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Abstract In this paper, we investigate the Galois connections between two partially ordered

objects in an arbitrary elementary topos. Some characterizations of Galois adjunctions which is

similar to the classical case are obtained by means of the diagram proof. This shows that the

diagram method can be used to reconstruct the classical order theory in an arbitrary elementary

topos.

Keywords partial order object; Galois connection; topos.

Document code A

MR(2000) Subject Classification 18B25; 06A15

Chinese Library Classification O153.1; O154

1. Introduction and preliminaries

The development of topos theory resulted from the confluence of two streams of mathematical

thought since the 20th sixties. The first is the development of an axiomatic treatment of sheaf

theory by Grothendieck. This axiomatic development culminated in the discovery by Giraud

that a category is equivalent to a category of sheaves for a Grothendieck topology if and only

if it satisfies the conditions of being a Grothendieck topos. The main purpose of the axiomatic

development is to be able to define sheaf cohomology. The second stream is Lawvere’s continuing

search for a natural way of founding mathematics (universal algebra, set theory, category theory,

etc.) on the basic notion of morphism and composition of morphisms. All formal (and naive)

presentations of set theory up to then had taken as primitives the notions of elements and sets

with membership as the primitive relation. Now a topos can be considered both as a “generalized

space” and as a “generalized universe of sets”. Topos theory unifies this two seemingly wholly

distinct mathematical aspects.

Recall that a topos E is a category which has finite limits and every object of E has a power

object. For a fixed object A of E , the power object of A is an object PA which represents

Sub(−×A), so that HomE(−, PA) ≃ Sub(−×A) naturally. It says precisely that for any arrow
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B′ f //B , the following diagram commutes, where ϕ is the natural isomorphism.

HomE(B, PA)
ϕ(A,B) //

HomE(f,PA)

��

Sub(B × A)

Sub(f×A)

��
HomE(B′, PA)

ϕ(A,B′) // Sub(B′ × A)

(1)

Figure 1 The nature of ϕ

An impotant example of toposes is the category of sheaves on a topological space. In partic-

ular, the category of sets is a topos. For details of toposes and sheaves please see Johnstone [1],

Mac and Moerdijk [2], Joyal and Tierney [3], Johnstone and Joyal [4]. For a general background

on category theory please refer to [5], [6].

In [2], lattice and Heyting Algebra objects in a topos are well defined. In this paper we will

investigate the more general concept of partially ordered objects and Galois connections between

partially ordered objects in an arbitrary topos by means of diagram method. More details about

lattices and locales please see [8–12].

2. Main results

Throughout this paper, we work with a fixed topos E . All objects mentioned belong to the

topos E . We begin with some definitions.

Definition 1 ([2]) A subobject ≤L֌ L × L is called an internal partial order on L, provided

that the following conditions are satisfied

1) Reflexivity: The diagonal L
δ //L × L factors through ≤L

// eL //L × L , as in

L
δ //

""

L × L

≤L

OO
eL

OO
(2)

Figure 2 Reflexivity

2) Antisymmetry: The intersection ≤L ∩ ≥L is contained in the diagonal, as in the following

pullback

≤L ∩ ≥L
// //

$$

��

≤L
��

eL

��

L ""
δ

""E
EE

EE
EE

E

≥L
// // L × L

(3)

Figure 3 Antisymmetry
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Where ≥L is defined as the composite ≤L
// eL //L × L

τ //L × L with τ as the twist map

interchanging the factors of the product.

3) Transitivity: The subobject C // 〈π1ev,π2eu〉//L × L factors through ≤L
// eL //L × L , as in

C // 〈π1ev,π2eu〉 //

  

L × L

≤L

;;
eL

;;wwwwwwww

(4)

Figure 4 Transitivity

where C is the following pullback

C

v

��

u // ≤L
��
eL

��
L × L

π1

��
≤L

//
eL

// L × L π2

// L

(5)

Figure 5 The definition of C

An object L endowed with an internal partial order ≤L is called a partially ordered object.

Let L and M be two partially ordered objects. We can define the product of partially ordered

object L × M of L and M as the product object L × M endowed with the “pointwise order”

≤L × ≤M֌ L × L × M × M ≃ L × M × L × M . Also, a subobject B of a partially ordered

object (L,≤L) is again a partial order object endowed with the induced partial order ≤B, as in

the pullback

≤B
// //

��

��

≤L
��

��
B × B // // L × L

(6)

Figure 6 The induced partial order

We now turn to the discussion of morphisms between partial order objects.

In [2], for morphisms L
f //
g

//M between two objects in a topos, f ≤ g is defined to be

L
〈f,g〉
−−−→ M × M factors through ≤M

// eM //M × M , as in

L
〈f,g〉 //

!!

M × M

≤M

:: eM

::uuuuuuuu

(7)

Figure 7 The first definition of f ≤ g
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In [7], the author define f ≤ g if and only if for all generalized element x in L, f(x) ≤ g(x)

in M . We show these two definitions are equivalent.

Lemma 1 Let L, M be two partially ordered objects with a pair of morphisms L
f //
g

//M . Then

f ≤ g if and only if fr ≤ gr for every morphism A
r //L .

Proof ⇒. Suppose f ≤ g, then there exists a morphism L
k // ≤M such that 〈f, g〉 = eMk.

So 〈fr, gr〉 = 〈f, g〉r = eMkr, which means the outer triangle of Figure 8 below is commutative,

i.e., 〈fr, gr〉 factors through ≤M
// eM //M × M .

A
<fr,gr> //

r
CC

CC

!!C
CC

C

##

M × M

L

<f,g>
uuuuu

::uuuu

k

��
≤M

eM

KK

(8)

Figure 8 Equivelence of two definitions

⇐. Indeed, in order to verify this, we can take the fixed identity morphism L
1L //L , then

f ≤ g is obvious. 2

Corollary 1 Let L, M be two partially ordered objects and L
f //M be a morphism. Then

f ≤ f .

Proof Since pi〈f, f〉 = piδf with pi : M × M → M (i = 1, 2) being projections, 〈f, f〉 = δf .

And by Definition 1, we know δ factors through ≤M
// eM //M × M . It follows that the outer

square is commutative as in the following Figure 9.

L
〈f,f〉 //

f

��@
@@

@@
@@

@

f ��@
@@

@@
@@

@
M × M

M

δ

;;vvvvvvvvv
// ≤M

dd

eM

ddIIIIIIII
(9)

Figure 9 Reflexivity of f

So we have that 〈f, f〉 factors through ≤M
// eM //M × M , thus f ≤ f .

Corollary 2 Let L, M be two partially ordered objects and f, g, h morphisms between L and

M . Then f ≤ g and g ≤ h imply f ≤ h.

Corollary 3 Let L, M be two partially ordered objects and f : L → M, g : M → L be

morphisms. Then f ≤ g and g ≤ f imply f = g.

Proof g ≤ f implies that 〈g, f〉 : L → M × M can be factored through ≤M֌ M × M ,
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equivalently, 〈f, g〉 can be factored through ≥M֌ M × M . Thus 〈f, g〉 : L → M × M can be

factored through δM =≤M ∩ ≥M֌ M × M . This shows f = g. 2

The above argument shows that for two partially ordered objects L and M , the relation ≤

defined on the morphism set Mor(L, M) is a partial order relation.

Definition 2 ([2]) Let L, M be two partially ordered objects in E . A morphism L
f //M

is called order-preserving or monotone if the composite ≤L
// eL //L × L

f×f //M × M factors

through ≤M , as in

≤L
// eL //

��

L × L

f×f

��
≤M

//
eM

// M × M

(10)

Figure 10 The definition of a monotone morphism

In [7], the author defines a function f : L → M to be order-preserving whenever x ≤ y in L

implies f(x) ≤ g(x) in M . We show that it is equivalent to the above definition.

Lemma 2 A morphism L
f //M between two partial ordered objects is order-preserving if

and only if r ≤ s implies fr ≤ fs for every pair of parallel morphisms A
r //
s

//L .

Proof ⇒. We first show 〈fr, fs〉 = f × f〈r, s〉. This may be pictured as in the following Figure

11, where p1, p2, π1, π2 are projections.

A
〈fr,fs〉 //

〈r,s〉
EE

EE

""E
EE

r

��

s

��

M × M

π1

��

π2

��

L × L

f×f
ssss

99ssss

p1

��

p2

��

M

L

f

99sssssssssss

(11)

Figure 11 Universal property of product

By the universal property of M × M , it follows that fpi = πif × f , i = 1, 2. Similarly,

r = p1〈r, s〉, s = p2〈r, s〉. Then fpi〈r, s〉 = πif × f〈r, s〉, so fr = π1f × f〈r, s〉, fs = π2f × f〈r, s〉.

By the universal property of M × M , we also have fr = π1〈fr, fs〉, fs = π2〈fr, fs〉. So,

π1 < fr, fs >= π1f × f〈r, s〉, π2〈fr, fs〉 = π2f × f〈r, s〉, thus 〈fr, fs〉 = f × f〈r, s〉.

Now suppose r ≤ s, then there exists a morphism A
k
−→≤L with 〈r, s〉 = eLk. It follows

that the left triangle of in Figure 12 is commutative. Since f is monotone, the right square

of the Figure 12 is commutative, i.e., there exists ≤L
m // ≤M such that f × feL = eMm.

So 〈fr, fs〉 = f × f〈r, s〉 = f × feLk = eMmk, which means the outer of the Figure 12 is
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commutative.

A
〈fr,fs〉 //

〈r,s〉
EE

EE

""E
EE

k

��

M × M

L × L

f×f
ssss

99ssss

≤M

OO

eM

OO

≤L

m

99ssssssssss
OO

eL

OO
(12)

Figure 12 The relation between 〈fr, fs〉 and eM

Thus, 〈fr, fs〉 factors through ≤M
// eM //M × M .

⇐. It suffices to show there exists ≤L
m // ≤M with f × feL = eMm, as in the Figure 13.

A
〈r,s〉

��
k

��

��

≤L

m

��

// eL // L × L

f×f

��
≤M

// eM // M × M

(13)

Figure 13 The existence of m

By Lemma 1, it is obvious that m exists.

Definition 3 ([2]) Let L, M be two partially ordered objects. We say a pair (g, d) of morphisms

L
g //M and M

d //L is a Galois connection or an adjunction between L and M provided

that

1) both g and d are monotone, and

2) dg ≤ 1L and 1M ≤ gd, that is, 〈dg, 1L〉 and 〈1M , gd〉 factor through ≤L and ≤M

respectively, as in the following diagrams

L
〈dg,1L〉 //

  A
AA

AA
AA

A L × L M
〈1M ,gd〉 //

!!C
CC

CC
CC

C M × M

≤L

;; eL

;;wwwwwwww
≤M

:: eM

::uuuuuuuu

(14)

Figure 14 The definitions of dg ≤ 1L and 1M ≤ gd

We are now in a position to state the main theorem of Galois theory in categorical sense.

Theorem 1 For every pair of order-preserving morphisms L
g //M
d

oo between partially ordered

objects, the following conditions are equivalent:

1) (g, d) is an adjunction;
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2) t ≤ gs implies dt ≤ s for all morphisms A
s //L and A

t //M , and dt ≤ s implies

t ≤ gs for all morphisms B
t //M and B

s //L . Moreover, these conditions imply

3) d = dgd, and g = gdg;

4) gd and dg are idempotent.

Proof 1) ⇒ 2). Suppose t ≤ gs, then 〈t, gs〉 factors through ≤M
// eM //M × M . Since d is

monotone, we have d × d〈t, gs〉 = 〈dt, dgs〉 = eLlk. Thus dt ≤ dgs, as shown in the Figure 15.

A
〈t,gs〉

//

((

〈dt,dgs〉

##
M × M

d×d
// L × L

≤M

OO
eM

OO

l // ≤L

OO
eL

OO (15)

Figure 15 The proof of dt ≤ dgs

And by the definition of adjunction, dg ≤ 1L, so dgs ≤ s for every s : A → L. Whence, dt ≤ s.

The rest is similar.

2) ⇒ 1). For every morphism A
s //L one has gs ≤ gs, then dgs ≤ s, thus dg ≤ 1L. The

rest is similar.

1) ⇒ 3). dg ≤ 1L implies dgd ≤ d and 1T ≤ gd implies d ≤ dgd since d is monotone. Then

we have d = dgd. Similarly, the rest is obvious.

3) ⇒ 4). Trivial.

2

Definition 4 Let L be a partially ordered object.

1) A projection is an idempotent, monotone morphism L
p //L .

2) A closure operator is a projection c with 1L ≤ c.

3) A kernel operator is a projection k with k ≤ 1L.

So, from Theorem 1, dg and gd are kernel operator and closure operator respectively.

It is well known that the image of an arrow f is the smallest subobject (of the codomain f)

through which f can factor. And the factorization of f is unique “up to isomorphism” as the

following two Lemmas show.

Lemma 3 ([2]) In a topos, every morphism f has an image m and factors as f = me, with e

epi.

Lemma 4 ([2]) If f = me and f ′ = m′e′ with m, m′ monic and e, e′ epi, then each map of the

arrow f to the arrow f ′ extends to a unique map of m, e to m′, e′.

Proposition 1 If a monotone morphism L
f //M between two partially ordered objects

factors as f = me with image m. Then m and e are monotone morphisms.

Proof Given L
f //M , which factors as L

e //I // m //M . The proof is just a matter of
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observing the corresponding partial order on I. Construct the following commutative Figure 16

≤L
// eL //

e′

!!

��

L × L
p1 //
p2

//

e×e

%%
f×f

��

L

e
??

??

��?
??

?f

��

≤I
// eI //

}}
m′

}}

I × I
t1 //
t2

//
yy

m×m

yy

I��
m��

�

�����
�

≤M
// eM // M × M

π1 //
π2

// M

(16)

Figure 16 The partial order on I

By the definition of product L × L, M × M , I × I with projections pi, πi, ti (i = 1, 2)

respectively, we have fpi = πif×f , epi = tie×e, mti = πim×m, i.e., the front, back, bottom faces

of the right side of the diagram are all commutative. Then, πif×f = fpi = mepi = πim×m·e×e,

so f ×f = m×m ·e×e, which means the middle triangle is commutative. Since the smallestness

of m×m is obvious, f × f = m×m · e× e is again an epi-momo factorization, i.e., m×m is the

image of f × f .

We take ≤I as the pullback of I×I → M ×M along eM , that is, ≤I= (I×I)∩ ≤M . It is easy

to prove that ≤I is just both the induced partial order on I and the image of ≤L. This shows

the back and the bottom faces of the left side of the diagram are commutative, in other words,

≤I
// eL //I × I

m×m//M × M and ≤L
// eL //L × L

e×e //I × I factor through ≤M
// eM //M × M

and ≤I
// eI //I × I respectively. So m, e are all monotone morphisms.

We now make use of the Galois theorem to give the relations between the closure (kernel)

operator and its image.

Proposition 2 Let L be a partially ordered object and L
f //L a monotone morphism. Then

the following statements are equivalent:

1) f is a projection;

2) If f = me with e epi and m monic, as in

L
f //

e
  A

AA
AA

AA
A L

M

>> m

>>}}}}}}}
(17)

Figure 17 The epi-momo factorization of f

then em = 1M ;

3) There exist a partially ordered object T and a monotone epi morphism L
e //T and a

monotone monic morphism T
m //L such that f = me and 1M = em.

Proof 1) ⇒ 2). If f is a projection, then meme = me, so em = 1M since m is a monomorphism.

2) ⇒ 3). Subobject M of L is also a partial order object endowed with the induced order.

The left is trivial by Proposition 1.
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3) ⇒ 1). Trivial.

Proposition 3 Let L be a partially ordered object and L
f //L a monotone morphism. Then

the following statements are equivalent:

1) f is a closure operator;

2) (m, e) is an adjunction between M and L, where M is the image of f ;

3) There is an adjunction (g, d) between some S and L with f = gd.

Proof 1) ⇒ 2). As Figure 17 shows, if f is a closure operator, then em = 1M , which implies

em ≤ 1M ; in addition, 1L ≤ me. Thus (m, e) is an adjunction by Theorem 1.

2) ⇒ 3). Trivial.

3) ⇒ 1). By Theorem 1(4), the morphism f = gd is a projection. By Definition 3, we have

that 1L ≤ f = gd.

2

Proposition 4 Let L be a partially ordered object and L
f //L a monotone morphism. Then

the following statements are equivalent:

1) f is a kernel operator;

2) (e, m) is an adjunction between L and M , where M is the image of f ;

3) There is an adjunction (g, d) between L and some T with f = dg.
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