)}.$$

We now make some conventions. Throughout this paper, we always denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. Constant with subscript, say, C_1 , does not change in different occurrences. For a measurable set E, χ_E denotes the characteristic function of E. Given $\lambda > 0$ and a cube Q, λQ denotes the cube with the same center as Q and whose side length is λ times that of Q. For a fixed p with $p \in [1, \infty)$, p' denotes the dual exponent of p, namely, p' = p/(p-1). For a locally integrable function f on \mathbb{R}^n and bounded measurable set E, $m_E(f)$ denotes the mean value of f over E, that is, $m_E(f) = \frac{1}{|E|} \int_E f(x) \mathrm{d}x$.

2. Proof of Theorem 1

We begin with some preliminary lemmas.

Lemma 1 Let $m \geq 2$, T be an m-linear operator with Calderón-Zygmund kernel K in m- $CZK(A, \epsilon)$. Then for all positive integer l with $1 \leq l < m$ and all bounded functions f_1, f_2, \ldots, f_l with compact support, the operator $T_{f_1, f_2, \ldots, f_l}$ defined by

$$T_{f_1, f_2, \dots, f_l}(f_{l+1}, \dots, f_m)(x) = T(f_1, f_2, \dots, f_m)(x)$$

is an (m-l)-linear operator with kernel in (m-l)- $CZK(A\prod_{j=1}^{l} \|f_j\|_{L^{\infty}(\mathbb{R}^n)}, \epsilon)$. Moreover, if T is bounded from $L^{q_1}(\mathbb{R}^n) \times L^{q_2}(\mathbb{R}^n) \times \cdots \times L^{q_m}(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ for some $q_1, q_2, \ldots, q_m \in [1, \infty]$ and $q \in (0, \infty)$ with $1/q = \sum_{k=1}^m 1/q_k$. Then

$$||T_{f_1, f_2, ..., f_l}(f_{l+1}, ..., f_m)||_{L^p(\mathbb{R}^n)} \le C \prod_{k=1}^l ||f_k||_{L^{\infty}(\mathbb{R}^n)} \prod_{k=l+1}^m ||f_k||_{L^{p_k}(\mathbb{R}^n)}$$

with $p_k \in (1, \infty)$ $(l + 1 \le k \le m)$ and $1/p = \sum_{k=l+1}^{m} 1/p_k$.

This lemma is a combination of Lemma 3 and Theorem 2 in [6].

Lemma 2 Let $q \in (1, \infty)$, (u, v) be a pair of weights and $(u, v) \in A_{q, (\log L)^{q-1+\sigma}}(\mathbb{R}^n)$ for some $\sigma > 0$. Then for any $\delta \in (0, \sigma/q)$, there exists a constant C > 0 such that

$$||M_{L(\log L)^{\delta}}f||_{L^{q'}(\mathbb{R}^n, v^{-q'/q})} \le C||f||_{L^{q'}(\mathbb{R}^n, u^{-q'/q})}.$$

For a proof, see [3, p.424].

Lemma 3 Let $q_0, \delta > 0$. S be an operator from $\mathscr{S}(\mathbb{R}^n) \times \cdots \times \mathscr{S}(\mathbb{R}^n)$ to \mathscr{M} (the set of measurable functions on \mathbb{R}^n). Suppose that there exists a constant C > 0 such that for any

weight w,

$$w(\{x \in \mathbb{R}^n : |S(f_1, f_2, \dots, f_m)(x)| > \lambda\}) \le C\lambda^{-q_0} \prod_{k=1}^m \|f_k\|_{L^1(\mathbb{R}^n, M_{L(\log L)\delta}w)}^{q_0}.$$

Then for any $q > q_0$ and $\sigma > \delta q/q_0$, there exists a constant C > 0 such that for any weight w,

$$||S(f_1, f_2, \dots, f_m)||_{L^{q, \infty}(\mathbb{R}^n, w)} \le C \prod_{k=1}^m ||f_k||_{L^{q/q_0}(\mathbb{R}^n, M_{L(\log L)^{q/q_0-1+\sigma}w})}.$$
(2.1)

Proof We will employ the idea of Cruz-Uribe and Pérez [4]. Let $q > q_0$ and set $r = q/q_0$. For any fixed $\lambda > 0$, set

$$\mathscr{F}_{\lambda} = \{ x \in \mathbb{R}^n : |S(f_1, f_2, \dots, f_m)(x)| > \lambda \}.$$

By duality and our hypothesis,

$$\{w(\mathscr{F}_{\lambda})\}^{/} = \|\chi_{\mathscr{F}_{\lambda}}\|_{\mathscr{L}(\mathbb{R},)} = \sup_{\|h\|_{L^{r'}(\mathbb{R}^{n}, w)} \le 1} \left| \int_{\mathscr{F}_{\lambda}} h(x)w(x) dx \right|$$

$$\leq C\lambda^{-q_{0}} \prod_{k=1}^{m} \|f_{k}\|_{L^{1}\left(\mathbb{R}^{n}, M_{L(\log L)\delta}(hw)\right)}^{q_{0}}.$$

$$(2.2)$$

For any fixed $\sigma > \delta r$, set $\eta = \sigma - \delta r$. As it was pointed out in [3, p.424], we have

$$t \log^{-\delta}(2+t) \le \frac{t^{1/r}}{\log^{\delta + (r-1+\eta)/r}(2+t)} \times t^{1/r'} \log^{(r-1+\eta)/r}(2+t).$$

This via the generalization of Hölder inequality [10, p.64] in turn implies that

$$M_{L(\log L)^{\delta}}(hw)(x) \leq CM_{L^{r}(\log L)^{(1+\delta)r-1+\eta}}(w^{1/r})(x)M_{L^{r'}(\log L)^{-1-(r'-1)\eta}}(hw^{1/r'})(x)$$

$$\leq C\Big\{M_{L(\log L)^{r-1+\sigma}}w(x)\Big\}^{1/r}M_{L^{r'}(\log L)^{-1-(r'-1)\eta}}(hw^{1/r'})(x).$$

It then follows from the Hölder inequality that for each k with $1 \le k \le m$,

$$||f_{k}||_{L^{1}(\mathbb{R}^{n}, M_{L(\log L)^{\delta}}(hw))}^{q_{0}} \leq C \left(\int_{\mathbb{R}^{n}} |f_{k}(x)|^{r} M_{L(\log L)^{r-1+\epsilon}} w(x) dx \right)^{q_{0}/r} \times \left(\int_{\mathbb{R}^{n}} \left(M_{L^{r'}(\log L)^{-1-(r'-1)\eta}}(hw^{1/r'})(x) \right)^{r'} dx \right)^{q_{0}/r'} \right) \leq C \left(\int_{\mathbb{R}^{n}} |f_{k}(x)|^{r} M_{L(\log L)^{r-1+\sigma}} w(x) dx \right)^{q_{0}/r},$$

$$(2.3)$$

where in the last inequality, we have invoked the fact that the operator $M_{L^{r'}(\log L)^{-1-(r'-1)\eta}}$ is bounded on $L^{r'}(\mathbb{R}^n)$ ([9]). Combining the estimates (2.2) and (2.3) yields (2.1) and then completes the proof of Lemma 3. \square

Proof of Theorem 1 We will proceed by an induction argument on m. If m = 1, Theorem 1 is just Theorem 1 in [8]. Now let $m \ge 1$ be a positive integer. We assume that Theorem 1 holds for any l-linear operator with Calderón-Zygmund kernel for any l with $1 \le l \le m$. Let $f_1, f_2, \ldots, f_m, f_{m+1} \in L^1(\mathbb{R}^n, M_{L(\log L)^\delta}w)$ such that

$$||f_1||_{L^1(\mathbb{R}^n, M_{L(\log L)^{\delta}}w)} = ||f_2||_{L^1(\mathbb{R}^n, M_{L(\log L)^{\delta}}w)} = \dots = ||f_{m+1}||_{L^1(\mathbb{R}^n, M_{L(\log L)^{\delta}}w)} = 1.$$

For each fixed $\lambda > 0$ and each fixed k with $1 \le k \le m+1$, applying the Calderón-Zygmund decomposition to each f_j at level $\lambda^{1/(m+1)}$, we then obtain a sequence of cubes $\{Q_{k_j}^k\}_j$ with disjoint interiors, such that

(i) For any fixed j,

$$\lambda^{1/(m+1)} \le \frac{1}{|Q_{k_j}^k|} \int_{Q_{k_j}^k} |f_k(y)| dy \le 2^n \lambda^{1/(m+1)}.$$

(ii) $|f_k(x)| \leq C\lambda^{1/(m+1)}$ a.e., $x \in \mathbb{R}^n \setminus \bigcup_j Q_{k_j}^k$.

Set

$$g_k(x) = f_k(x) \chi_{\mathbb{R}^n \setminus \bigcup_j Q_{k_j}^k}(x) + \sum_j m_{Q_{k_j}^k}(f_k) \chi_{Q_{k_j}^k}(x)$$

and

$$b_k(x) = \sum_{j} \left(f_k(x) - m_{Q_{k_j}^k}(f_k) \right) \chi_{Q_{k_j}^k}(x).$$

Lemma 1, together with our inductive hypothesis, tells us that

$$w(\{x \in \mathbb{R}^n : |T(f_1, f_2, \dots, f_m, g_{m+1})(x) > \lambda/2\})$$

$$\leq C\lambda^{-1/m} \|g_{m+1}\|_{L^{\infty}(\mathbb{R}^n)}^{1/m} \prod_{j=1}^m \|f_j\|_{L^1(\mathbb{R}^n, M_{L(\log L)\delta}w)}^{1/m}$$

$$\leq C\lambda^{-1/(m+1)}.$$

Let $\Omega = \bigcup_{k=1}^{m+1} \cup_j 4\sqrt{n}Q_{k_j}^k$. A trivial computation leads to that

$$w(\Omega) \leq \sum_{k=1}^{m+1} \sum_{j} \frac{w(Q_{k_{j}}^{k})}{|Q_{k_{j}}^{k}|} |Q_{k_{j}}^{k}|$$

$$\leq \lambda^{-1/(m+1)} \sum_{k=1}^{m+1} \sum_{j} \int_{Q_{k_{j}}^{k}} |f_{k}(x)| dx \inf_{y \in Q_{k_{j}}^{k}} Mw(y)$$

$$\leq C(m+1)\lambda^{-1/(m+1)}.$$

Set $w^*(x) = w(x)\chi_{\mathbb{R}^n\setminus\Omega}(x)$. The proof of Theorem 1 is now reduced to proving that

$$w^*(\{x \in \mathbb{R}^n \setminus \Omega : |T(f_1, f_2, \dots, f_m, b_{m+1})(x)| > \lambda/2\}) \le C\lambda^{-1/(m+1)}. \tag{2.4}$$

We now prove (2.4). Let Λ_j ($1 \leq j \leq 2^m$) be a nonempty subset of $\{1, 2, \ldots, m\}$ and set

$$E_j = \{x \in \mathbb{R}^n \setminus \Omega : |T(h_1, h_2, \dots, h_m, b_{m+1})(x)| > \lambda/2^{m+2} : \text{ where } h_l = g_l \text{ when } l \in \Lambda_j,$$
$$h_l = b_l \text{ when } l \notin \Lambda_j, \ 1 \le l \le m\}.$$

Denote by N_j the cardinal number of Λ_j . Lemma 1, together with our inductive hypothesis, tells us that for any j with $1 \leq j \leq 2^m$,

$$w^{*}(E_{j}) \leq C\lambda^{-1/(m+1-N_{j})} \prod_{k \in \Lambda_{j}} \|g_{k}\|_{L^{\infty}(\mathbb{R}^{n})}^{1/(m+1-N_{j})} \prod_{1 \leq k \leq m+1, k \notin \Lambda_{j}} \|b_{k}\|_{L^{1}(\mathbb{R}^{n}, M_{L(\log L)^{\delta}} w^{*})}^{1/(m+1-N_{j})}$$

$$\leq C\lambda^{-1/(m+1)} \prod_{1 \leq k \leq m+1, k \notin \Lambda_{j}} \|b_{k}\|_{L^{1}(\mathbb{R}^{n}, M_{L(\log L)^{\delta}} w^{*})}^{1/(m+1-N_{j})}.$$

Recall that supp $w^* \subset \mathbb{R}^n \backslash \Omega$. There exists a constant C > 0 such that for any k and j,

$$\sup_{x \in Q_{k_j}^k} M_{L(\log L)^\delta} w(x) \le C \inf_{y \in Q_{k_j}^k} M_{L(\log L)^\delta} w(y)$$

(see [8]). Thus, for any k with $1 \le k \le m+1$,

$$||b_k||_{L^1(\mathbb{R}^n, M_{L(\log L)^{\delta}} w^*)} \le \sum_j \int_{Q_{k_j}^k} |f_k(y)| dy \inf_{y \in Q_{k_j}^k} M_{L(\log L)^{\delta}} w(y)$$

$$\le C \int_{\mathbb{R}^n} |f_k(y)| M_{L(\log L)^{\delta}} w(y) dy.$$

This, in turn, implies that

$$w(\bigcup_{j=1}^{2^m} E_j) \le C\lambda^{-1/(m+1)}.$$
 (2.5)

Now we claim that

$$w^*(\{x \in \mathbb{R}^n \setminus \Omega : |T(b_1, b_2, \dots, b_m, b_{m+1})(x)| > \lambda/4\}) \le C\lambda^{-1/(m+1)}.$$
 (2.6)

In fact, for each fixed k and k_j , denote by $c_{k_j}^k$ and $l(Q_{k_j}^k)$ the center and side length of $Q_{k_j}^k$, respectively. By an estimate of Grafakos and Torres [6, pp.137–138], we know that for any $x \in \mathbb{R}^n \setminus \Omega$,

$$|T(b_1, b_2, \ldots, b_m, b_{m+1})(x)| \le C\lambda \prod_{k=1}^{m+1} \mathcal{M}_k(x),$$

where \mathcal{M}_k is the Marcinkiewicz function defined by

$$\mathcal{M}_k(x) = \sum_j \frac{\{l(Q_j)\}^{n+\epsilon/(m+1)}}{\left(l(Q_j) + |x - c_{k_j}^k|\right)^{n+\epsilon/(m+1)}}.$$

On the other hand, a straightforward computation leads to that for any k with $1 \le k \le m+1$,

$$\int_{\mathbb{R}^n} \mathcal{M}_k(x) w(x) dx \le \sum_j \int_{\mathbb{R}^n} \frac{\{l(Q_j)\}^{n+\epsilon/(m+1)}}{\left(l(Q_j) + |x - c_{k_j}^k|\right)^{n+\epsilon/(m+1)}} w(x) dx$$

$$\le C \sum_j |Q_{k_j}^k| \inf_{y \in Q_{k_j}^k} Mw(y)$$

$$\le C\lambda^{-1/(m+1)} \int_{\mathbb{R}^n} f(y) Mw(y) dy.$$

Therefore,

$$w^{*}(\{x \in \mathbb{R}^{n} \setminus \Omega : |T(b_{1}, b_{2}, \dots, b_{m}, b_{m+1})(x)| > \lambda\})$$

$$\leq \lambda^{-1/(m+1)} \int_{\mathbb{R}^{n} \setminus \Omega} \left| T(b_{1}, b_{2}, \dots, b_{m}, b_{m+1})(x) \right|^{1/(m+1)} w^{*}(x) dx$$

$$\leq C \prod_{k=1}^{m+1} \left(\int_{\mathbb{R}^{n} \setminus \Omega} \mathcal{M}_{k}(x) w^{*}(x) dx \right)^{1/(m+1)}$$

$$\leq C \lambda^{-1/(m+1)}.$$

and so (2.6) holds. Combining the estimates (2.5) and (2.6) then leads to our desired inequality (2.4).

Proof of Corollary 1 We only consider the case m=2. The conclusion for the case $m\geq 3$ can be proved in the same way, along with an inductive argument involving Lemma 1. By Theorem 1, we see that for any $\delta>0$ and weight w, T is bounded from $L^1(R^n, M_{L(\log L)^\delta}w)\times L^1(R^n, M_{L(\log L)^\delta}w)$ to $L^{1/2,\infty}(R^n, w)$. On the other hand, the weighted weak type endpoint estimated for the Calderon-Zygmund operater [7, Theorem 1.6], together with Lemma 1, states that T is bounded from $L^1(R^n, M_{L(\log L)^\delta}w) \times L^\infty(R^n)$ to $L^{1,\infty}(R^n, w)$. Therefore, by the classical interpolation theorem of Marcinkiewicz, it follows that for any $p \in (1,\infty)$

$$||T(f_1, f_2||_{L^{p/(p+1)}(\mathbb{R}^n, w)} \le C||f_1||_{L^1(\mathbb{R}^n, M_{L(\log L)^\delta}w)}||f_2||_{L^p(\mathbb{R}^n, M_{L(\log L)^\delta}w)}. \tag{2.4}$$

Now let $p_1, p_2 \in (1, \infty)$. Again by Lemma 1 and the weighted L^{p_2} estimate for the Calderon-Zygmund operator [7, Theorem 1.1], we know that for any δ and weight w,

$$||T(f_1, f_2)||_{L^{p_2}(\mathbb{R}^n, w)} \le C||f_1||_{L^{\infty}(\mathbb{R}^n)} ||f_2||_{L^{p_2}(\mathbb{R}^n, M_{L(\log L)^{p_2-1+\delta}w})}.$$
(2.5)

Interpolation between the equalities (2.5) and the trivial estimate give that

$$||T(f_1, f_2)||_{L^{p_2/(p_2+1)}(\mathbb{R}^n, w)} \le ||f_1||_{L^1(\mathbb{R}^n, M_{L(\log L)^{\delta}w})} ||f_2||_{L^{p_2}(\mathbb{R}^n, M_{L(\log L)^{p_2-1+\delta}w})}.$$
(2.6)

It then follows that $p \in (0, \infty)$ with $1/p = 1/p_1 + 1/p_2$,

$$||T(f_1, f_2)||_{L^p(\mathbb{R}^n, w)} \le C||f_1||_{L^{p_1}(\mathbb{R}^n, M_{L(\log L)^\delta}w)} ||f_2||_{L^{p_2}(\mathbb{R}^n, M_{L(\log L)^{p_2-1+\delta}w})}.$$

Similarly, interpolating the equality

$$||T(f_1, f_2)||_{L^{p_1}(\mathbb{R}^n, w)} \le C||f_1||_{L^{p_1}(\mathbb{R}^n, M_{L^{(1-r-1)p_1-1+\delta}w})} ||f_2||_{L^{\infty}(\mathbb{R}^n)}$$

and the inequality

$$\|T(f_1,\,f_2)\|_{L^{p_1/(p_1+1)}(\mathbb{R}^n,\,w)} \leq C\|f_1\|_{L^{p_1}(\mathbb{R}^n,\,M_{L(\log L)^{p_1-1}+\delta}w)}\|f_2\|_{L^1(\mathbb{R}^n,\,M_{L(\log L)\delta}w)}$$

yields

$$||T(f_1, f_2)||_{L^p(\mathbb{R}^n, w)} \le C||f_1||_{L^{p_1}(\mathbb{R}^n, M_{L(\log L)^{p_1-1}+\delta w)}} ||f_2||_{L^{p_2}(\mathbb{R}^n, M_{L(\log L)^{\delta} w})}.$$

This completes the proof of Corollary 1. \square

Proof of Corollary 2 The proof of (i) follows from the same argument used in the proof of Theorem 1.2 in [3]. Let

$$\Omega_{\lambda} = \{ x \in \mathbb{R}^n : |T(f_1, f_2, \dots, f_m)(x)| > \lambda \}.$$

Not that $|\Omega_{\lambda}| < \infty$ for any $\lambda > 0$. By duality, we know that

$$\{u(\Omega_{\lambda})\}^{1/(mp)} = \|u^{1/(mp)}\chi_{\Omega_{\lambda}}\|_{L^{mp}(\mathbb{R}^{n})} = \sup_{\|h\|_{L^{(mp)'}(\mathbb{R}^{n})} \le 1} \int_{\Omega_{\lambda}} (u(x))^{1/(mp)} h(x) dx.$$

An application of Theorem 1 yields that when $h \in L^{(mp)'}(\mathbb{R}^n)$ with $||h||_{L^{(mp)'}(\mathbb{R}^n)} \leq 1$,

$$\int_{\Omega_{\lambda}} (u(x))^{1/(mp)} h(x) dx \leq C \lambda^{-1/m} \prod_{k=1}^{m} \|f_{k}\|_{L^{1}(\mathbb{R}^{n}, M_{L(\log L)\delta})}^{1/m} \\
\leq C \lambda^{-1/m} \prod_{k=1}^{m} \|f_{k}\|_{L^{mp}(\mathbb{R}^{n}, v)}^{1/m} \|M_{L(\log L)\delta}(u^{1/(mp)}h)\|_{L^{(mp)'}(\mathbb{R}^{n}, v^{-(mp)'/(mp)})}^{1/m}$$

$$\leq C \Big(\lambda^{-p} \prod_{k=1}^{m} \|f_k\|_{L^{mp}(\mathbb{R}^n, v)}^p \Big)^{1/(mp)}.$$

Our desired conclusion (i) then follows directly.

We turn our attention to (ii). We only consider the case that m=2. For the case that $m \geq 2$, (ii) can be proved by the same argument, along with the induction argument on m. Let $p_1, p_2 \in (1, \infty)$ and $p \in (0, \infty)$ with $1/p = 1/p_1 + 1/p_2$. Without loss of generality, we may assume that $p_1 < p_2$. By conclusion (i), we have

$$||T(f_1, f_2)||_{L^{p_1/2, \infty}(\mathbb{R}^n, u)} \le C \prod_{k=1}^2 ||f_k||_{L^{p_1}(\mathbb{R}^n, v)}.$$
(2.11)

On the other hand, Lemma 1 states that for $f_2 \in L^{\infty}(\mathbb{R}^n)$ with compact support,

$$||T(f_1, f_2)||_{L^{p_1, \infty}(\mathbb{R}^n, u)} \le C||f_1||_{L^{p_1}(\mathbb{R}^n, v)}||f_2||_{L^{\infty}(\mathbb{R}^n)}.$$
(2.12)

Interpolating the inequalities (2.11) and (2.12) then gives

$$||T(f_1, f_2)||_{L^p(\mathbb{R}^n, u)} \le C \prod_{k=1}^2 ||f_k||_{L^{p_k}(\mathbb{R}^n, v)}.$$

This completes the proof of Corollary 2. \square

References

- [1] COIFMAN R R, MEYER Y. On commutators of singular integrals and bilinear singular integrals [J]. Trans. Amer. Math. Soc., 1975, 212: 315–331.
- [2] COIFMAN R R, MEYER Y. Nonlinear Harmonic Analysis, Operator Theory and P.D.E. Beijing Lectures in Harmonic Analysis (Beijing, 1984) [M]. Princeton Univ. Press, Princeton, NJ, 1986.
- [3] CRUZ-URIBE D, PÉREZ C. Sharp two-weight, weak-type norm inequalities for singular integral operators [J]. Math. Res. Lett., 1999, **6**(3-4): 417–427.
- [4] CRUZ-URIBE D, PÉREZ C. Two weight extrapolation via the maximal operator [J]. J. Funct. Anal., 2000, 174(1): 1-17.
- [5] GRAFAKOS L, KALTON N. Multilinear Calderón-Zygmund operators on Hardy spaces [J]. Collect. Math., 2001, 52(2): 169–179.
- [6] GRAFAKOS L, TORRES R H. Multilinear Calderón-Zygmund theory [J]. Adv. Math., 2002, 165(1): 124– 164.
- [7] GRAFAKOS L, TORRES R H. Maximal operator and weighted norm inequalities for multilinear singular integrals [J]. Indiana Univ. Math. J., 2002, 51(5): 1261–1276.
- [8] PÉREZ C. Weighted norm inequalities for singular integral operators [J]. J. London Math. Soc. (2), 1994, 49(2): 296–308.
- [9] PÉREZ C. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted L^p-spaces with different weights [J]. Proc. London Math. Soc. (3), 1995, **71**(1): 135–157.
- [10] RAO M M, REN Z D. Theory of Orlicz Spaces [M]. Marcel Dekker, Inc., New York, 1991.
- [11] LU Shanzhen, YAN Dunyan. L^p-boundedness of multilinear oscillatory singular integrals with Calderón-Zygmund kernel [J]. Sci. China Ser. A, 2002, 45(2): 196–213.
- [12] MENG Yan. Multilinear Calderón-Zygmund operators on the product of Lebesgue spaces with non-doubling measures [J]. J. Math. Anal. Appl., 2007, 335(1): 314–331.