On the Depth and Hilbert Series of the Fiber Cone

Guang Jun ZHU
School of Mathematical Science, Suzhou University, Jiangsu 215006, P. R. China

Abstract

Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an \mathfrak{m}-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer $k, K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. We show that if depth $G(I) \geq d-2$, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of $F_{K}(I)$ assuming that depth $G(I) \geq d-1$.

Keywords Cohen-Macaulay local ring; fiber cone; depth; Hilbert series; associated graded ring; multiplicity.
Document code A
MR(2000) Subject Classification 13A30; 13C14; 13D40; 13H10; 13H15
Chinese Library Classification O153.3

1. Introduction and preliminaries

Throughout the paper, let (R, \mathfrak{m}) be a Cohen-Macaulay (abbreviated to CM) local ring of dimension d with infinite residue field, I an \mathfrak{m}-primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer $k, K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$.

Let $F_{K}(I)=\bigoplus_{n \geq 0} I^{n} / K I^{n}$ be the fiber cone of I with respect to K. For $K=I, F_{K}(I)=$ $G(I)$, the associated graded ring of I. The Hilbert series of $F_{K}(I)$ is defined by $\sum_{n \geq 0} H_{K}(I, n) t^{n}$. In order to state the theorem of this paper we recall the necessary definition first. Let $\lambda(\cdot)$ denote length, it was proved in [1] that for $n \gg 0$, the function $H_{K}(I, n):=\lambda\left(R / K I^{n}\right)$ is given by a polynomial $P_{K}(I, n)$ of degree d. This polynomial can be written in the following way:

$$
P_{K}(I, n)=g_{0}\binom{n+d-1}{d}-g_{1}\binom{n+d-2}{d-1}+\cdots+(-1)^{d} g_{d}
$$

Then $g_{0}=e_{0}(I)$, where $e_{0}(I)$ is the multiplicity of I.
For $x \in I$, let x^{*} and x^{0} denote the initial form in degree one component of $G(I)$ and $F_{K}(I)$ respectively. x^{*} is said to be superficial in $G(I)$ if there exists an integer $c>0$ such that $\left(I^{n}: x\right) \cap I^{c}=I^{n-1}$ for all $n>c$. Similarly, x^{0} is said to be superficial in $F_{K}(I)$ if there exists an integer $c>0$ such that $\left(K I^{n}: x\right) \cap I^{c}=K I^{n-1}$ for all $n>c$. Superficial sequences are defined inductively.

Received February 12, 2008; Accepted January 5, 2009
Supported by the National Natural Science Foundation of China (Grant No. 10771152).
E-mail address: zhuguangjun@suda.edu.cn

We say that the ideal $J \subseteq I$ is a reduction of I if $I^{n+1}=J I^{n}$ for some $n \geq 0$. If J is the smallest such ideal, then it is called a minimal reduction of I. As R is CM and I is an \mathfrak{m}-primary ideal, any minimal reduction J of I is generated by d elements, and $e_{0}(I)=\lambda(R / J)$. The integers $r_{J}(I)=\min \left\{n \mid I^{n+1}=J I^{n}\right\}$ and $r_{J}^{K}(I)=\min \left\{n \mid K I^{n+1}=J K I^{n}\right\}$ are called the reduction number of I with respect to J and the K-reduction number of I with respect to J, respectively.

In this paper, we are interested in the depth and the Hilbert series of $F_{K}(I)$.
Jayanthan and Verma [9] showed that if, for some positive integer $k, K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $K I^{k}=J K I^{k-1}$, then $F_{K}(I)$ is CM if and only if depth $G(I) \geq d-1$. It is natural to consider the class of \mathfrak{m}-primary ideals I such that $K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. When $k=1$, i.e., I has almost minimal multiplicity with respect to K, Jayanthan and Verma showed that if depth $G(I) \geq d-2$, then depth $F_{K}(I) \geq d-1$. They also characterized, in this case, the Hilbert series of $F_{K}(I)$ and obtained that if depth $G(I) \geq d-1$ and $r=r_{J}^{K}(I)$, then $\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\left.\lambda\left(\frac{R}{K}\right)+\left[e_{0}(I)-\lambda\left(\frac{R}{K}\right)-1\right)\right] t+t^{r+1}}{(1-t)^{d+1}}$.

When $K=I$, Corso, Polini and Pinto [2], Elias [6] and Rossi [12] independently proved that if, for some positive integer $k, I^{n} \cap J=J I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{I^{k}}{J I^{k-1}}\right)=1$, then depth $G(I) \geq d-1$. Furthermore, Rossi [12] gave the Hilbert series of $G(I)$, that is:

$$
\sum_{n \geq 0} \lambda\left(\frac{I^{n}}{I^{n+1}}\right) t^{n}=\frac{\sum_{n=0}^{k-2} \lambda\left(\frac{I^{n}}{I^{n+1}+J I^{n-1}}\right) t^{n}+\left[\lambda\left(\frac{I^{k-1}}{J I^{k-2}}\right)-1\right] t^{k-1}+t^{s}}{(1-t)^{d}}
$$

where $s=r_{J}(I)$.
The main results of this paper are the following:
(1) Suppose $d \geq 1, J$ is a minimal reduction of I such that $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$ for some $k>0$, and let depth $G(I) \geq d-1$. Then $F_{K}(I)$ is CM if and only if $K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$, $K I^{k} \nsubseteq J$ and $K I^{k+1}=J K I^{k}$.
(2) Suppose $d \geq 2, J$ is a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$.
(a) Suppose depth $G(I) \geq d-2$, then depth $F_{K}(I) \geq d-1$.
(b) Suppose depth $G(I) \geq d-1$ and $r=r_{J}^{K}(I)$, then

$$
\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\lambda\left(\frac{R}{K}\right)+\left[\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)\right] t+\sum_{n=2}^{k}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}+t^{r+1}}{(1-t)^{d+1}}
$$

2. Depth of the fiber cone

In this section, we study the depth properties of the fiber cone of any m-primary ideal I for which there exists a positive integer k such that $K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$.
Theorem 2.1 Suppose $d \geq 1, J$ is a minimal reduction of I such that $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$ for some $k>0$, and let depth $G(I) \geq d-1$. Then $F_{K}(I)$ is CM if and only if $K I^{n} \cap J=J K I^{n-1}$ for all
$n \leq k-1, K I^{k} \nsubseteq J$ and $K I^{k+1}=J K I^{k}$.
Proof Choose $J=\left(x_{1}, \ldots, x_{d}\right)$ such that $x_{1}^{*}, \ldots, x_{d-1}^{*}$ is a regular sequence in $G(I)$ and $x_{1}^{0}, \ldots, x_{d}^{0}$ is a superficial sequence in $F_{K}(I)$. Suppose that $F_{K}(I)$ is CM, then by Theorem 5.1 of [9] we have that $K I^{n} \cap J=J K I^{n-1}$ for all n. In particular, $K I^{k} \cap J=J K I^{k-1}$ and $K I^{k} \nsubseteq J$, as $J K I^{k-1} \nsubseteq K I^{k}$. Moreover, from the fact that $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$, we have that $K I^{k+1} \subseteq \mathfrak{m} K I^{k} \subseteq J K I^{k-1} \subseteq J$. Hence $K I^{k+1}=K I^{k+1} \cap J=J K I^{k}$.

Conversely, note that $J K I^{k-1} \subseteq K I^{k} \cap J \subseteq K I^{k}$. From the fact that $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$ and $K I^{k} \neq K I^{k} \cap J$ (as $\left.K I^{k} \nsubseteq J\right)$, we have that $K I^{k} \cap J=J K I^{k-1}$. However, $K I^{k+1}=J K I^{k}$ implies that $K I^{n} \cap J=J K I^{n-1}$ for all $n \geq k+1$. Then by Theorem 5.1 of [9] we get that $F_{K}(I)$ is CM .

Lemma 2.2 Let k be a positive integer such that $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. Then $\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)=1$ for any $k \leq n \leq r$, where $r=r_{J}^{K}(I)$.

Proof Since $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$, there exist $a \in I, b \in K I^{k-1}$ such that $K I^{k}=J K I^{k-1}+(a b)$ with $\mathfrak{m a b} \in J K I^{k-1}$. Then it can easily be seen by induction that $K I^{n}=J K I^{n-1}+\left(a^{n-k+1} b\right)$ with $\mathfrak{m} a^{n-k+1} b \in J K I^{n-1}$. Hence $\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)=1$ for all $k \leq n \leq r$.

Definition 2.3 The Ratliff-Rush closure of I with respect to K is defined as the set of ideals $\left\{r r_{K}\left(I^{n}\right)\right\}_{n \geq 0}$ with $r r_{K}\left(I^{n}\right)=\bigcup_{k \geq 1}\left(K I^{n+k}: I^{k}\right)$.

To simplify the notation, for $n \geq 0$, we let ν_{n} be the minimum number of generators of the R-module $\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)+K I^{n}}, \nu=\sum_{n \geq 0} \nu_{n}, \rho_{n}^{K}=\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)}\right), \eta_{n}^{K}=\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)$ and $q=$ $\min \left\{n \mid K I^{n+1} \subseteq \operatorname{Jrr}_{K}\left(I^{n}\right)\right\}$.

Lemma 2.4 Suppose $d=2, k$ is a positive integer and $J=(x, y)$ is a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for every $n \leq k-1$. Then
(1) $K I^{n}: x=K I^{n}: y=K I^{n-1}$ for all $n \leq k-1$;
(2) $q \geq k-1$;
(3) $\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)+K I^{n}}\right)=\rho_{n}^{K}-\eta_{n}^{K}$ for all $n \leq k-1$. In particular, $\nu_{n} \leq \rho_{n}^{K}-\eta_{n}^{K}$.

Proof (1) Apply induction on n. It is clear for $n=1$. Suppose that $n>1$ and let $x z \in$ $K I^{n} \cap(x) \subseteq K I^{n} \cap J=J K I^{n-1}$. Then there exist $z_{1}, z_{2} \in K I^{n-1}$ such that $x\left(z-z_{1}\right)=y z_{2}$. We get $z-z_{1}=y b$ and $z_{2}=x b$ since y, x is a regular sequence. So $b \in K I^{n-1}: x=K I^{n-2}$ by inductive hypothesis and $z=z_{1}+y b \in K I^{n-1}$.
(2) If $q<k-1$, we have that $K I^{q+1} \subseteq J \cap K I^{q+1}=J K I^{q}$ because $K I^{q+1} \subseteq J r r_{K}\left(I^{q}\right) \subseteq J$. But it contradicts the fact $r_{J}^{K}(I) \geq k$.
(3) Since, for any $n \leq k-1$, JKI $I^{n-1} \subseteq \operatorname{Jrr}_{K}\left(I^{n-1}\right) \cap K I^{n} \subseteq J \cap K I^{n}=J K I^{n-1}$, we get $\operatorname{Jrr}_{K}\left(I^{n-1}\right) \cap K I^{n}=J K I^{n-1}$. It follows that

$$
\begin{aligned}
\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)+K I^{n}}\right) & =\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)}\right)-\lambda\left(\frac{\operatorname{Jrr}_{K}\left(I^{n-1}\right)+K I^{n}}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)}\right) \\
& =\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)}\right)-\lambda\left(\frac{K I^{n}}{\operatorname{Jrr}_{K}\left(I^{n-1}\right) \cap K I^{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)}\right)-\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right) \\
& =\rho_{n}^{K}-\eta_{n}^{K}
\end{aligned}
$$

Lemma 2.5 Suppose $d=2, k$ is a positive integer and $J=(x, y)$ is a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$. Let " - " denote the image modulo(x), $\bar{r}=r_{\bar{J}}^{\bar{K}}(\bar{I})$ and $\bar{r}>k-1$. Then
(1) $g_{1}=\sum_{n=1}^{k-1} \eta_{n}^{K}+(\bar{r}-k+1)-\lambda\left(\frac{R}{K}\right)$;
(2) $g_{1}=\sum_{n=2}^{\infty} \rho_{n}^{K}+\lambda\left(\frac{r r_{K}(I)}{J r r_{K}\left(I^{0}\right)}\right)-\lambda\left(\frac{R}{r r_{K}\left(I^{0}\right)}\right)$.

Proof The second assertion is clear by Proposition 2.5 of [10]. As for the first one, by Lemma 3.5 and Theorem 5.3 of [9], we get that

$$
\begin{aligned}
g_{1} & =\overline{g_{1}}=\sum_{n=1}^{\bar{r}} \lambda\left(\frac{\bar{K} \bar{I}^{n}}{\bar{J} \bar{K} \bar{I}^{n-1}}\right)-\lambda\left(\frac{\bar{R}}{\bar{K}}\right) \\
& =\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{J K I^{n-1}+x\left(K I^{n}: x\right)}\right)+\sum_{n=k}^{\bar{r}} \lambda\left(\frac{\bar{K} \bar{I}^{n}}{\bar{J} \bar{K} \bar{I}^{n-1}}\right)-\lambda\left(\frac{R}{K}\right) \\
& =\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)+(\bar{r}-k+1)-\lambda\left(\frac{R}{K}\right) \\
& =\sum_{n=1}^{k-1} \eta_{n}^{K}+(\bar{r}-k+1)-\lambda\left(\frac{R}{K}\right) .
\end{aligned}
$$

Proposition 2.6 Suppose $d=2$, k is a positive integer and $J=(x, y)$ is a minimal reduction of $I, K I^{k-1} \cap J=J K I^{k-2}$ and $\bar{r}>k-1$. Then $\nu \leq \bar{r}-q$.

Proof Firstly, we remark that we have $q \geq k$. In fact $K I^{k-1} \nsubseteq J K I^{k-2}$, otherwise $K I^{k-1}=$ $K I^{k-1} \cap J K I^{k-2} \subseteq K I^{k-1} \cap J=J K I^{k-2}$. Thus $r_{J}^{K}(I) \leq k-2$, which contradicts the assumption $k-1<\bar{r} \leq r$.

By the definition of ν_{n}, we have that $\nu_{n} \leq \lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J_{r r_{K}}\left(I^{n-1}\right)+K I^{n}}\right)$. Thus, by Lemmas 2.4 and 2.5 , we get that

$$
\begin{aligned}
\nu & =\sum_{n \geq 0} \nu_{n}=\sum_{n=1}^{k-1} \nu_{n}+\sum_{n=k}^{\infty} \nu_{n}+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right) \\
& \leq \sum_{n=1}^{k-1}\left[\rho_{n}^{K}-\eta_{n}^{K}\right]+\sum_{n=k}^{\infty} \nu_{n}+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right) \\
& =\sum_{n=1}^{\infty} \rho_{n}^{K}-\sum_{n=k}^{\infty} \rho_{n}^{K}-\sum_{n=1}^{k-1} \eta_{n}^{K}+\sum_{n=k}^{\infty} \nu_{n}+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right) \\
& =\sum_{n=2}^{\infty} \rho_{n}^{K}+\lambda\left(\frac{r r_{K}(I)}{J r r_{K}\left(I^{0}\right)}\right)+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)-\sum_{n=k}^{\infty} \rho_{n}^{K}-\sum_{n=1}^{k-1} \eta_{n}^{K}+\sum_{n=k}^{\infty} \nu_{n} \\
& =g_{1}+\lambda\left(\frac{R}{K}\right)-\sum_{n=k}^{\infty} \rho_{n}^{K}-\sum_{n=1}^{k-1} \eta_{n}^{K}+\sum_{n=k}^{\infty} \nu_{n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=1}^{k-1} \eta_{n}^{K}+(\bar{r}-k+1)-\sum_{n=k}^{\infty} \rho_{n}^{K}-\sum_{n=1}^{k-1} \eta_{n}^{K}+\sum_{n=k}^{\infty} \nu_{n} \\
& =(\bar{r}-k+1)-\sum_{n=k}^{\infty} \rho_{n}^{K}+\sum_{n=k}^{\infty} \nu_{n} \\
& =(\bar{r}-k+1)+\sum_{n=k}^{q}\left[\nu_{n}-\rho_{n}^{K}\right]+\sum_{n=q+1}^{\infty}\left[\nu_{n}-\rho_{n}^{K}\right] \\
& \leq(\bar{r}-k+1)+\sum_{n=k}^{q}\left[\nu_{n}-\rho_{n}^{K}\right]+\sum_{n=q+1}^{\infty}\left[\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)+K I^{n}}\right)-\rho_{n}^{K}\right] \\
& \leq(\bar{r}-k+1)+\sum_{n=k}^{q}\left[\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)+K I^{n}}\right)-\rho_{n}^{K}\right] \\
& =(\bar{r}-k+1)-\sum_{n=k}^{q} \lambda\left(\frac{K I^{n}}{J r r_{K}\left(I^{n-1}\right) \cap K I^{n}}\right) \\
& \leq \bar{r}-k+1-(q-k+1)=\bar{r}-q,
\end{aligned}
$$

where the last inequality holds because of $\lambda\left(\frac{K I^{n}}{J r r_{K}\left(I^{n-1}\right) \cap K I^{n}}\right) \leq 1$ for all $n \geq k$, which comes from the fact $J K I^{n-1} \subseteq K I^{n} \cap J r r_{K}\left(I^{n-1}\right) \subseteq K I^{n}$ and $\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right) \leq 1$ for all $n \geq k$.

Proposition 2.7 Suppose $d=2$, k is a positive integer and $J=(x, y)$ is a minimal reduction of $I, K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. Then
(1) $r_{J}^{K}(I) \leq \nu+q$;
(2) $r_{J}^{K}(I) \leq g_{1}+k-1+\lambda\left(\frac{R}{K}\right)-\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)$.

Proof The first assertion is clear from Theorem 3.4 of [10]. As for the second one, by the definition of q, we have that

$$
\begin{aligned}
& \lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)+K I^{n}}\right)=\lambda\left(\frac{r r_{K}\left(I^{n}\right)}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)}\right)-\lambda\left(\frac{\operatorname{Jrr}_{K}\left(I^{n-1}\right)+K I^{n}}{\operatorname{Jrr}_{K}\left(I^{n-1}\right)}\right) \\
& \leq \begin{cases}\rho_{n}^{K}-1 & : n \leq q \\
\rho_{n}^{K} & : \quad n \geq q+1\end{cases}
\end{aligned}
$$

It follows that

$$
\begin{aligned}
r & \leq \nu+q \leq \sum_{n \geq 1} \lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)+K I^{n}}\right)+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)+q \\
& \leq \sum_{n=1}^{k-1}\left(\rho_{n}^{K}-\eta_{n}^{K}\right)+\sum_{n=k}^{\infty} \lambda\left(\frac{r r_{K}\left(I^{n}\right)}{J r r_{K}\left(I^{n-1}\right)+K I^{n}}\right)+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)+q \\
& \leq \sum_{n=1}^{k-1}\left(\rho_{n}^{K}-\eta_{n}^{K}\right)+\sum_{n=k}^{q}\left(\rho_{n}^{K}-1\right)+\sum_{n=q+1}^{\infty} \rho_{n}^{K}+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)+q \\
& \leq \sum_{n=1}^{\infty} \rho_{n}^{K}-\sum_{n=1}^{k-1} \eta_{n}^{K}-(q-k+1)+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)+q
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=2}^{\infty} \rho_{n}^{K}+\lambda\left(\frac{r r_{K}(I)}{J r r_{K}\left(I^{0}\right)}\right)+\lambda\left(\frac{r r_{K}\left(I^{0}\right)}{K}\right)-\sum_{n=1}^{k-1} \eta_{n}^{K}+k-1 \\
& =g_{1}+k-1+\lambda\left(\frac{R}{K}\right)-\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right) .
\end{aligned}
$$

The last equality follows from Lemma 2.5 (2).
Now, we can prove the main result of this section.
Theorem 2.8 Suppose $d \geq 2, k$ is a positive integer and J is a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. Let depth $G(I) \geq d-2$. Then depth $F_{K}(I) \geq d-1$.

Proof We apply induction on d. Let $d=2$. Choose $J=(x, y)$ such that x^{*}, y^{*} is a superficial sequence in $G(I)$ and x^{0}, y^{0} is a superficial sequence in $F_{K}(I)$. Let " - " denote the image modulo $(x), r=r_{J}^{K}(I)$ and $\bar{r}=r_{\bar{J}}^{\bar{K}}(\bar{I})$. If $\bar{r} \leq k-1$, then $\bar{K} \bar{I}^{n} \cap \bar{J}=\bar{J} \bar{K} \bar{I}^{n-1}$ for all $n \geq 1$, thus $F_{K}(I)$ is CM by Lemma 2.7 of [9]. If $\bar{r}>k-1, \bar{r}=r$ by Propositions 2.6 and 2.7 (1). For $j \geq 0$, consider the following exact sequence:

$$
0 \rightarrow \frac{K I^{j}: x}{K I^{j}: J} \xrightarrow{y} \frac{K I^{j+1}: x}{K I^{j}} \xrightarrow{x} \frac{K I^{j+1}}{J K I^{j}} \rightarrow \frac{\bar{K} \bar{I}^{j+1}}{\bar{J} \bar{K} \bar{I}^{j}} \rightarrow 0 .
$$

We have that $\lambda\left(\frac{K I^{j}: x}{K I^{j}: J}\right)=\lambda\left(\frac{K I^{j+1}: x}{K I^{j}}\right)$ for all $j \geq k-1$.
Claim. For every $j \geq 0, K I^{j+1}: x=K I^{j}$. For all $j \leq k-1$, by Lemma 2.4, it is clear. Moreover, we have that $K I^{k-1}: J=\left(K I^{k-1}: x\right) \cap\left(K I^{k-1}: y\right)=K I^{k-2}$, thus $K I^{k}: x=K I^{k-1}$. Suppose that $j \geq k$ and that the claim is true for $j-1$. Then $K I^{j-1} \subseteq K I^{j}: J \subseteq K I^{j}: x=K I^{j-1}$, where the last equality follows by induction. Thus $K I^{j}: x=K I^{j}: J$. It follows from the equality $\lambda\left(\frac{K I^{j}: x}{K I^{j}: J}\right)=\lambda\left(\frac{K I^{j+1}: x}{K I^{j}}\right)$ for all $j \geq k-1$ that $K I^{j+1}: x=K I^{j}$ for all $j \geq 0$. Hence x^{0} is a regular element in $F_{K}(I)$ and depth $F_{K}(I) \geq 1$.

Let $d>2$ and choose $J=\left(x_{1}, \ldots, x_{d}\right)$ such that $x_{1}^{*}, \ldots, x_{d-2}^{*}$ is a regular sequence in $G(I)$ and $x_{1}^{0}, \ldots, x_{d}^{0}$ is a superficial sequence in $F_{K}(I)$. Let " - " denote the images modulo $\left(x_{1}, \ldots, x_{d-2}\right)$. Then $\operatorname{dim} \bar{R}=2, \bar{K} \bar{I}^{n} \cap \bar{J}=\bar{J} \bar{K} \bar{I}^{n-1}$ for $n \leq k-1$ and $\lambda\left(\frac{\bar{K} \bar{I}^{k}}{J K I^{k-1}}\right) \leq \lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. If $\bar{r} \leq k-1$, then $\bar{K} \bar{I}^{n} \cap \bar{J}=\bar{J} \bar{K} \bar{I}^{n-1}$ for every $n \geq 1$, and $\bar{K} \bar{I}^{k}=\bar{J} \bar{K} \bar{I}^{k-1}$, it follows that depth $F_{\bar{K}}(\bar{I}) \geq 1$ from Lemma 4.6 of [4]. If $\bar{r}>k-1, \lambda\left(\frac{\bar{K} \bar{I}^{k}}{J K I^{k-1}}\right)=1$. Thus, by the first part, depth $F_{\bar{K}}(\bar{I}) \geq 1$. Since $x_{1}^{*}, \ldots, x_{d-2}^{*}$ is a regular sequence in $G(I), F_{\bar{K}}(\bar{I}) \simeq \frac{F_{K}(I)}{\left(x_{1}^{0}, \ldots, x_{d-2}^{0}\right) F_{K}(I)}$, and hence depth $F_{K}(I) \geq d-1$ from Lemma 2.7 of [9].

3. The Hilbert series of the fiber cone

In this section, we compute the Hilbert series of the fiber cone $F_{K}(I)$ of any \mathfrak{m}-primary ideal I for which there exists a positive integer k such that $K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$.

Lemma 3.1 ([13]) Suppose that depth $G(I) \geq d-1$ and depth $F_{K}(I) \geq d-1$. Let J be a
minimal reduction of I and $r=r_{J}^{K}(I)$. Then

$$
\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\lambda\left(\frac{R}{K}\right)+\left[\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)\right] t+\sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}}{(1-t)^{d+1}}
$$

Theorem 3.2 Let $d \geq 1, k$ a positive integer and J a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$. Let depth $G(I) \geq d-1$ and $r=r_{J}^{K}(I)$. Then

$$
\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\lambda\left(\frac{R}{K}\right)+\left[\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)\right] t+\sum_{n=2}^{k}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}+t^{r+1}}{(1-t)^{d+1}}
$$

Proof By Lemma 2.2, we have $\lambda\left(\frac{K I^{n}}{J K I^{n-1}}\right)=1$ for any $k \leq n \leq r$. It follows that

$$
\begin{aligned}
& \sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}=\sum_{n=2}^{r+1} \lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right) t^{n}-\sum_{n=2}^{r+1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right) t^{n} \\
& \quad=\sum_{n=2}^{r+1} \lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right) t^{n}-\sum_{n=3}^{r+1} \lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right) t^{n-1} \\
& \quad=\lambda\left(\frac{K I}{K J}\right) t^{2}-\sum_{n=2}^{r} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right) t^{n}(1-t) \\
& \quad=\lambda\left(\frac{K I}{K J}\right) t^{2}-\sum_{n=2}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right) t^{n}(1-t)-\sum_{n=k}^{r} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right) t^{n}(1-t) \\
& \quad=\lambda\left(\frac{K I}{K J}\right) t^{2}-\sum_{n=2}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right) t^{n}(1-t)-\sum_{n=k}^{r}\left(t^{n}-t^{n+1}\right) \\
& \quad=\sum_{n=2}^{k-1}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}+\lambda\left(\frac{K I^{k-1}}{K J I^{k-2}}\right) t^{k}-t^{k}+t^{r+1} \\
& \quad=\sum_{n=2}^{k}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}+t^{r+1}
\end{aligned}
$$

On the other hand, by Theorem 2.8 we have depth $F_{K}(I) \geq d-1$. It follows that by Lemma 3.1

$$
\begin{gathered}
\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\lambda\left(\frac{R}{K}\right)+\left[\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)\right] t+\sum_{n=2}^{r+1}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}}{(1-t)^{d+1}} \\
=\frac{\lambda\left(\frac{R}{K}\right)+\left[\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)\right] t+\sum_{n=2}^{k}\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right] t^{n}+t^{r+1}}{(1-t)^{d+1}} .
\end{gathered}
$$

As consequences of the above result, we recover results of Rossi [12, Theorem 3.2 (2)], Jayanthan and Verma [10, Proposition 5.2].

Corollary 3.3 Let $d \geq 1, k$ a positive integer and J a minimal reduction of I such that
$I^{n} \cap J=J I^{n-1}$ for all $n \leq k-1, \lambda\left(\frac{I^{k}}{J I^{k-1}}\right)=1$ and $r=r_{J}(I)$. Then

$$
\sum_{n \geq 0} \lambda\left(\frac{I^{n}}{I^{n+1}}\right) t^{n}=\frac{\sum_{n=0}^{k-2} \lambda\left(\frac{I^{n}}{I^{n+1}+J I^{n-1}}\right) t^{n}+\left[\lambda\left(\frac{I^{k-1}}{J I^{k-2}}\right)-1\right] t^{k-1}+t^{r}}{(1-t)^{d}}
$$

Proof We recall that depth $G(I) \geq d-1$ by Theorem 3.2 of [12]. Put $K=I$ in Theorem 3.2, then we get

$$
\begin{aligned}
\sum_{n \geq 0} \lambda\left(\frac{R}{I^{n+1}}\right) t^{n} & =\frac{\lambda\left(\frac{R}{I}\right)+\left[\lambda\left(\frac{I}{J}\right)-\lambda\left(\frac{I^{2}}{J I}\right)\right] t+\sum_{n=2}^{k}\left[\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{J I^{n}}\right)\right] t^{n}+t^{r}}{(1-t)^{d+1}} \\
& =\frac{\sum_{n=0}^{k}\left[\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{J I^{n}}\right)\right] t^{n}+t^{r}}{(1-t)^{d+1}} \\
& =\frac{\sum_{n=0}^{k-1}\left[\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{J I^{n}}\right)\right] t^{n}+t^{r}}{(1-t)^{d+1}} .
\end{aligned}
$$

Multiplying both sides by $(1-t)$, we get

$$
\sum_{n \geq 0} \lambda\left(\frac{I^{n}}{I^{n+1}}\right) t^{n}=\frac{\sum_{n=0}^{k-1}\left[\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{J I^{n}}\right)\right] t^{n}+t^{r+1}}{(1-t)^{d}}
$$

On the other hand, note that $J I^{n} \subseteq J I^{n-1} \cap I^{n+1} \subseteq J \cap I^{n+1}=J I^{n}$ for all $n \leq k-2$, thus $J I^{n}=J I^{n-1} \cap I^{n+1}$. It follows that

$$
\lambda\left(\frac{I^{n}}{I^{n+1}+J I^{n-1}}\right)=\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{I^{n+1} \cap J I^{n-1}}\right)=\lambda\left(\frac{I^{n}}{J I^{n-1}}\right)-\lambda\left(\frac{I^{n+1}}{J I^{n}}\right) .
$$

The proof is completed.
Corollary 3.4 Let I be an \mathfrak{m}-primary ideal with almost minimal multiplicity with respect to K such that depth $G(I) \geq d-1$ and $r=r_{J}^{K}(I)$. Then

$$
\sum_{n \geq 0} H_{K}(I, n) t^{n}=\frac{\left.\lambda\left(\frac{R}{K}\right)+\left[e_{0}(I)-\lambda\left(\frac{R}{K}\right)-1\right)\right] t+t^{r+1}}{(1-t)^{d+1}}
$$

Proof Put $k=1$ in Theorem 3.2.
Write $P_{K}(I, n)=g_{0}^{\prime}\binom{n+d}{d}-g_{1}^{\prime}\binom{n+d-1}{d-1}+\cdots+(-1)^{d} g_{d}^{\prime}$. Then comparing with the earlier notation, we get $g_{0}^{\prime}=g_{0}$ and $g_{i}^{\prime}=g_{i}+g_{i-1}, i=1, \ldots, d$.

Proposition 3.5 Let $d \geq 1, k$ a positive integer and J a minimal reduction of I such that $K I^{n} \cap J=J K I^{n-1}$ for all $n \leq k-1$ and $\lambda\left(\frac{K I^{k}}{J K I^{k-1}}\right)=1$, and let depth $G(I) \geq d-1$. Then $F_{K}(I)$ is $C M$ if and only if $\lambda\left(\frac{K I^{n}+J K I^{n-1}}{J K I^{n-1}}\right)=1$ for all $n=k, \ldots, r$.

Proof From Theorem 3.2 and Proposition 4.19 of [1], we have that

$$
\begin{aligned}
g_{1}^{\prime} & =\lambda\left(\frac{K}{J}\right)-\lambda\left(\frac{K I}{K J}\right)+\sum_{n=2}^{k} n\left[\lambda\left(\frac{K I^{n-1}}{K J I^{n-2}}\right)-\lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)\right]+r+1 \\
& =\lambda\left(\frac{K}{J}\right)+\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)+(r-k+1) .
\end{aligned}
$$

Thus $g_{1}=g_{1}^{\prime}-g_{0}=\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)+(r-k+1)-\lambda\left(\frac{R}{K}\right)$. From the proof of Lemma 2.2, it can easily be seen that $\lambda\left(\frac{K I^{n}+J I^{n-1}}{J I^{n-1}}\right) \leq 1$ for all $n \geq k$.

On the other hand, note that $J K I^{n-1} \subseteq J I^{n-1} \cap K I^{n} \subseteq J \cap K I^{n}=J K I^{n-1}$ for all $n \leq k-1$, thus $J K I^{n-1}=J I^{n-1} \cap K I^{n}$. As depth $G(I) \geq d-1$, by Theorem 4.3 of [9], $F_{K}(I)$ is CM if and only if

$$
g_{1}=\sum_{n \geq 1} \lambda\left(\frac{K I^{n}+J I^{n-1}}{J I^{n-1}}\right)-\lambda\left(\frac{R}{K}\right)=\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)+(r-k+1)-\lambda\left(\frac{R}{K}\right)
$$

if and only if

$$
\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)+\sum_{n \geq k} \lambda\left(\frac{K I^{n}+J I^{n-1}}{J I^{n-1}}\right)-\lambda\left(\frac{R}{K}\right)=\sum_{n=1}^{k-1} \lambda\left(\frac{K I^{n}}{K J I^{n-1}}\right)+(r-k+1)-\lambda\left(\frac{R}{K}\right)
$$

if and only if $\lambda\left(\frac{K I^{n}+J K I^{n-1}}{J K I^{n-1}}\right)=1$ for all $n=k, \ldots, r$.
Acknowledgment I would like to thank Professor Tang Zhongming for many helpful comments and discussions.

References

[1] BRUNS W, HERZOG J. Cohen-Macaulay Rings [M]. Cambridge University Press, Cambridge, 1993.
[2] CORSO A, POLINI C, VAZPINTO M. Sally modules and associated graded rings [J]. Comm. Algebra, 1998, 26(8): 2689-2708.
[3] CORSO A, POLINI C, ROSSI M E. Depth of associated graded rings via Hilbert coefficients of ideals [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 126-141.
[4] CORTADELLAS T. Fiber cones with almost maximal depth [J]. Comm. Algebra, 2005, 33(3): 953-963.
[5] CORTADELLAS T, ZARZUELA S. On the depth of the fiber cone of filtrations [J]. J. Algebra, 1997, 198(2): 428-445.
[6] ELIAS J. On the depth of the tangent cone and the growth of the Hilbert function [J]. Trans. Amer. Math. Soc., 1999, 351(10): 4027-4042.
[7] GUERRIERI A, ROSSI M E. Hilbert coefficients of Hilbert filtrations [J]. J. Algebra, 1998, 199(1): 40-61.
[8] GU Yan, ZHU Guangjun, TANG Zhongming. On Hilbert coefficients of filtrations [J]. Chin. Ann. Math. Ser. B, 2007, 28(5): 543-554.
[9] JAYANTHAN A V, VERMA J K. Hilbert coefficients and depth of fiber cones [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 97-115.
[10] JAYANTHAN A V, VERMA J K. Fiber cones of ideals with almost minimal multiplicity [J]. Nagoya Math. J., 2005, 177: 155-179.
[11] ROSSI M E. A bound on the reduction number of a primary ideal [J]. Proc. Amer. Math. Soc., 2000, 128(5): 1325-1332.
[12] ROSSI M E. Primary ideals with good associated graded ring [J]. J. Pure Appl. Algebra, 2000, 145(1): 75-90.
[13] ZHU Guangjun, GU Yan, TANG Zhongming. Hilbert coefficients of filtrations with almost maximal depth [J]. J. Math. Res. Exposition, 2008, 28(4): 839-849.

