On the Depth and Hilbert Series of the Fiber Cone

Guang Jun ZHU

School of Mathematical Science, Suzhou University, Jiangsu 215006, P. R. China

Abstract Let (R, \mathfrak{m}) be a Cohen-Macaulay local ring of dimension d with infinite residue field, I an \mathfrak{m} -primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, $KI^n \cap J = JKI^{n-1}$ for $n \leq k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$. We show that if depth $G(I) \geq d-2$, then such fiber cones have almost maximal depth. We also compute, in this case, the Hilbert series of $F_K(I)$ assuming that depth $G(I) \geq d-1$.

Keywords Cohen-Macaulay local ring; fiber cone; depth; Hilbert series; associated graded ring; multiplicity.

Document code A MR(2000) Subject Classification 13A30; 13C14; 13D40; 13H10; 13H15 Chinese Library Classification 0153.3

1. Introduction and preliminaries

Throughout the paper, let (R, \mathfrak{m}) be a Cohen-Macaulay (abbreviated to CM) local ring of dimension d with infinite residue field, I an \mathfrak{m} -primary ideal and K an ideal containing I. Let J be a minimal reduction of I such that, for some positive integer k, $KI^n \cap J = JKI^{n-1}$ for $n \leq k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$.

Let $F_K(I) = \bigoplus_{n \ge 0} I^n/KI^n$ be the fiber cone of I with respect to K. For K = I, $F_K(I) = G(I)$, the associated graded ring of I. The Hilbert series of $F_K(I)$ is defined by $\sum_{n\ge 0} H_K(I,n)t^n$. In order to state the theorem of this paper we recall the necessary definition first. Let $\lambda(\cdot)$ denote length, it was proved in [1] that for $n \gg 0$, the function $H_K(I,n) := \lambda(R/KI^n)$ is given by a polynomial $P_K(I,n)$ of degree d. This polynomial can be written in the following way:

$$P_K(I,n) = g_0\binom{n+d-1}{d} - g_1\binom{n+d-2}{d-1} + \dots + (-1)^d g_d.$$

Then $g_0 = e_0(I)$, where $e_0(I)$ is the multiplicity of I.

For $x \in I$, let x^* and x^0 denote the initial form in degree one component of G(I) and $F_K(I)$ respectively. x^* is said to be superficial in G(I) if there exists an integer c > 0 such that $(I^n : x) \cap I^c = I^{n-1}$ for all n > c. Similarly, x^0 is said to be superficial in $F_K(I)$ if there exists an integer c > 0 such that $(KI^n : x) \cap I^c = KI^{n-1}$ for all n > c. Superficial sequences are defined inductively.

Received February 12, 2008; Accepted January 5, 2009

Supported by the National Natural Science Foundation of China (Grant No. 10771152).

E-mail address: zhuguangjun@suda.edu.cn

We say that the ideal $J \subseteq I$ is a reduction of I if $I^{n+1} = JI^n$ for some $n \ge 0$. If J is the smallest such ideal, then it is called a minimal reduction of I. As R is CM and I is an m-primary ideal, any minimal reduction J of I is generated by d elements, and $e_0(I) = \lambda(R/J)$. The integers $r_J(I) = \min\{n|I^{n+1} = JI^n\}$ and $r_J^K(I) = \min\{n|KI^{n+1} = JKI^n\}$ are called the reduction number of I with respect to J and the K-reduction number of I with respect to J, respectively.

In this paper, we are interested in the depth and the Hilbert series of $F_K(I)$.

Jayanthan and Verma [9] showed that if, for some positive integer k, $KI^n \cap J = JKI^{n-1}$ for $n \leq k-1$ and $KI^k = JKI^{k-1}$, then $F_K(I)$ is CM if and only if depth $G(I) \geq d-1$. It is natural to consider the class of m-primary ideals I such that $KI^n \cap J = JKI^{n-1}$ for $n \leq k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$. When k = 1, i.e., I has almost minimal multiplicity with respect to K, Jayanthan and Verma showed that if depth $G(I) \geq d-2$, then depth $F_K(I) \geq d-1$. They also characterized, in this case, the Hilbert series of $F_K(I)$ and obtained that if depth $G(I) \geq d-1$ and $r = r_J^K(I)$, then $\sum_{n\geq 0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [e_0(I) - \lambda(\frac{R}{K}) - 1)]t + t^{r+1}}{(1-t)^{d+1}}$.

When K = I, Corso, Polini and Pinto [2], Elias [6] and Rossi [12] independently proved that if, for some positive integer k, $I^n \cap J = JI^{n-1}$ for $n \leq k-1$ and $\lambda(\frac{I^k}{JI^{k-1}}) = 1$, then depth $G(I) \geq d-1$. Furthermore, Rossi [12] gave the Hilbert series of G(I), that is:

$$\sum_{n\geq 0} \lambda(\frac{I^n}{I^{n+1}})t^n = \frac{\sum_{n=0}^{k-2} \lambda(\frac{I^n}{I^{n+1}+JI^{n-1}})t^n + [\lambda(\frac{I^{k-1}}{JI^{k-2}}) - 1]t^{k-1} + t^s}{(1-t)^d},$$

where $s = r_J(I)$.

The main results of this paper are the following:

(1) Suppose $d \ge 1$, J is a minimal reduction of I such that $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$ for some k > 0, and let depth $G(I) \ge d-1$. Then $F_K(I)$ is CM if and only if $KI^n \cap J = JKI^{n-1}$ for all $n \le k-1$, $KI^k \not\subseteq J$ and $KI^{k+1} = JKI^k$.

(2) Suppose $d \ge 2$, J is a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for $n \le k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$.

- (a) Suppose depth $G(I) \ge d-2$, then depth $F_K(I) \ge d-1$.
- (b) Suppose depth $G(I) \ge d-1$ and $r = r_J^K(I)$, then

$$\sum_{n\geq 0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [\lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ})]t + \sum_{n=2}^k [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n + t^{r+1}}{(1-t)^{d+1}}.$$

2. Depth of the fiber cone

In this section, we study the depth properties of the fiber cone of any m-primary ideal I for which there exists a positive integer k such that $KI^n \cap J = JKI^{n-1}$ for all $n \leq k-1$ and $\lambda(\frac{KI^k}{IKI^{k-1}}) = 1$.

Theorem 2.1 Suppose $d \ge 1$, J is a minimal reduction of I such that $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$ for some k > 0, and let depth $G(I) \ge d - 1$. Then $F_K(I)$ is CM if and only if $KI^n \cap J = JKI^{n-1}$ for all

 $n \leq k-1$, $KI^k \not\subset J$ and $KI^{k+1} = JKI^k$.

Proof Choose $J = (x_1, \ldots, x_d)$ such that x_1^*, \ldots, x_{d-1}^* is a regular sequence in G(I) and x_1^0, \ldots, x_d^0 is a superficial sequence in $F_K(I)$. Suppose that $F_K(I)$ is CM, then by Theorem 5.1 of [9] we have that $KI^n \cap J = JKI^{n-1}$ for all n. In particular, $KI^k \cap J = JKI^{k-1}$ and $KI^k \not\subseteq J$, as $JKI^{k-1} \subseteq KI^k$. Moreover, from the fact that $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$, we have that $KI^{k+1} \subseteq \mathfrak{m}KI^k \subseteq JKI^{k-1} \subseteq J.$ Hence $KI^{k+1} = KI^{k+1} \cap J = JKI^k.$

Conversely, note that $JKI^{k-1} \subseteq KI^k \cap J \subseteq KI^k$. From the fact that $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$ and $KI^k \neq KI^k \cap J$ (as $KI^k \not\subseteq J$), we have that $KI^k \cap J = JKI^{k-1}$. However, $KI^{k+1} = JKI^k$ implies that $KI^n \cap J = JKI^{n-1}$ for all $n \ge k+1$. Then by Theorem 5.1 of [9] we get that $F_K(I)$ is CM. \Box

Lemma 2.2 Let k be a positive integer such that $\lambda(\frac{KI^k}{IKI^{k-1}}) = 1$. Then $\lambda(\frac{KI^n}{IKI^{n-1}}) = 1$ for any $k \leq n \leq r$, where $r = r_J^K(I)$.

Proof Since $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$, there exist $a \in I$, $b \in KI^{k-1}$ such that $KI^k = JKI^{k-1} + (ab)$ with $\mathfrak{mab} \in JKI^{k-1}$. Then it can easily be seen by induction that $KI^n = JKI^{n-1} + (a^{n-k+1}b)$ with $\mathfrak{m} a^{n-k+1} b \in JKI^{n-1}.$ Hence $\lambda(\frac{KI^n}{JKI^{n-1}}) = 1$ for all $k \leq n \leq r.$ \Box

Definition 2.3 The Ratliff-Rush closure of I with respect to K is defined as the set of ideals ${rr_K(I^n)}_{n\geq 0}$ with $rr_K(I^n) = \bigcup_{k>1} (KI^{n+k} : I^k).$

To simplify the notation, for $n \ge 0$, we let ν_n be the minimum number of generators of the *R*-module $\frac{rr_K(I^n)}{Jrr_K(I^{n-1})+KI^n}$, $\nu = \sum_{n\geq 0} \nu_n$, $\rho_n^K = \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})})$, $\eta_n^K = \lambda(\frac{KI^n}{JKI^{n-1}})$ and $q = \frac{rr_K(I^n)}{rr_K(I^n)}$ $\min\{n|KI^{n+1} \subseteq Jrr_K(I^n)\}.$

Lemma 2.4 Suppose d = 2, k is a positive integer and J = (x, y) is a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for every $n \leq k-1$. Then

- (1) $KI^n : x = KI^n : y = KI^{n-1}$ for all $n \le k-1$;
- (2) $q \ge k-1;$ (3) $\lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})+KI^n}) = \rho_n^K \eta_n^K$ for all $n \le k-1$. In particular, $\nu_n \le \rho_n^K \eta_n^K.$

Proof (1) Apply induction on n. It is clear for n = 1. Suppose that n > 1 and let $xz \in$ $KI^n \cap (x) \subseteq KI^n \cap J = JKI^{n-1}$. Then there exist $z_1, z_2 \in KI^{n-1}$ such that $x(z-z_1) = yz_2$. We get $z - z_1 = yb$ and $z_2 = xb$ since y, x is a regular sequence. So $b \in KI^{n-1} : x = KI^{n-2}$ by inductive hypothesis and $z = z_1 + yb \in KI^{n-1}$.

(2) If q < k-1, we have that $KI^{q+1} \subseteq J \cap KI^{q+1} = JKI^q$ because $KI^{q+1} \subseteq Jrr_K(I^q) \subseteq J$. But it contradicts the fact $r_I^K(I) \ge k$.

(3) Since, for any $n \leq k-1$, $JKI^{n-1} \subseteq Jrr_K(I^{n-1}) \cap KI^n \subseteq J \cap KI^n = JKI^{n-1}$, we get $Jrr_K(I^{n-1}) \cap KI^n = JKI^{n-1}$. It follows that

$$\lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) = \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})}) - \lambda(\frac{Jrr_K(I^{n-1}) + KI^n}{Jrr_K(I^{n-1})})$$
$$= \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})}) - \lambda(\frac{KI^n}{Jrr_K(I^{n-1}) \cap KI^n})$$

G. J. ZHU

$$= \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})}) - \lambda(\frac{KI^n}{JKI^{n-1}})$$
$$= \rho_n^K - \eta_n^K.$$

Lemma 2.5 Suppose d = 2, k is a positive integer and J = (x, y) is a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for $n \leq k-1$. Let "-" denote the image modulo(x), $\bar{r} = r_{\bar{J}}^{\bar{K}}(\bar{I})$ and $\bar{r} > k-1$. Then

(1) $g_1 = \sum_{n=1}^{k-1} \eta_n^K + (\bar{r} - k + 1) - \lambda(\frac{R}{K});$ (2) $g_1 = \sum_{n=2}^{\infty} \rho_n^K + \lambda(\frac{rr_K(I)}{Jrr_K(I^0)}) - \lambda(\frac{R}{rr_K(I^0)}).$

Proof The second assertion is clear by Proposition 2.5 of [10]. As for the first one, by Lemma 3.5 and Theorem 5.3 of [9], we get that

$$g_{1} = \bar{g}_{1} = \sum_{n=1}^{\bar{r}} \lambda(\frac{\bar{K}\bar{I}^{n}}{\bar{J}\bar{K}\bar{I}^{n-1}}) - \lambda(\frac{\bar{R}}{\bar{K}})$$

$$= \sum_{n=1}^{k-1} \lambda(\frac{KI^{n}}{JKI^{n-1} + x(KI^{n} : x)}) + \sum_{n=k}^{\bar{r}} \lambda(\frac{\bar{K}\bar{I}^{n}}{\bar{J}\bar{K}\bar{I}^{n-1}}) - \lambda(\frac{\bar{R}}{K})$$

$$= \sum_{n=1}^{k-1} \lambda(\frac{KI^{n}}{JKI^{n-1}}) + (\bar{r} - k + 1) - \lambda(\frac{\bar{R}}{K})$$

$$= \sum_{n=1}^{k-1} \eta_{n}^{K} + (\bar{r} - k + 1) - \lambda(\frac{\bar{R}}{K}).$$

Proposition 2.6 Suppose d = 2, k is a positive integer and J = (x, y) is a minimal reduction of I, $KI^{k-1} \cap J = JKI^{k-2}$ and $\bar{r} > k-1$. Then $\nu \leq \bar{r} - q$.

Proof Firstly, we remark that we have $q \ge k$. In fact $KI^{k-1} \not\subseteq JKI^{k-2}$, otherwise $KI^{k-1} = KI^{k-1} \cap JKI^{k-2} \subseteq KI^{k-1} \cap J = JKI^{k-2}$. Thus $r_J^K(I) \le k-2$, which contradicts the assumption $k-1 < \bar{r} \le r$.

By the definition of ν_n , we have that $\nu_n \leq \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})+KI^n})$. Thus, by Lemmas 2.4 and 2.5, we get that

$$\begin{split} \nu &= \sum_{n \ge 0} \nu_n = \sum_{n=1}^{k-1} \nu_n + \sum_{n=k}^{\infty} \nu_n + \lambda(\frac{rr_K(I^0)}{K}) \\ &\leq \sum_{n=1}^{k-1} [\rho_n^K - \eta_n^K] + \sum_{n=k}^{\infty} \nu_n + \lambda(\frac{rr_K(I^0)}{K}) \\ &= \sum_{n=1}^{\infty} \rho_n^K - \sum_{n=k}^{\infty} \rho_n^K - \sum_{n=1}^{k-1} \eta_n^K + \sum_{n=k}^{\infty} \nu_n + \lambda(\frac{rr_K(I^0)}{K}) \\ &= \sum_{n=2}^{\infty} \rho_n^K + \lambda(\frac{rr_K(I)}{Jrr_K(I^0)}) + \lambda(\frac{rr_K(I^0)}{K}) - \sum_{n=k}^{\infty} \rho_n^K - \sum_{n=1}^{k-1} \eta_n^K + \sum_{n=k}^{\infty} \nu_n \\ &= g_1 + \lambda(\frac{R}{K}) - \sum_{n=k}^{\infty} \rho_n^K - \sum_{n=1}^{k-1} \eta_n^K + \sum_{n=k}^{\infty} \nu_n \end{split}$$

368

$$\begin{split} &= \sum_{n=1}^{k-1} \eta_n^K + (\bar{r} - k + 1) - \sum_{n=k}^{\infty} \rho_n^K - \sum_{n=1}^{k-1} \eta_n^K + \sum_{n=k}^{\infty} \nu_n \\ &= (\bar{r} - k + 1) - \sum_{n=k}^{\infty} \rho_n^K + \sum_{n=k}^{\infty} \nu_n \\ &= (\bar{r} - k + 1) + \sum_{n=k}^{q} [\nu_n - \rho_n^K] + \sum_{n=q+1}^{\infty} [\nu_n - \rho_n^K] \\ &\leq (\bar{r} - k + 1) + \sum_{n=k}^{q} [\nu_n - \rho_n^K] + \sum_{n=q+1}^{\infty} [\lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) - \rho_n^K] \\ &\leq (\bar{r} - k + 1) + \sum_{n=k}^{q} [\lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) - \rho_n^K] \\ &= (\bar{r} - k + 1) - \sum_{n=k}^{q} \lambda(\frac{KI^n}{Jrr_K(I^{n-1}) \cap KI^n}) \\ &\leq \bar{r} - k + 1 - (q - k + 1) = \bar{r} - q, \end{split}$$

where the last inequality holds because of $\lambda(\frac{KI^n}{Jrr_K(I^{n-1})\cap KI^n}) \leq 1$ for all $n \geq k$, which comes from the fact $JKI^{n-1} \subseteq KI^n \cap Jrr_K(I^{n-1}) \subseteq KI^n$ and $\lambda(\frac{KI^n}{JKI^{n-1}}) \leq 1$ for all $n \geq k$. \Box

Proposition 2.7 Suppose d = 2, k is a positive integer and J = (x, y) is a minimal reduction of I, $KI^n \cap J = JKI^{n-1}$ for all $n \le k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$. Then

- (1) $r_J^K(I) \leq \nu + q;$
- (2) $r_J^K(I) \le g_1 + k 1 + \lambda(\frac{R}{K}) \sum_{n=1}^{k-1} \lambda(\frac{KI^n}{JKI^{n-1}}).$

Proof The first assertion is clear from Theorem 3.4 of [10]. As for the second one, by the definition of q, we have that

$$\lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) = \lambda(\frac{rr_K(I^n)}{Jrr_K(I^{n-1})}) - \lambda(\frac{Jrr_K(I^{n-1}) + KI^n}{Jrr_K(I^{n-1})})$$
$$\leq \begin{cases} \rho_n^K - 1 & : n \le q\\ \rho_n^K & : n \ge q + 1. \end{cases}$$

It follows that

$$\begin{split} r &\leq \nu + q \leq \sum_{n \geq 1} \lambda (\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) + \lambda (\frac{rr_K(I^0)}{K}) + q \\ &\leq \sum_{n=1}^{k-1} (\rho_n^K - \eta_n^K) + \sum_{n=k}^{\infty} \lambda (\frac{rr_K(I^n)}{Jrr_K(I^{n-1}) + KI^n}) + \lambda (\frac{rr_K(I^0)}{K}) + q \\ &\leq \sum_{n=1}^{k-1} (\rho_n^K - \eta_n^K) + \sum_{n=k}^{q} (\rho_n^K - 1) + \sum_{n=q+1}^{\infty} \rho_n^K + \lambda (\frac{rr_K(I^0)}{K}) + q \\ &\leq \sum_{n=1}^{\infty} \rho_n^K - \sum_{n=1}^{k-1} \eta_n^K - (q - k + 1) + \lambda (\frac{rr_K(I^0)}{K}) + q \end{split}$$

G. J. ZHU

$$= \sum_{n=2}^{\infty} \rho_n^K + \lambda \left(\frac{rr_K(I)}{Jrr_K(I^0)}\right) + \lambda \left(\frac{rr_K(I^0)}{K}\right) - \sum_{n=1}^{k-1} \eta_n^K + k - 1$$
$$= g_1 + k - 1 + \lambda \left(\frac{R}{K}\right) - \sum_{n=1}^{k-1} \lambda \left(\frac{KI^n}{JKI^{n-1}}\right).$$

The last equality follows from Lemma 2.5 (2). \Box

Now, we can prove the main result of this section.

Theorem 2.8 Suppose $d \ge 2$, k is a positive integer and J is a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for $n \le k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$. Let depth $G(I) \ge d-2$. Then depth $F_K(I) \ge d-1$.

Proof We apply induction on d. Let d = 2. Choose J = (x, y) such that x^* , y^* is a superficial sequence in G(I) and x^0 , y^0 is a superficial sequence in $F_K(I)$. Let "-" denote the image modulo (x), $r = r_J^K(I)$ and $\bar{r} = r_{\bar{J}}^{\bar{K}}(\bar{I})$. If $\bar{r} \le k - 1$, then $\bar{K}\bar{I}^n \cap \bar{J} = \bar{J}\bar{K}\bar{I}^{n-1}$ for all $n \ge 1$, thus $F_K(I)$ is CM by Lemma 2.7 of [9]. If $\bar{r} > k - 1$, $\bar{r} = r$ by Propositions 2.6 and 2.7 (1). For $j \ge 0$, consider the following exact sequence:

$$0 \to \frac{KI^j : x}{KI^j : J} \xrightarrow{y} \frac{KI^{j+1} : x}{KI^j} \xrightarrow{x} \frac{KI^{j+1}}{JKI^j} \to \frac{\bar{K}\bar{I}^{j+1}}{\bar{J}\bar{K}\bar{I}^j} \to 0.$$

We have that $\lambda(\frac{KI^{j}:x}{KI^{j}:J}) = \lambda(\frac{KI^{j+1}:x}{KI^{j}})$ for all $j \ge k-1$.

Claim. For every $j \ge 0$, $KI^{j+1}: x = KI^j$. For all $j \le k-1$, by Lemma 2.4, it is clear. Moreover, we have that $KI^{k-1}: J = (KI^{k-1}: x) \cap (KI^{k-1}: y) = KI^{k-2}$, thus $KI^k: x = KI^{k-1}$. Suppose that $j \ge k$ and that the claim is true for j-1. Then $KI^{j-1} \subseteq KI^j: J \subseteq KI^j: x = KI^{j-1}$, where the last equality follows by induction. Thus $KI^j: x = KI^j: J$. It follows from the equality $\lambda(\frac{KI^j:x}{KI^j:J}) = \lambda(\frac{KI^{j+1}:x}{KI^j})$ for all $j \ge k-1$ that $KI^{j+1}: x = KI^j$ for all $j \ge 0$. Hence x^0 is a regular element in $F_K(I)$ and depth $F_K(I) \ge 1$.

Let d > 2 and choose $J = (x_1, \ldots, x_d)$ such that x_1^*, \ldots, x_{d-2}^* is a regular sequence in G(I) and x_1^0, \ldots, x_d^0 is a superficial sequence in $F_K(I)$. Let "-" denote the images modulo (x_1, \ldots, x_{d-2}) . Then dim $\overline{R} = 2$, $\overline{K}\overline{I}^n \cap \overline{J} = \overline{J}\overline{K}\overline{I}^{n-1}$ for $n \le k-1$ and $\lambda(\frac{\overline{K}\overline{I}^k}{J\overline{K}I^{k-1}}) \le \lambda(\frac{KI^k}{J\overline{K}I^{k-1}}) = 1$. If $\overline{r} \le k-1$, then $\overline{K}\overline{I}^n \cap \overline{J} = \overline{J}\overline{K}\overline{I}^{n-1}$ for every $n \ge 1$, and $\overline{K}\overline{I}^k = \overline{J}\overline{K}\overline{I}^{k-1}$, it follows that depth $F_{\overline{K}}(\overline{I}) \ge 1$ from Lemma 4.6 of [4]. If $\overline{r} > k-1$, $\lambda(\frac{\overline{K}\overline{I}^k}{J\overline{K}I^{k-1}}) = 1$. Thus, by the first part, depth $F_{\overline{K}}(\overline{I}) \ge 1$. Since x_1^*, \ldots, x_{d-2}^* is a regular sequence in G(I), $F_{\overline{K}}(\overline{I}) \simeq \frac{F_K(I)}{(x_1^0, \ldots, x_{d-2}^0)F_K(I)}$, and hence depth $F_K(I) \ge d-1$ from Lemma 2.7 of [9]. \Box

3. The Hilbert series of the fiber cone

In this section, we compute the Hilbert series of the fiber cone $F_K(I)$ of any m-primary ideal I for which there exists a positive integer k such that $KI^n \cap J = JKI^{n-1}$ for all $n \leq k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$.

Lemma 3.1 ([13]) Suppose that depth $G(I) \ge d-1$ and depth $F_K(I) \ge d-1$. Let J be a

minimal reduction of I and $r = r_J^K(I)$. Then

$$\sum_{n\geq 0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [\lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ})]t + \sum_{n=2}^{r+1} [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n}{(1-t)^{d+1}}.$$

Theorem 3.2 Let $d \ge 1$, k a positive integer and J a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for all $n \le k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$. Let depth $G(I) \ge d-1$ and $r = r_J^K(I)$. Then

$$\sum_{n\geq 0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [\lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ})]t + \sum_{n=2}^k [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n + t^{r+1}}{(1-t)^{d+1}}.$$

Proof By Lemma 2.2, we have $\lambda(\frac{KI^n}{JKI^{n-1}}) = 1$ for any $k \leq n \leq r$. It follows that

$$\begin{split} \sum_{n=2}^{r+1} &[\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n = \sum_{n=2}^{r+1} \lambda(\frac{KI^{n-1}}{KJI^{n-2}})t^n - \sum_{n=2}^{r+1} \lambda(\frac{KI^n}{KJI^{n-1}})t^n \\ &= \sum_{n=2}^{r+1} \lambda(\frac{KI^{n-1}}{KJI^{n-2}})t^n - \sum_{n=3}^{r+1} \lambda(\frac{KI^{n-1}}{KJI^{n-2}})t^{n-1} \\ &= \lambda(\frac{KI}{KJ})t^2 - \sum_{n=2}^{r} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) \\ &= \lambda(\frac{KI}{KJ})t^2 - \sum_{n=2}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) - \sum_{n=k}^{r} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) \\ &= \lambda(\frac{KI}{KJ})t^2 - \sum_{n=2}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) - \sum_{n=k}^{r} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) \\ &= \lambda(\frac{KI}{KJ})t^2 - \sum_{n=2}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}})t^n(1-t) - \sum_{n=k}^{r} (t^n - t^{n+1}) \\ &= \sum_{n=2}^{k-1} [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n + \lambda(\frac{KI^{k-1}}{KJI^{k-2}})t^k - t^k + t^{r+1} \\ &= \sum_{n=2}^{k} [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n + t^{r+1}. \end{split}$$

On the other hand, by Theorem 2.8 we have depth $F_K(I) \ge d-1$. It follows that by Lemma 3.1

$$\sum_{n\geq 0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [\lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ})]t + \sum_{n=2}^{r+1} [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n}{(1-t)^{d+1}}$$
$$= \frac{\lambda(\frac{R}{K}) + [\lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ})]t + \sum_{n=2}^{k} [\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})]t^n + t^{r+1}}{(1-t)^{d+1}}.$$

As consequences of the above result, we recover results of Rossi [12, Theorem 3.2 (2)], Jayanthan and Verma [10, Proposition 5.2].

Corollary 3.3 Let $d \ge 1$, k a positive integer and J a minimal reduction of I such that

G. J. ZHU

 $I^{n} \cap J = JI^{n-1} \text{ for all } n \leq k-1, \ \lambda(\frac{I^{k}}{JI^{k-1}}) = 1 \text{ and } r = r_{J}(I). \text{ Then}$ $\sum_{n \geq 0} \lambda(\frac{I^{n}}{I^{n+1}})t^{n} = \frac{\sum_{n=0}^{k-2} \lambda(\frac{I^{n}}{I^{n+1}+JI^{n-1}})t^{n} + [\lambda(\frac{I^{k-1}}{JI^{k-2}}) - 1]t^{k-1} + t^{r}}{(1-t)^{d}}.$

Proof We recall that depth $G(I) \ge d - 1$ by Theorem 3.2 of [12]. Put K = I in Theorem 3.2, then we get

$$\begin{split} \sum_{n\geq 0} \lambda(\frac{R}{I^{n+1}})t^n &= \frac{\lambda(\frac{R}{I}) + [\lambda(\frac{I}{J}) - \lambda(\frac{I^2}{JI})]t + \sum_{n=2}^k [\lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{JI^n})]t^n + t^r}{(1-t)^{d+1}} \\ &= \frac{\sum_{n=0}^k [\lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{JI^n})]t^n + t^r}{(1-t)^{d+1}} \\ &= \frac{\sum_{n=0}^{k-1} [\lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{JI^n})]t^n + t^r}{(1-t)^{d+1}}. \end{split}$$

Multiplying both sides by (1-t), we get

$$\sum_{n\geq 0} \lambda(\frac{I^n}{I^{n+1}})t^n = \frac{\sum_{n=0}^{k-1} [\lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{JI^n})]t^n + t^{r+1}}{(1-t)^d}.$$

On the other hand, note that $JI^n \subseteq JI^{n-1} \cap I^{n+1} \subseteq J \cap I^{n+1} = JI^n$ for all $n \leq k-2$, thus $JI^n = JI^{n-1} \cap I^{n+1}$. It follows that

$$\lambda(\frac{I^n}{I^{n+1} + JI^{n-1}}) = \lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{I^{n+1} \cap JI^{n-1}}) = \lambda(\frac{I^n}{JI^{n-1}}) - \lambda(\frac{I^{n+1}}{JI^n}).$$

The proof is completed. \Box

Corollary 3.4 Let I be an m-primary ideal with almost minimal multiplicity with respect to K such that depth $G(I) \ge d-1$ and $r = r_J^K(I)$. Then

$$\sum_{n>0} H_K(I,n)t^n = \frac{\lambda(\frac{R}{K}) + [e_0(I) - \lambda(\frac{R}{K}) - 1]t + t^{r+1}}{(1-t)^{d+1}}$$

Proof Put k = 1 in Theorem 3.2. \Box

Write $P_K(I,n) = g'_0\binom{n+d}{d} - g'_1\binom{n+d-1}{d-1} + \dots + (-1)^d g'_d$. Then comparing with the earlier notation, we get $g'_0 = g_0$ and $g'_i = g_i + g_{i-1}, i = 1, \dots, d$.

Proposition 3.5 Let $d \ge 1$, k a positive integer and J a minimal reduction of I such that $KI^n \cap J = JKI^{n-1}$ for all $n \le k-1$ and $\lambda(\frac{KI^k}{JKI^{k-1}}) = 1$, and let depth $G(I) \ge d-1$. Then $F_K(I)$ is CM if and only if $\lambda(\frac{KI^n+JKI^{n-1}}{JKI^{n-1}}) = 1$ for all $n = k, \ldots, r$.

Proof From Theorem 3.2 and Proposition 4.19 of [1], we have that

$$g_1' = \lambda(\frac{K}{J}) - \lambda(\frac{KI}{KJ}) + \sum_{n=2}^k n[\lambda(\frac{KI^{n-1}}{KJI^{n-2}}) - \lambda(\frac{KI^n}{KJI^{n-1}})] + r + 1$$
$$= \lambda(\frac{K}{J}) + \sum_{n=1}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}}) + (r - k + 1).$$

Thus $g_1 = g'_1 - g_0 = \sum_{n=1}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}}) + (r-k+1) - \lambda(\frac{R}{K})$. From the proof of Lemma 2.2, it can easily be seen that $\lambda(\frac{KI^n + JI^{n-1}}{JI^{n-1}}) \leq 1$ for all $n \geq k$.

On the other hand, note that $JKI^{n-1} \subseteq JI^{n-1} \cap KI^n \subseteq J \cap KI^n = JKI^{n-1}$ for all $n \leq k-1$, thus $JKI^{n-1} = JI^{n-1} \cap KI^n$. As depth $G(I) \geq d-1$, by Theorem 4.3 of [9], $F_K(I)$ is CM if and only if

$$g_1 = \sum_{n \ge 1} \lambda(\frac{KI^n + JI^{n-1}}{JI^{n-1}}) - \lambda(\frac{R}{K}) = \sum_{n=1}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}}) + (r-k+1) - \lambda(\frac{R}{K})$$

if and only if

$$\sum_{n=1}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}}) + \sum_{n \ge k} \lambda(\frac{KI^n + JI^{n-1}}{JI^{n-1}}) - \lambda(\frac{R}{K}) = \sum_{n=1}^{k-1} \lambda(\frac{KI^n}{KJI^{n-1}}) + (r-k+1) - \lambda(\frac{R}{K})$$

if and only if $\lambda(\frac{KI^n + JKI^{n-1}}{JKI^{n-1}}) = 1$ for all $n = k, \dots, r$. \Box

Acknowledgment I would like to thank Professor Tang Zhongming for many helpful comments and discussions.

References

- [1] BRUNS W, HERZOG J. Cohen-Macaulay Rings [M]. Cambridge University Press, Cambridge, 1993.
- [2] CORSO A, POLINI C, VAZPINTO M. Sally modules and associated graded rings [J]. Comm. Algebra, 1998, 26(8): 2689–2708.
- [3] CORSO A, POLINI C, ROSSI M E. Depth of associated graded rings via Hilbert coefficients of ideals [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 126–141.
- [4] CORTADELLAS T. Fiber cones with almost maximal depth [J]. Comm. Algebra, 2005, 33(3): 953–963.
- [5] CORTADELLAS T, ZARZUELA S. On the depth of the fiber cone of filtrations [J]. J. Algebra, 1997, 198(2): 428–445.
- [6] ELIAS J. On the depth of the tangent cone and the growth of the Hilbert function [J]. Trans. Amer. Math. Soc., 1999, 351(10): 4027–4042.
- [7] GUERRIERI A, ROSSI M E. Hilbert coefficients of Hilbert filtrations [J]. J. Algebra, 1998, 199(1): 40-61.
- [8] GU Yan, ZHU Guangjun, TANG Zhongming. On Hilbert coefficients of filtrations [J]. Chin. Ann. Math. Ser. B, 2007, 28(5): 543–554.
- [9] JAYANTHAN A V, VERMA J K. Hilbert coefficients and depth of fiber cones [J]. J. Pure Appl. Algebra, 2005, 201(1-3): 97–115.
- [10] JAYANTHAN A V, VERMA J K. Fiber cones of ideals with almost minimal multiplicity [J]. Nagoya Math. J., 2005, 177: 155–179.
- [11] ROSSI M E. A bound on the reduction number of a primary ideal [J]. Proc. Amer. Math. Soc., 2000, 128(5): 1325–1332.
- [12] ROSSI M E. Primary ideals with good associated graded ring [J]. J. Pure Appl. Algebra, 2000, 145(1): 75–90.
- [13] ZHU Guangjun, GU Yan, TANG Zhongming. Hilbert coefficients of filtrations with almost maximal depth
 [J]. J. Math. Res. Exposition, 2008, 28(4): 839–849.