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Abstract In this paper, the authors study the periodic boundary value problems of a class

of nonlinear integro-differential equations of mixed type in Banach space with Carathéodory’s

conditions. We arrive at the conclusion of the existence of generalized solutions between general-

ized upper and lower solutions, and develop the monotone iterative technique to find generalized

extremal solutions as limits of monotone solution sequences in Banach space.
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1. Introduction

We consider the following periodic boundary value problems (PBVP) for nonlinear integro-

differential equations of mixed type in Banach space with Carathéodory’s conditions

u′(t) = H(t, u(t), (Ku)(t), (Tu)(t)), (1.1)

u(0) = u(2π), (1.2)

where

(Ku)(t) =

∫ t

0

k(t, s)u(s)ds, (Tu)(t) =

∫ 2π

0

h(t, s)u(s)ds, (1.3)

I = [0, 2π], E is real Banach space, H : I×E×E×E → E satisfies the Carathéodory’s conditions

in Banach space, k : I × I → R+ satisfies the Carathéodory’s conditions and h : I × I → R+

is continuous. When H and k are continuous, the existence of extreme solutions for PBVP

(1.1)–(1.2) has been studied in [1, 2]. In [3, 4] the author discussed PBVP for nonlinear integro-

differential equations of Volterra type

u′(t) = H(t, u(t), (Ku)(t)),

u(0) = u(2π),

where

(Ku)(t) =

∫ t

0

k(t, s)u(s)ds,
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H : I × R2 → R, k : I × I → R+ satisfies the Carathéodory’s conditions. In this paper, we

deal with PBVP (1.1)–(1.2) for the two aspects relative to generalized lower and upper solutions:

α ≤ β, α ≥ β. When we study the integro-differential equations in Banach spaces we must

overcome some difficulties, such as differentiability of the function. Though we get the existence

of generalized solutions between generalized lower and upper solutions (Theorem 3.1, Theorem

3.2) in this paper, a question may arise if there is any function satisfying the conditions of the

theorems. The authors give a positive answer to this question by providing two examples which

satisfy all conditions of Theorems 3.1 and 3.2, respectively.

Suppose that E is a real Banach space, and P ⊂ E is a cone. Then we get a partial ordering

produced by P in E: if y − x ∈ P , then x ≤ y.

The dual cone of P is P ∗ = {ϕ ∈ E∗ | ϕ(x) ≥ 0, ∀x ∈ P}.

Definition 1.1 ([5]) An abstract function x(t) : I → E is a strong bounded variation function

if it satisfies following conditions:

∀(αk, βk) ⊂ I(k = 1, 2, . . . , n), (αi, βi) ∩ (αj , βj) = ∅, sup
∑

k

‖x(βk) − x(αk)‖ < ∞.

While we say x(t) is a strong absolutely continuous function: whenever
∑n

k=1 | αk − βk |→ 0

then sup
∑

k ‖x(βk) − x(αk)‖ → 0.

A strong absolutely continuous function must be a strong continuous function. It is also a

strong bounded variation function.

Proposition 1.2 ([5]) Suppose E is reflexive space. If x(t) (t ∈ I) is a strong bounded variation

function, then x′(t) exists for a.e. t ∈ I.

A cone is normal iff ∀[x, y] = {z ∈ E | x ≤ z ≤ y} ⊂ E is bounded.

Let S[I, E] denote all strong absolutely continuous functions u(t) : I → E, where E is reflexive

space, and C[I, E] denote all strong continuous functions u(t) : I → E.

∀u = u(t), v = v(t) ∈ C[I, E], we say u ≤ v if u(t) ≤ v(t) (∀t ∈ I).

Theorem 1.3 ([6]) Suppose E is reflexive space and P is a normal cone in E. Then a total

ordering set M in E is sequentially compact iff M is bounded under normed topology.

Theorem 1.4 ([7]) If E is reflexive space, then P is a normal cone iff P is a regular cone.

Theorem 1.5 ([7]) Suppose P ⊂ E is a regular cone and A : [u0, v0] → E is a continuous map,

where [u0, v0] ⊂ E and satisfies

(i) For w1, w2 ∈ [u0, v0], w1 ≤ w2 implies Aw1 ≤ Aw2;

(ii) u0 ≤ Au0, Av0 ≤ v0.

Then A has a fixed point in [u0, v0].

Definition 1.6 A function α ∈ S[I, E] is called a generalized lower solution of PBVP (1.1)–(1.2)

if α satisfies

α′(t) ≤ H(t, α(t), (Kα)(t), (Tα)(t)), a.e. t ∈ I, (1.4)
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α(0) ≤ α(2π). (1.5)

Similarly, β ∈ S[I, E] is called a generalized upper solution of PBVP (1.1)–(1.2) if β satisfies

β′(t) ≥ H(t, β(t), (Kβ)(t), (Tβ)(t)), a.e. t ∈ I, (1.6)

β(0) ≥ β(2π). (1.7)

Throughout this paper, all solutions are used in generalized sense.

Let us list the following assumptions for convenience:

(A1) (i) α, β are the lower and upper solutions for PBVP (1.1)–(1.2) respectively and satisfy

α(t) ≤ β(t), t ∈ I.

(ii) α, β are the lower and upper solutions for PBVP (1.1)–(1.2) respectively and satisfy

β(t) ≤ α(t), t ∈ I.

(A2) H(t, u, v, w) satisfies the Carathéodory’s conditions, that is, H(·, u, v, w) is measurable

for each (u, v, w), and H(t, ·, ·, ·) is continuous for a.e. t ∈ I.

(A3) For every A > 0 which satisfies ‖ u ‖≤ A, ‖ v ‖≤ A, ‖ w ‖≤ A ((u, v, w) ∈ E ×E ×E),

there is a function hA ∈ L1(I) such that ‖ H(t, u, v, w) ‖≤ hA(t), a.e. t ∈ I.

(A4) The kernel k : I × I −→ R+ satisfies Carathéodory’s conditions, that is, k(t, ·) is

measurable for each t ∈ I, and k(·, s) is continuous for a.e. s ∈ I. And k(t, s) ≤ f(s), a.e. t ∈ I,

f ∈ L1(I).

(A5) (i)

H(t, u(t), v(t), w(t)) − H(t, ū(t), v̄(t), w̄(t))

≥ −M(t)(u(t) − ū(t)) − N(t)(v(t) − v̄(t)) − G(t)(w(t) − w̄(t)), a.e. t ∈ I, (1.8)

whenever α(t) ≤ ū(t) ≤ u(t) ≤ β(t), (Kα)(t) ≤ v̄(t) ≤ v(t) ≤ (Kβ)(t), (Tα)(t) ≤ w̄(t) ≤ w(t) ≤
(Tβ)(t), t ∈ I, where M(t) > 0, N(t), G(t) ≥ 0, a.e. t ∈ I, M , N , G ∈ L1(I) that satisfy

∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt < 1. (1.9)

(ii)

H(t, u(t), v(t), w(t)) − H(t, ū(t), v̄(t), w̄(t)) ≤
M(t)(u(t) − ū(t)) + N(t)(v(t) − v̄(t)) + G(t)(w(t) − w̄(t)), a.e. t ∈ I,

whenever β(t) ≤ ū(t) ≤ u(t) ≤ α(t), (Kβ)(t) ≤ v̄(t) ≤ v(t) ≤ (Kα)(t), (Tβ)(t) ≤ w̄(t) ≤ w(t) ≤
(Tα)(t), t ∈ I, where M(t) > 0, N(t), G(t) ≥ 0, a.e. t ∈ I, M , N , G ∈ L1(I) that satisfy

∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt ≤ 1/2. (1.10)

2. Some auxiliary lemmas

Lemma 2.1 Assume that m(t) ∈ S[I, R], and it satisfies

m′(t) ≤ −M(t)m(t) − N(t)

∫ t

0

k(t, s)m(s)ds − G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I, (2.1)
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where M(t), N(t), G(t) ∈ L1(I), M(t) > 0, N(t), G(t) ≥ 0, a.e. t ∈ I and k satisfies (A4).

Suppose further that
∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt ≤ 1. (2.2)

Then either m(0) ≤ 0 or m(0) ≤ m(2π) implies that m(t) ≤ 0, t ∈ I.

We leave out the proof of this lemma because it can be completed similarly to the proof of

Theorem 3.1 in [4].

Lemma 2.2 Assume that m(t) ∈ S[I, R], and it satisfies

m′(t) ≥ M(t)m(t) + N(t)

∫ t

0

k(t, s)m(s)ds + G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I, (2.3)

where M(t), N(t), G(t), k(t, s) satisfy the same assumptions as in Lemma 2.1, except for
∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt ≤ 1/2 (2.4)

replacing (2.2). Then m(0) ≥ m(2π) implies that m(t) ≤ 0, t ∈ I.

The proof of this lemma can be completed similarly to the proof of Theorem 3.2 in [4].

Corollary 2.3 Suppose that the assumptions of Lemma 2.2 hold, but m(2π) ≤ 0 replace

m(0) ≥ m(2π). Then m(0) ≤ 0.

Theorem 2.4 Suppose E is reflexive space and P is a normal cone in E. Assume that (A1)(i),

(A2)–(A4), (A5)(i) hold. Then the following linear PBVP

u′(t) = Hη(t) − M(t)u(t) − N(t)

∫ t

0

k(t, s)u(s)ds − G(t)

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (2.5)

u(0) = u(2π) (2.6)

has a unique solution u(t) such that u(t) ∈ [α, β] = {v ∈ C[I, E] : α(t) ≤ v(t) ≤ β(t), t ∈
I}, where η ∈ [α, β], Hη(t) = H(t, η(t), (Kη)(t), (Tη)(t)) + M(t)η(t) + N(t)

∫ t

0
k(t, s)η(s)ds +

G(t)
∫ 2π

0 h(t, s)η(s)ds.

Proof First, we consider the following linear initial value problem (IVP)

u′(t) = Hη(t) − M(t)u(t) − N(t)

∫ t

0

k(t, s)u(s)ds − G(t)

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (2.7)

u(0) = u0, (2.8)

where u0 ∈ [α(0), β(0)]. It is equivalent to the following operator equation u(t) = Qu(t),

(Qu)(t) = u0 +
∫ t

0 [Hη(r) − M(r)u(r) − N(r)
∫ r

0 k(r, s)u(s)ds − G(r)
∫ 2π

0 h(t, s)u(s)ds]dr. We

will show that Q is a contractive operator in Banach space C[I, E]. Indeed, ∀u, ū ∈ C[I, E], we

have

‖ Qu − Qū ‖= max
t∈I

‖ (Qu)(t) − (Qū)(t) ‖

≤
∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt ‖ u − ū ‖ .
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By (1.9), the above initial value problem has a unique solution u(t) = u(t; u0).

Next, we will show that u(t) = u(t; u0) ∈ [α, β]. For any φ ∈ P ∗, let m(t) = φ(α(t) − u(t)).

In view of (A5)(i), we have m(0) ≤ 0 and

m′(t) =φ(α′(t) − u′(t))

≤φ(H(t, α(t), (Kα)(t), (Tα)(t)) − H(t, η(t), (Kη)(t), (Tη)(t) − M(t)η(t)−

N(t)

∫ t

0

k(t, s)η(s)ds − G(t)

∫ 2π

0

h(t, s)η(s)ds + M(t)u(t)+

N(t)

∫ t

0

k(t, s)u(s)ds + G(t)

∫ 2π

0

h(t, s)u(s)ds)

≤− M(t)m(t) − N(t)

∫ t

0

k(t, s)m(s)ds − G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I.

By Lemma 2.1, we have m(t) ≤ 0, t ∈ I. Because φ ∈ P ∗ is arbitrary, α(t) ≤ u(t), t ∈ I.

Similarly, we can prove u(t) ≤ β(t), t ∈ I.

Further, we will show that there is u∗

0 ∈ [α(0), β(0)] such that the solution u(t; u∗

0) sat-

isfies u(0) = u∗

0 = u(2π), which indicates that PBVP (2.5)–(2.6) has a solution. In fact,

[α(2π), β(2π)] ⊂ [α(0), β(0)]. Hence, for each u0 ∈ [α(2π), β(2π)], the IVP (2.7)–(2.8) has a

unique solution u(t; u0) such that u(2π; u0) ∈ [α(2π), β(2π)]. Therefore, the Poincaré operator

P2π : u0 → u(2π; u0) with u0 ∈ [α(2π), β(2π)] maps interval [α(2π), β(2π)] into [α(2π), β(2π)].

Let u1, u2 ∈ [α(2π), β(2π)] and u1 ≤ u2. Suppose further that ūi(t) = u(t; ui), i = 1, 2, is the

solution of the following IVP

u′(t) = Hη(t) − M(t)u(t) − N(t)

∫ t

0

k(t, s)u(s)ds − G(t)

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (2.9)

u(0) = ui. (2.10)

For any φ ∈ P ∗, let m(t) = φ(ū1(t) − ū2(t)). Then m(0) = φ(ū1(0) − ū2(0)) = φ(u1 − u2) ≤ 0,

m′(t) = φ(ū′

1(t) − ū′

2(t))

= −M(t)m(t) − N(t)

∫ t

0

k(t, s)m(s)ds − G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I.

By Lemma 2.1, we have m(t) ≤ 0, t ∈ I. So ū1(t) ≤ ū2(t), t ∈ I and P2πu1 ≤ P2πu2. We get

P2π is monotone increasing operator.

Next, we will show that P2π is continuous operator. Let un ∈ [α(2π), β(2π)], n = 0, 1, 2, . . .,

‖ un − u0 ‖→ 0, n → ∞. Suppose further that u(t; un) is the solution of the following IVP

u′(t) = Hη(t) − M(t)u(t) − N(t)

∫ t

0

k(t, s)u(s)ds − G(t)

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I,

u(0) = un.

For any t ∈ I, we have

‖ u(t; un) − u(t; u0) ‖≤ ‖ un − u0 ‖ + ‖
∫ t

0

[−M(r)u(r; un)−
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N(r)

∫ r

0

k(r, s)u(s; un)ds − G(r)

∫ 2π

0

h(r, s)u(s; un)ds+

M(r)u(r; u0) + N(r)

∫ r

0

k(r, s)u(s; u0)ds

G(r)

∫ 2π

0

h(r, s)u(s; u0)ds]dr ‖

≤ ‖ un − u0 ‖ +

∫ 2π

0

[M(r) + N(r)

∫ r

0

k(r, s)ds+

G(r)

∫ 2π

0

h(r, s)ds]dr ‖ u(t; un) − u(t; u0) ‖ .

So

‖ u(t; un) − u(t; u0) ‖≤
‖ un − u0 ‖

1 −
∫ 2π

0
[M(r) + N(r)

∫ r

0
k(r, s)ds − G(r)

∫ 2π

0
h(r, s)u(s)ds]dr

.

We get

‖ u(t; un) − u(t; u0) ‖→ 0, n → ∞.

Then

‖ u(2π; un) − u(2π; u0) ‖→ 0, n → ∞.

Therefore, P2π is continuous on [α(2π), β(2π)].

Further, we will show P2πα(2π) ≥ α(2π). Since α(2π) ∈ [α(0), β(0)], we get the unique solu-

tion u(t; α(2π)) ∈ [α, β] of IVP (2.7)–(2.8). So u(2π; α(2π)) ∈ [α(2π), β(2π)]. Then P2πα(2π) ≥
α(2π). Similarly we can get P2πβ(2π) ≤ β(2π). By Theorems 1.4 and 1.5, P2π has a fixed point

u∗

0 ∈ [α(2π), β(2π)]. So IVP (2.7)–(2.8) has a solution u(t; u∗

0) and u(0; u∗

0) = u∗

0 = u(2π; u∗

0).

We also know u(t; u∗

0) ∈ [α, β], so u(t; u∗

0) is a solution of PBVP(2.5)–(2.6).

Solutions of PBVP(2.5)–(2.6) must be unique. If not, let u1(t), u2(t), t ∈ I, are solutions of

PBVP(2.5)–(2.6). For any φ ∈ P ∗, let m(t) = φ(u1(t) − u2(t)). Then m(0) = 0 and

m′(t) = φ(u′

1(t) − u′

2(t))

= −M(t)m(t) − N(t)

∫ t

0

k(t, s)m(s)ds − G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I.

By Lemma 2.1, m(t) ≤ 0, t ∈ I. So u1(t) ≤ u2(t), t ∈ I. Similarly let m(t) = φ(u2(t) − u1(t)).

We get u2(t) ≤ u1(t), t ∈ I. At last we have u1(t) = u2(t), t ∈ I.

Theorem 2.5 Suppose E is reflexive space and P is a normal cone in E. Assume that (A1)(ii),

(A2)–(A4), (A5)(ii) hold. Then the following linear PBVP

u′(t) = Hη(t) + M(t)u(t) + N(t)

∫ t

0

k(t, s)u(s)ds + G(t)

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (2.11)

u(0) = u(2π) (2.12)

has a unique solution u(t) ∈ [β, α], where Hη(t) = H(t, η(t), (Kη)(t), (Tη)(t)) − M(t)η(t) −
N(t)

∫ t

0 k(t, s)η(s)ds − G(t)
∫ 2π

0 h(t, s)η(s)ds, η ∈ [β, α].

The proof of this theorem can be completed similarly to the proof of Theorem 2.4.
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3. Statement of the main results

Theorem 3.1 Suppose E is reflexive space, and P is a normal cone in E. For PBVP(1.1)–(1.2),

(A1)(i),(A2)–(A4) and (A5)(i) hold. Then there are monotone sequences {αn(t)}, {βn(t)} with

α0 = α(t), β0 = β(t) such that limn→∞ αn(t) = ρ(t), limn→∞ βn(t) = γ(t) uniformly on I and

ρ, γ are minimal and maximal solutions respectively between α and β for PBVP(1.1)–(1.2).

We leave out the proof of this theorem because it can be completed similarly to the proof of

the following theorem.

Theorem 3.2 Suppose E is reflexive space, and P is a normal cone in E. For PBVP(1.1)–(1.2),

(A1)(ii),(A2)–(A4) and (A5)(ii) hold. Then there are monotone sequences {βn(t)}, {αn(t)} with

α0 = α(t), β0 = β(t) such that limn→∞ βn(t) = ρ(t), limn→∞ αn(t) = γ(t) uniformly on I and

ρ, γ are minimal and maximal solutions respectively between β and α for PBVP(1.1)–(1.2).

Proof We define a mapping Aη = u, η ∈ [β, α], where u is the unique solution of linear

PBVP(2.11)–(2.12). We shall show that

(a) β ≤ Aβ, Aα ≤ α.

(b) A possesses a monotone nondecreasing property on the segment [β, α].

To prove (a), let m(t) = φ(β(t) − β1(t)), where φ ∈ P ∗ and β1(t) = Aβ(t). By (A5)(ii) we

have

m′(t) ≥ M(t)m(t) + N(t)

∫ t

0

k(t, s)m(s)ds + G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I,

m(0) ≥ m(2π).

Hence, by Lemma 2.2, we get m(t) ≤ 0, t ∈ I. φ ∈ P ∗ is arbitrary, so we have β ≤ Aβ. Similarly,

we can get Aα ≤ α.

In order to prove (b), we denote u1 = Aη1, u2 = Aη2, where η1 ≤ η2. Let m(t) = φ(u1(t) −
u2(t)), φ ∈ P ∗. By (A5)(ii), we get

m′(t) ≥ M(t)m(t) + N(t)

∫ t

0

k(t, s)m(s)ds + G(t)

∫ 2π

0

h(t, s)m(s)ds, a.e. t ∈ I,

m(0) = m(2π).

Using Lemma 2.2 again, we get m(t) ≤ 0, t ∈ I, that is, Aη1 ≤ Aη2.

Now we can define the sequences {βn}, {αn} with β0 = β, α0 = α, βn+1 = Aβn, αn+1 = Aαn,

n = 0, 1, 2, . . . . From the properties of A, we have

β0 ≤ β1 ≤ · · · ≤ βn ≤ · · · ≤ αn ≤ · · · ≤ α2 ≤ α1 ≤ α0. (3.1)

For any t0 ∈ I, from Theorem 1.3, {βn(t0)} has a subsequence βnk
(t0) which is convergent.

As βn(t0) is monotone, we can suppose βnk
(t0) ≤ βn(t0) ≤ βnk+1

(t0). By the condition

P is a normal cone, then we have ‖ βn(t0) − βnk
(t0) ‖≤ L1 ‖ βnk+1

(t0) − βnk
(t0) ‖. ∀ε > 0,

when k is big enough, we get ‖ βnk+1
(t0) − βnk

(t0) ‖< ε, and then ‖ βn(t0) − βnk
(t0) ‖≤ L1 ‖

βnk+1
(t0) − βnk

(t0) ‖< L1ε. It follows that βn(t0) is a convergent sequence in E.
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Next we will show {βn} is a convergent sequence in C[I, E]. If not, there are subsequences

{n′

i}, {n′′

i } of N, ε0 > 0 and ti ∈ I (i = 1, 2, . . .) such that

‖ βn′

i
(ti) − βn′′

i
(ti) ‖≥ ε0. (3.2)

We can assume that ti converges to t∗ ∈ I. Because βn is the solution of linear PBVP(2.11)–

(2.12), we can get

βn(t) =
e

∫

t

0
M(ξ)dξ

e
∫

2π

0
−M(ξ)dξ − 1

∫ 2π

0

e
∫

r

0
−M(ξ)dξ(Hβn−1

(r) + N(r)

∫ r

0

k(r, s)βn(s)ds+

G(r)

∫ 2π

0

h(r, s)βn(s)ds)dr + e
∫

t

0
M(ξ)dξ

∫ t

0

e
∫

r

0
−M(ξ)dξ(Hβn−1

(r)+

N(r)

∫ r

0

k(r, s)βn(s)ds + G(r)

∫ 2π

0

h(r, s)βn(s)ds)dr,

where Hβn−1
(t) = H(t, βn−1(t), (Kβn−1)(t), (Tβn−1)(t)) − M(t)βn−1(t) − N(t)(Kβn−1)(t)

− G(t)(Tβn−1)(t). Let t1, t2 ∈ I. We can assume t1 ≤ t2. Set

Hβn−1
(r) + N(r)

∫ r

0

k(r, s)βn(s)ds + G(r)

∫ 2π

0

h(r, s)βn(s)ds = w(r).

Then we have

‖ βn(t1) − βn(t2) ‖≤
∣

∣

∣

e
∫

t1
0

M(ξ)dξ − e
∫

t2
0

M(ξ)dξ

e
∫

2π

0
−M(ξ)dξ − 1

∣

∣

∣

∫ 2π

0

‖ w(r) ‖ dr+

∣

∣

∣
e

∫ t1
0

M(ξ)dξ − e
∫ t2
0

M(ξ)dξ
∣

∣

∣

∫ 2π

0

‖ w(r) ‖ dr + e
∫ t2
0

M(ξ)dξ

∫ t2

t1

‖ w(r) ‖ dr.

As P is a normal cone, {
∫ t

0 k(t, s)βn(s)ds}, {M(t)βn(t)}, {N(t)
∫ t

0 k(t, s)βn(s)ds}, {G(t)
∫ 2π

0 h(t, s)

βn(s)ds}, {αn}, {βn} are all uniformly bounded. From

H(t, βn(t), (Kβn)(t), (Tβn)(t))

≤ H(t, β0(t), (Kβ0)(t), (Tβ0)(t)) + M(t)(α0(t) − β0(t))+

N(t)((kα0)(t) − (kβ0)(t)) + G(t)((Tα0)(t) − (Tβ0)(t))
def
= H+(t),

H(t, βn(t), (Kβn)(t), (Tβn)(t))

≥ H(t, α0(t), (Kα0)(t), (Tα0)(t)) − M(t)(α0(t) − β0(t))−
N(t)((kα0)(t) − (kβ0)(t)) − G(t)((Tα0)(t) − (Tβ0)(t))

def
= H−(t).

By the condition that P is a normal cone, we have

‖ H(t, βn(t), (Kβn)(t), (Tβn)(t)) − H−(t) ‖≤ L1 ‖ H+(t) − H−(t) ‖ .

So

‖ H(t, βn(t), (Kβn)(t), (Tβn)(t)) ‖≤‖ H−(t) ‖ +L1 ‖ H+(t) − H−(t) ‖ .

It follows that {H(t, βn(t), (Kβn)(t), (Tβn)(t))} is uniformly bounded.

From above we get
∫ 2π

0 ‖ w(r) ‖ dr < +∞. If |t1 − t2| → 0, then

‖ βn(t1) − βn(t2) ‖→ 0.
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It follows that there is δ > 0 which has nothing to do with n, and whenever t1, t2 ∈ I, |t1−t2| < δ

we have

‖ βn(t1) − βn(t2) ‖≤
ε0

4
.

From ti → t∗, we know that there is i0 such that when i ≥ i0, then |ti − t ∗ | < δ and

‖ βn′

i
(ti) − βn′

i
(t∗) ‖≤ ε0

4
, ‖ βn′′

i
(ti) − βn′′

i
(t∗) ‖≤ ε0

4
. (3.3)

From (3.2), (3.3), we know if i ≥ i0, then

‖ βn′

i
(t∗) − βn′′

i
(t∗) ‖≥ ε0

2
. (3.4)

This is a contradiction to the result that {βn(t∗)} is a convergent sequence in E. So we get {βn}
is a convergent sequence in C[I, E]. We may assume {βn} converges to ρ.

Because βn is the solution of the following PBVP

β′

n(t) = Hβn−1
(t) + M(t)βn(t) + N(t)

∫ t

0

k(t, s)βn(s)ds + G(t)

∫ 2π

0

h(t, s)βn(s)ds,

a.e. t ∈ I,

βn(0) = βn(2π),

from this, we get ρ(t) is a solution of PBVP(1.1)–(1.2). Similarly we can get {αn} converges to

γ in C[I, E] and γ(t) is a solution of PBVP(1.1)–(1.2).

Let u(t) be a solution of PBVP(1.1)–(1.2), u ∈ [β0, α0]. From the properties of A, we have

Aβ0 ≤ Au ≤ Aα0, that is, β1 ≤ u ≤ α1. So βn(t) ≤ u(t) ≤ αn(t), t ∈ I. Let n → ∞. We get

ρ(t) ≤ u(t) ≤ γ(t), t ∈ I. The proof of the theorem is completed. 2

Example 3.1 l2 is reflexive space,

P = {a ∈ l2 | a = (ξ1, ξ2, ξ3, . . .), ξi ≥ 0, i ∈ N}

is a normal cone in l2. x0 ∈ l2, and x0 ≥ θ, ‖ x0 ‖= 1.

Consider the following PBVP

u′(t) = −g(t) ‖ u(t) ‖ x0 −
∫ t

0

k(t, s)u(s)ds −
∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (3.5)

u(0) = u(2π), (3.6)

where

g(t) =

{

te−7t, 0 ≤ t ≤ π;
e−6t

2 , π < t ≤ 2π,

k(t, s) = e−(6t+s), 0 ≤ s ≤ t ≤ 2π,

h(t, s) = e−(6t+s), 0 ≤ s ≤ 2π, 0 ≤ t ≤ 2π.

It is easy to see that α(t) = −√
πx0, 0 ≤ t ≤ 2π, β(t) ≡ θ, 0 ≤ t ≤ 2π are lower and upper

solutions of PBVP (3.5)–(3.6), respectively. Indeed

α′(t) ≤ −g(t)
√

π x0 +

∫ t

0

k(t, s)
√

πx0ds +

∫ 2π

0

h(t, s)
√

πx0ds
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= −g(t) ‖ α(t) ‖ x0 −
∫ t

0

k(t, s)α(s)ds −
∫ 2π

0

h(t, s)α(s)ds.

Furthermore, let M(t) = g(t), N(t) = 1, G(t) = 1. We can verify that
∫ 2π

0

[

M(t) + N(t)

∫ t

0

k(t, s)ds + G(t)

∫ 2π

0

h(t, s)ds
]

dt < 1.

In order to verify PBVP (3.5)–(3.6) satisfies (1.8), we need to prove

− g(t) ‖ u1(t) ‖ x0 −
∫ t

0

k(t, s)u1(s)ds −
∫ 2π

0

h(t, s)u1(s)ds−
[

− g(t) ‖ u2(t) ‖ x0 −
∫ t

0

k(t, s)u2(s)ds −
∫ 2π

0

h(t, s)u2(s)ds
]

≥ −M(t)(u1(t) − u2(t)) − N(t)
[

∫ t

0

k(t, s)u1(s)ds −
∫ t

0

k(t, s)u2(s)ds]−

G(t)
[

∫ 2π

0

h(t, s)u1(s)ds −
∫ 2π

0

h(t, s)u2(s)ds
]

,

where α(t) ≤ u2(t) ≤ u1(t) ≤ β(t), t ∈ I.

Because M(t) = g(t), N(t) = 1, G(t) = 1, we only need to prove

−g(t)(‖ u1(t) ‖ − ‖ u2(t) ‖)x0 ≥ −g(t)(u1(t) − u2(t)), t ∈ I.

As P is the normal cone in l2, we have

−u2(t) ≥ −u1(t) ≥ θ ⇒‖ −u2(t) ‖≥‖ −u1(t) ‖⇒‖ u2(t) ‖≥‖ u1(t) ‖, t ∈ I.

Then

−g(t)(‖ u1(t) ‖ − ‖ u2(t) ‖)x0 ≥ θ ≥ −g(t)(u1(t) − u2(t)), t ∈ I.

All assumptions of Theorem 3.1 with M(t) = g(t), N(t) = 1, G(t) = 1 are satisfied. Then

there is a solution u(t) between α(t), β(t) of PBVP (3.5)–(3.6) and it can be obtained by using

monotone iterative method.

Example 3.2 Consider the following PBVP

u′(t) = −g(t) ‖ u(t) ‖ x0 +

∫ t

0

k(t, s)u(s)ds +

∫ 2π

0

h(t, s)u(s)ds, a.e. t ∈ I, (3.7)

u(0) = u(2π), (3.8)

in l2.

Suppose that all assumptions of Example 3.1 hold.

Then we can see that α(t) =
√

πx0, 0 ≤ t ≤ 2π, β(t) ≡ θ, 0 ≤ t ≤ 2π are lower and upper

solutions of PBVP (3.7)–(3.8), respectively. Furthermore, one can verify that all assumptions

of Theorem 3.2 with M(t) = g(t), N(t) = 1, G(t) = 1 are satisfied. Then there is a solution

u(t) between β(t), α(t) of PBVP (3.7)–(3.8) and it can be obtained by using monotone iterative

method.
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