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Abstract In this paper, the authors study the existence of periodic solutions to an evolution

p-Laplacian system. The authors prove a comparison principle of the system in general form.

Then the existence of periodic solutions to the system of evolution p-Laplacian equations is

obtained with the help of the comparison principle and the monotone iteration technique.
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1. Introduction

In this paper, we study the existence of periodic solutions of the evolution p-Laplacian system

∂ui

∂t
= div(|∇ui|

pi−2∇ui) + fi(t, u1, u2), (x, t) ∈ Ω × (0,+∞), (1.1)

ui(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞), (1.2)

ui(x, t+ ω) = ui(x, t), (x, t) ∈ Ω × (0,+∞), (1.3)

where pi > 2, ω > 0, fi(t+ω, u1, u2) = fi(t, u1, u2), fi(t, u1, u2) is quasimonotonic for uj (j 6= i),

i, j = 1, 2, Ω ⊂ Rn is an open connected bounded domain with smooth boundary ∂Ω.

System (1.1) models heat propagations in a two-component combustible mixture [1], chemical

processes [2], interaction of two biological groups without self-limiting [3, 4], etc.

Many authors have studied the properties of the periodic solution to scalar semi-linear re-

action diffusion equations and semi-linear reaction diffusion systems [5–10]. In [11], the authors

studied the periodic solution of a scalar evolution p-Laplacian equation with nonlinear sources,

and in [12], Wang studied the following degenerate nonlinear reaction diffusion system:

∂ui

∂t
= ∆umi

i + bi(t)u
pi

1 u
qi

2 , (x, t) ∈ Ω ×R, (1.4)

ui(x, t) = 0, (x, t) ∈ ∂Ω ×R, (1.5)

ui(x, t+ ω) = ui(x, t), (x, t) ∈ Ω ×R, (1.6)
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where mi > 1, ω > 0, pi, qi > 1, bi(t) > 0 and bi(t + ω) = bi(t), i = 1, 2, Ω ⊂ Rn is an open

connected bounded domain with smooth boundary ∂Ω.

Motivated by [11] and [12], we study the existence of periodic solutions to (1.1)–(1.3). Since

the system is coupled with nonlinear terms, it is in general difficult to study the system. Our

treatment is based on global existence [13], regularity to the solutions of a scalar equation [14]

and a comparison principle which we will prove in this paper. We mainly use the monotone

iteration technique to construct a monotone sequence of solutions and hence obtain the existence

of periodic solutions to the system (1.1)–(1.3) by a standard limiting process.

System (1.1) degenerates when ∇ui = 0. In general, there would be no classical solutions

and hence we have to study generalized solutions to Problem (1.1)–(1.3).

In this paper, Cω(Ω̄ω) is used to denote the space of continuous functions of (x, t) and of

ω-periodic with t. The following are the constrains to the nonlinear functions fi, i = 1, 2 involved

in this paper.

Definition 1 A function fi = fi(u1, u2) is said to be quasimonotone nondecreasing (resp.,

nonincreasing) if for fixed ui, fi is nondecreasing (resp., nonincreasing) in uj for j 6= i.

The definition of a periodic solution in this work is the following.

Definition 2 A nonnegative vector valued function u = (u1, u2) is called a generalized solution

of the system (1.1)–(1.3), if ui ∈ L∞(ΩT ) ∩ Lpi(0, T ;W 1,pi

0 (Ω)), uit ∈ L2(ΩT ), ∀T > 0, i = 1, 2,

and satisfy

i) ui ∈ Cω(Ω̄ω), ui(x, t) = 0, (x, t) ∈ ∂Ω × (0, ω), i = 1, 2, where Ωω = Ω × (0, ω);

ii) For any ϕi ∈ C1(Ωω), with ϕi(x, t) = 0, (x, t) ∈ ∂Ω × (0, ω), and ϕi(x, 0) = ϕi(x, ω),

−

∫∫

Ωω

(

ui

∂ϕi

∂t
− |∇ui|

pi−2∇ui∇ϕi + fi(t, u1, u2)ϕi

)

dxdt = 0. (1.7)

In the following, we will give the definition of the generalized solution of system (1.1), (1.2) with

ui(x, 0) = ui0(x). (1.8)

Definition 3 A continuous vector valued function u = (u1, u2) is called a generalized solution

of the system (1.1), (1.2) and (1.8), if

i) u satisfies boundary condition (1.2), and for any τ > 0, ui ∈ L∞(Ωτ )∩Lpi(0, τ ;W 1,pi

0 (Ω)),

uit ∈ L2(Ωτ ), i = 1, 2, where Ωτ = Ω × (0, τ);

ii) For any τ > 0, and for any nonnegative ϕi ∈W 1,∞(Ω̄τ ), with ϕi(x, t) = 0, ∂Ω × (0, τ),

−

∫∫

Qτ

(

ui

∂ϕi

∂t
− |∇ui|

pi−2∇ui∇ϕi + fi(t, u1, u2)ϕi

)

dxdt

=

∫

Ω

ui0(x)ϕi(x, 0)dx−

∫

Ω

ui(x, τ)ϕi(x, τ)dx. (1.9)

If we replace = with > (6) in above equality, and ui(x, t) ≥ 0(ui(x, t) ≤ 0), (x, t) ∈ ∂Ω × (0, τ),

i = 1, 2, then u is called a supersolution (subsolution) of the system (1.1), (1.2) and (1.8).

Similarly, we define the periodic supersolution and subsolution of (1.1)–(1.3) as follows:
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Definition 4 A continuous vector valued function u = (u1, u2) is called a periodic supersolution

(subsolution) of the system (1.1)–(1.3), if

i) ui(x, t) > 0 (ui(x, t) 6 0), (x, t) ∈ ∂Ω × (0, τ), and ui(x, 0) > (6)0 for x ∈ Ω;

ii) ui(x, t) > ui(x, t+ ω) (ui(x, t) 6 ui(x, t + ω)), (x, t) ∈ Ωτ ,

ui satisfies (1.9) replacing = with > (6), i = 1, 2, i.e.,

−

∫∫

Qτ

(

ui

∂ϕi

∂t
− |∇ui|

pi−2∇ui∇ϕi + fi(t, u1, u2)ϕi

)

dxdt

> (6)

∫

Ω

ui0(x)ϕi(x, 0)dx−

∫

Ω

ui(x, τ)ϕi(x, τ)dx.

2. Main results

Our main existence result is the following:

Theorem 1 Let pi > 2, m1, n2 > 0, m2, n1 > 0, (p1 − 1 −m1)(p2 − 1 − n2) −m2n1 > 0, fi

is quasimonotonic and satisfies Lipschitz condition, and there exist nonnegative functions ci1(t)

and ci2(t), s.t., ci2(t)u
mi

1 uni

2 6 fi(t, u1, u2) 6 ci1(t)u
mi

1 uni

2 , cij(t) = cij(t + ω), i = 1, 2, j = 1, 2.

Then there exists a nontrivial nonnegative periodic solution to the problem (1.1)–(1.3).

In order to prove Theorem 1, we need the following lemmas.

Lemma 1 Let fi(u1, u2) be quasimonotone nondecreasing and satisfy the Lipschitz condition.

Let u = (u1, u2) and u = (u1, u2) be the subsolution and supersolution of the system (1.1),

(1.2) and (1.8) satisfying u0 = (u10, u20) and u0 = (u10, u20), respectively, and ui0 6 ui0. Then

ui(x, t) 6 ui(x, t), i = 1, 2.

Proof Since u and u are the subsolution and supersolution of system (1.1), (1.2) and (1.8), for

any ϕi ∈W 1,∞(Ωτ),∀τ ∈ (0, T ), with ϕi = 0, for (x, t) ∈ ∂Ω × (0, τ), we have
∫

Ω

ui(x, τ)ϕi(x, τ)dx +

∫∫

Ωτ

|∇ui|
pi−2∇ui∇ϕidxdt

6

∫∫

Ωτ

(fi(u)ϕi + ϕitui)dxdt+

∫

Ω

ui0(x)ϕi(x, 0)dx,

and
∫

Ω

ui(x, τ)ϕi(x, τ)dx +

∫∫

Ωτ

|∇ui|
pi−2∇ui∇ϕidxdt

>

∫∫

Ωτ

(fi(u)ϕi + ϕitui)dxdt+

∫

Ω

ui0(x)ϕi(x, 0)dx.

Taking ϕi = (ui − ui)
+ as a test function, where a+ = max(0, a) > 0, subtracting the two

inequalities, we get

1

2

∫

Ω

((ui(x, τ) − ui(x, τ))
+)2dx

= −

∫∫

Ωτ

(|∇ui|
pi−2∇ui − |∇ui|

pi−2∇ui)∇((ui − ui)
+)dxdt+
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∫∫

Ωτ

(fi(u) − fi(u))(ui − ui)
+dxdt

= −

∫∫

Ωτ

⋂

{ui>ui}

(|∇ui|
pi−2∇ui − |∇ui|

pi−2∇ui)∇(ui − ui)dxdt+

∫∫

Ωτ

(fi(u) − fi(u))(ui − ui)
+dxdt.

Notice that

(|∇ui|
pi−2∇ui − |∇ui|

pi−2∇ui)∇(ui − ui) > 0.

In view of the above inequality and the Lipschitz condition, by simple calculation, we obtain

that
∫

Ω

(|(u1 − u1)
+|2 + |(u2 − u2)

+|2)dx

6 2K

∫∫

Ωτ

(|(u1 − u1)
+| + |(u2 − u2)

+|)2dxdt

6 4K

∫ τ

0

∫

Ω

(|(u1 − u1)
+|2 + |(u2 − u2)

+|2)dxdt.

Setting F (τ) =
∫ τ

0

∫

Ω(|(u1−u1)
+|2+ |(u2−u2)

+|2)dxdt, then the above inequality can be written

as

F ′(τ) 6 4KF (τ).

A standard argument shows that F (τ) ≡ 0 since F (0) ≡ 0, hence (ui − ui)
+ = 0, i.e., ui 6 ui.

Lemma 2 ([14]) Let u be a solution of the homogeneous Dirichlet problem to the equation

∂u

∂t
= div(|∇u|p−2∇u) + f(x, t),

where f ∈ L∞(Ω × (0, τ)). Then there exist an α > 0 and a constant K depending only on

τ ′ ∈ (0, τ) and the upper-bound of ‖f‖L∞(Ω×(0,τ)), s.t.,

|u(x1, t1) − u(x2, t2)| 6 K(|x1 − x2|
α + |t1 − t2|

α
2 ), (xi, ti) ∈ Ω × [τ ′, τ ].

Lemma 3 Under the assumptions of Theorem 1, there exist a nontrivial subsolution and a

supersolution to the problem (1.1), (1.2) and (1.8).

Proof Motivated by [15], we use the eigenfunction to construct the subsolution and the super-

solution of system (1.1), (1.2) and (1.8).

Let µ1 and λ1 be the first eigenvalue of the following eigenvalue problem.

− div(|∇ψ1|
p1−2

∇ψ1) = µ1ψ
p1−1
1 , x ∈ Ω, ψ1 = 0, x ∈ ∂Ω, (2.1)

− div(|∇φ1|
p2−2 ∇φ1) = λ1φ

p2−1
1 , x ∈ Ω, φ1 = 0, x ∈ ∂Ω, (2.2)

where ψ1 and φ1 are the corresponding eigenfunctions, satisfying ψ1(x) > 0, φ1(x) > 0, x ∈ Ω,

|∇ψ1| > 0, |∇φ1| > 0, x ∈ ∂Ω, i = 1, 2. Without loss of generality, let ‖ψ1‖p1
= ‖φ1‖p2

= 1. Since

(p1 − 1 −m1)(p2 − 1 − n2) −m2n1 > 0, we can choose k, s.t.,

m2

p2 − 1 − n2
< k <

p1 − 1 −m1

n1
. (2.3)
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We now prove that (u1, u2) = (aψm
1 (x), akφn

1 (x)) is a subsolution to Problem (1.1), (1.2) and

(1.8), where m = p1

p1−1 , n =
p2

p2 − 1
, and a > 0 is small number to be specified later.

Let ϕ1(x, t) ∈ C1(Ωτ ), ϕ1(x, t) > 0, be a test function. Then it follows from (2.1) that
∫∫

Ωτ

(u1

∂ϕ1

∂t
+ div(|∇u1|

p1−2∇u1)ϕ1 + f1(t, u1, u2)ϕ1)dxdt+

∫

Ω

u1(x, 0)ϕ1(x, 0)dx −

∫

Ω

u1(x, τ)ϕ1(x, τ)dx

=

∫∫

Ωτ

(f1(t, u1, u2) + div(|∇u1|
p1−2∇u1))ϕ1dxdt

>

∫ τ

0

∫

Ω

min
(0,ω)

c12(t)u
m1

1 un1

2 ϕ1dxdt−

∫ τ

0

∫

Ω

(am)p1−1(µ1ψ
p1

1 − |∇ψ1|
p1)ϕ1dxdt. (2.4)

Similarly, for all ϕ2(x, t) ∈ C1(Ωτ ), ϕ2(x, t) > 0, following (2.2), we have
∫∫

Ωτ

(u2

∂ϕ2

∂t
+ div(|∇u2|

p2−2∇u2)ϕ2 + f2(t, u1, u2)ϕ2)dxdt+

∫

Ω

u2(x, 0)ϕ2(x, 0)dx −

∫

Ω

u2(x, τ)ϕ2(x, τ)dx

=

∫∫

Ωτ

(f2(t, u1, u2) + div(|∇u2|
p2−2∇u2))ϕ2dxdt

>

∫ τ

0

∫

Ω

min
(0,ω)

c22(t)u
m2

1 un2

2 ϕ2dxdt−

∫ τ

0

∫

Ω

(akn)p2−1(λ1φ
p2

1 − |∇φ1|
p2)ϕ2dxdt. (2.5)

We need to prove that the right hand side of (2.4) and (2.5) are nonnegative.

Since ψ1 = 0, φ1 = 0, |∇ψ1| > 0, |∇φ1| > 0, x ∈ ∂Ω, there exists an η > 0, s.t.,

µ1ψ
p1

1 − |∇ψ1|
p1

6 0, λ1φ
p2

1 − |∇φ1|
p2

6 0, x ∈ Ωη, (2.6)

where Ωη = {x ∈ Ω|dist(x, ∂Ω) 6 η}. This shows that
∫ τ

0

∫

Ωη

(am)p1−1(µ1ψ
p1

1 − |∇ψ1|
p1)ϕ1dxdt 6 0 6

∫ τ

0

∫

Ωη

min
(0,ω)

c12(t)u
m1

1 un1

2 ϕ1dxdt, (2.7)

and
∫ τ

0

∫

Ωη

(akn)p2−1(λ1φ
p2

1 − |∇φ1|
p2)ϕ2dxdt 6 0 6

∫ τ

0

∫

Ωη

min
(0,ω)

c22(t)u
m2

1 un2

2 ϕ2dxdt. (2.8)

(2.7) and (2.8) show that (u1, u2) is a subsolution on Ωη × (0,+∞). Furthermore, we note that

ψ1(x), φ1(x) > µ > 0 for some µ > 0 in Ω0 = Ω \ Ωη. Then from (2.3) there exists an a0 > 0,

s.t., if a ∈ (0, a0), the following inequalities hold:

ak(p2−1−n2)−m2λ1n
p2−1φ

p2−nn2

1 6 min
(0,ω)

c12(t)µ
mm2 6 min

(0,ω)
c12(t)ψ

mm2

1 , x ∈ Ω0, (2.9)

ap1−1−m1−kn1µ1m
p1−1ψ

p1−mm1

1 6 min
(0,ω)

c22(t)µ
nn1 6 min

(0,ω)
c22(t)φ

nn1

1 , x ∈ Ω0. (2.10)

(2.9) and (2.10) show that
∫ τ

0

∫

Ω0

|∇u1|
p1−2∇u1∇ϕ1dxdt =

∫ τ

0

∫

Ω0

(am)p1−1(µ1ψ
p1

1 − |∇ψ1|
p1)ϕ1dxdt
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6

∫ τ

0

∫

Ω0

min
(0,ω)

c12(t)u
m1

1 un1

2 ϕ1dxdt, (2.11)

and
∫ τ

0

∫

Ω0

|∇u2|
p2−2∇u2∇ϕ2dxdt =

∫ τ

0

∫

Ω0

(akn)p2−1(λ1φ
p2

1 − |∇φ1|
p2)ϕ2dxdt

6

∫ τ

0

∫

Ω0

min
(0,ω)

c22(t)u
m2

1 un2

2 ϕ2dxdt. (2.12)

Therefore (u1, u2) = (aψm
1 (x), akφn

1 (x)) is a subsolution of (1.1), (1.2) and (1.8).

We now construct a supersolution (u1, u2) of (1.1), (1.2) and (1.8). Let w1(x), w2(x) be the

positive solutions of the following problems, respectively.

−div(|∇w1|
p1−2

∇w1) = 1, x ∈ Ω, w1 = 0, x ∈ ∂Ω, (2.13)

−div(|∇w2|
p2−2

∇w2) = 1, x ∈ Ω, w2 = 0, x ∈ ∂Ω. (2.14)

Let

u1 = Aw1(x), u2 = Bw2(x), (2.15)

where the constants A, B > 0 are large and to be chosen later. We shall verify that (u1, u2) is a

supersolution of (1.1), (1.2) and (1.8). Let ϕi ∈ C1(Ωτ ), ϕi > 0, be test functions, i = 1, 2. Then

from (2.13), (2.14), we obtain that
∫∫

Ωτ

(u1
∂ϕ1

∂t
+ div(|∇u1|

p1−2∇u1)ϕ1 + f1(t, u1, u2)ϕ1)dxdt+

∫

Ω

u1(x, 0)ϕ1(x, 0)dx −

∫

Ω

u1(x, τ)ϕ1(x, τ)dx

=

∫∫

Ωτ

(f1(t, u1, u2) + div(|∇u1|
p1−2∇u1))ϕ1dxdt

6

∫ τ

0

∫

Ω

max
(0,ω)

c11(t)u
m1

1 un1

2 ϕ1dxdt−

∫ τ

0

∫

Ω

Ap1−1ϕ1dxdt, (2.16)

and
∫∫

Ωτ

(u2
∂ϕ2

∂t
+ div(|∇u2|

p2−2∇u2)ϕ2 + f2(t, u1, u2)ϕ2)dxdt+

∫

Ω

u2(x, 0)ϕ2(x, 0)dx −

∫

Ω

u2(x, τ)ϕ2(x, τ)dx

=

∫∫

Ωτ

(f2(t, u1, u2) + div(|∇u2|
p2−2∇u2))ϕ2dxdt

6

∫ τ

0

∫

Ω

max
(0,ω)

c21(t)u
m2

1 un2

2 ϕ2dxdt−

∫ τ

0

∫

Ω

Bp2−1ϕ2dxdt. (2.17)

We need to prove that the right hand side of (2.16) and (2.17) are nonpositive. Let l = ‖w1‖∞,

L = ‖w2‖∞, C = max{max(0,ω) c11(t),max(0,ω) c21(t)}. Since θ > 0, it is easy to prove that

there exist positive large constants A,B, s.t.,

Ap1−1−m1 = CBn1 lm1Ln1 , Bp2−1−n2 = CAm2 lm2Ln2 . (2.18)
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Therefore

Ap1−1
> Cum1

1 un1

2 > max
(0,ω)

c11(t)u
m1

1 un1

2 , (2.19)

Bp2−1
> Cum2

1 un2

2 > max
(0,ω)

c21(t)u
m2

1 un2

2 . (2.20)

These imply that the right hand side of (2.16) and (2.17) are nonpositive. Therefore, (u1, u2) is

a supersolution of (1.1), (1.2) and (1.8). We can choose large A,B such that ui 6 ui, i = 1, 2.

3. The proof of main results

Definition 3 (Poincaré Mapping) Set T = (T1, T2): C(Ω) × C(Ω) → C(Ω) × C(Ω), T (u10(x),

u20(x)) = (u1(x, ω), u2(x, ω)), where u(x, t) = (u1(x, t), u2(x, t)) is the solution of the initial-

boundary value problem

∂ui

∂t
= div(|∇ui|

pi−2∇ui) + fi(t, u1, u2), (x, t) ∈ Ω × (0,+∞), (3.1)

ui(x, t) = 0, (x, t) ∈ ∂Ω × (0,+∞), (3.2)

ui(x, 0) = ui0, x ∈ Ω. (3.3)

The definition is reasonable due to the existence and uniqueness of the system (1.1), (1.2)

and (1.8) in [13].

In the following, we will prove Theorem 1.

Proof Set u0 = u. By Lemma 1 and the fact that u is the subsolution of system (1.1), we get that

ui(x, ω) = Tiu(x) > ui(x), i = 1, 2. Repeating the process, we can obtain a sequence {T nu}∞n=1,

where T 1 = T , T n+1u = T (T nu). By Lemma 1 and Tiu > ui, we know that {T nu}∞n=1 is

nondecreasing. Similarly, we can obtain a nonincreasing sequence {T nu}∞n=1.

Following Lemma 1, we know that Tiu(x) 6 Tiu(x). Therefore

ui(x) 6 Tiu(x) 6 · · · 6 T n
i u(x) 6 T n

i u(x) 6 · · · 6 Tiu(x) 6 ui(x), i = 1, 2. (3.4)

Let un(x, t) be the solution of system (1.1), (1.2) and (1.8) with ui0 = T n−1u. We get T nu(x) =

un(x, ω). By Lemma 1, uin(x, t) 6 ui(x), i = 1, 2. So there exists a constant C0 independent of

n, s.t.,

fi(t, u1n, u2n) 6 C0, i = 1, 2. (3.5)

Following above inequality and Lemma 2, there exist an α > 0 and a constant K depending

only on ω > 0, such that

|uin(x1, t1) − uin(x2, t2)| 6 K(|x1 − x2|
α + |t1 − t2|

α
2 ), (xi, ti) ∈ Ω × [

ω

2
, ω]. (3.6)

Particularly,

|T n
i u(x1) − T n

i u(x2)| 6 K|x1 − x2|
α, xi ∈ Ω.

Due to Ascoli-Arzelá Theorem, there exist a function v0 ∈ C(Ω) × C(Ω) and a subsequence

of {T nu}∞n=1, without loss of generality, denoted again by {T nu}∞n=1, s.t.,

T nu→ v0, uniformly in C(Ω) × C(Ω), n→ ∞. (3.7)
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We will prove that the solution to the initial boundary problem (1.1), (1.2) and (1.8) with

u(x, 0) = v0 is a solution of Problem (1.1)–(1.3).

Considering initial and boundary problem (1.1), (1.2) with

ui(x, 0) = T n
i u(x). (3.8)

Since u(x) is a supersolution of (1.1) and T n
i u(x) 6 ui(x), we have

uin(x, t) 6 ui(x), (x, t) ∈ Ω × (0,+∞). (3.9)

Following above inequality and Lemma 2, we obtain that there exists a positive constant K

depending only on ω and a β > 0, s.t., (xi, ti) ∈ Ω × [ω, 2ω],

|uin(x1, t1) − uin(x2, t2)| 6 K(|x1 − x2|
β + |t1 − t2|

β
2 ). (3.10)

Following the proof of the global existence in [13], we know that there exists a positive constant

C0 independent of n, s.t.,

|∇uin|Lpi (Ω×(ω,2ω)) 6 C0, (3.11)

|uint|L2(Ω×(ω,2ω)) 6 C0. (3.12)

Due to (3.7)–(3.9), there exist functions wi(x, t) ∈ C(Ω×(ω, 2ω)) and a subsequence of {uin}
∞
n=1,

without loss of generality, denoted again by {uin}
∞
n=1, s.t.,

uin → wi, in C(Ω × [ω, 2ω]), (3.13)

∇uin ⇀ ∇wi, in Lpi(Ω × (ω, 2ω)), (3.14)

uint ⇀ wit, in L2(Ω × (ω, 2ω)), (3.15)

|∇uin|
pi−2uinxl

⇀ wixl
, in L

pi
pi−1 (Ω × [ω, 2ω]), (3.16)

where ⇀ stands for weak convergence, i = 1, 2. Following (3.4), (3.10)–(3.13), we get that

vi0(x) = wi(x, ω).

By the definition of generalized solutions and (3.10)–(3.13), we obtain
∫∫

Ω′

ω

(wi

∂ϕi

∂t
− |∇wi|

pi−2∇wi∇ϕi + fi(t, w1, w2)ϕi)dxdt

=

∫

Ω

wi(x, 2ω)ϕi(x, 2ω)dx−

∫

Ω

wi(x, ω)ϕi(x, ω)dx, i = 1, 2,

where Ω′
ω = Ω × (ω, 2ω). It shows that function wi(x, t) is a solution of (1.1), on Ω′

ω. On the

other hand, following (3.10) and the definition of the map T , we get

w(x, 2ω) = lim
n→∞

un(x, 2ω) = lim
n→∞

T (un(x, ω))(x)

= lim
n→∞

T (T (T nu))(x) = lim
n→∞

T n+2u(x)

= lim
n→∞

T n+1u(x) = lim
n→∞

T (T nu)(x)

= lim
n→∞

un(x, ω) = w(x, ω).

By the uniqueness of the solution to the initial and boundary problem, we know that u(x, t) =

w(x, t + ω), t ∈ [0, ω]. Therefore, u(x, 0) = w(x, ω) = w(x, 2ω) = u(x, ω). The proof is com-

pleted. 2
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