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1. Introduction

As a natural generalization of Lie triple systems, Lie supertriple systems is becoming an

efficient tool for analyzing the properties of physical systems. The concept of Lie supertriple

systems was introduced gradually in the course of study of the Yang-Baxter equations [1]. In

last ten years, many important results of Lie supertriple systems have been obtained [1–10].

In particular, Lie supertriple systems was applied in [9] to obtain some new solutions of Yang-

Baxter equation and a simple solution of the Yang-Baxter equation, that is, the Yang-Baxter

equation can be reduced to a triple product relation. Moreover, Lie supertriple systems have

close connection with Lie superalgebras as the relationship between Lie triple systems and Lie

algebras [7].

Frattini theory was initiated in the study of finite groups by Frattini in the paper “Intorno alla

generazione dei gruppi di operazioni, Atti della Accademic dei Lincei, Rendicondi Ser.4, Vol. 1,

281-285 (1885)”. Frattini described the elements of a finite group into two classes, generators and

non-generators, and noticed that the non-generators form a normal subgroup, called the Frattini

subgroup, which equals the intersection of all subgroups of the given group. The theory of the

Frattini subgroup of a group has been well developed since that time and has proved useful in the

study of various problems in the group theory [11–14]. It therefore seems natural to study this

concept in some other algebraic structures. Because of the connection between finite groups and
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Lie algebras of finite dimension, Marshall in 1967 made the first attempt which was followed by

Barnes, Chao, Gastineau-Hill, Stitzinger, and such investigations have been successfully carried

out by Barnes, Bechtell, Schwarck and Towers, et al. [15–24]. For associative algebras the

Frattini subalgebra has been mentioned initially by Stitzinger and used by Knopfmacher in 1970

to solve some number-theoretic problem. The first extensive work about Frattini subalgebra of a

Malcev algebra has been published by Malek [25, 26]. The Frattini theory has been developped

initially for restricted Lie superalgebras and n-Lie algebras [27–29].

In this paper, we shall define T as a finite dimensional Lie supertriple system over a field F

of arbitrary characteristic, Aut(T ) as the automorphism group of T , J(T ) as Jacobson radical

which is the intersection of all maximal ideals of T , F (T ) as the Frattini subsystem of T which

is the intersection of all maximal subsystems of T and φ(T ) as Frattini ideal of T is the largest

ideal of T that is contained in F (T ). We let C(T ) = {x ∈ T |L(x, T ) = R(T, x) = 0} be the

center of T and N be the set of all positive integers. Our notation and terminology are standard

as may be found in [4, 9, 16–29]. For background material on Lie supertriple systems we refer to

[1–10].

The purpose of the present paper is to mention initially and develop Frattini theory for Lie

supertriple systems. Definitions are given in Section 1. In Section 2 we obtain some properties

of the Frattini subsystem and show that the intersection of all maximal subsystems of a solvable

Lie supertriple system is its ideal. In Section 3, we give the relationship between φ-free and

complemented for Lie supertriple system.

Definition 1.1 ([9]) A Lie supertriple system T = T0̄ ⊕ T1̄ is a Z2-graded vector space with

a ternary product [, , ] satisfying the following identities:

(1) σ([x, y, z]) ≡ (σ(x) + σ(y) + σ(z)) (mod 2);

(2) [x, y, z] = −(−1)xy[y, x, z];

(3) (−1)xz[x, y, z] + (−1)yx[y, z, x] + (−1)zy[z, x, y] = 0;

(4) [u, v, [x, y, z]] = [[u, v, x], y, z] + (−1)(u+v)x[x, [u, v, y], z] + (−1)(u+v)(x+y)[x, y, [u, v, z]]

for any x, y, z, u, v ∈ T , where we denote σ(x) as the graded degree of x, for simplicity of the

degree, and denote (−1)σ(x)σ(y) as (−1)xy.

Throughout this paper, if (−1)x occurs in an expression, then it is assumed that x is homo-

geneous.

Definition 1.2 ([30]) Let L = L0̄⊕L1̄ be a superalgebra whose multiplication is denoted by [ , ].

This implies in particular that [Lα, Lβ] ⊆ Lα+β for all α, β ∈ Z2. We call L a Lie superalgebra

if the multiplication satisfies the following identities:

(1) [a, b] = −(−1)αβ [b, a],

(2) [a, [b, c]] = [[a, b], c] + (−1)αβ [b, [a, c]],

for any a ∈ Lα, b ∈ Lβ, c ∈ L; α, β ∈ Z2.

Remark 1.3 (1) T0̄ is an ordinary Lie triple system and L0̄ is an ordinary Lie algebra.

(2) Let T be a Lie superalgebra (Lie algebra). It is clear that if we introduce a triple product
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[x, y, z] by [x, y, z] = [[x, y], z] for any x, y, z ∈ T , then T becomes a Lie supertriple system (Lie

triple system). So in this sense every Lie superalgebra (Lie algebra) is a Lie supertriple system

(Lie triple system). Many important features of Lie algebras are not necessarily true for Lie

superalgebras, for instance, Lie’s theorem and Levi’s theorem of Lie algebras are not true, in

general, for Lie superalgebras. Thus, many important features of Lie triple systems are not

necessarily true for Lie supertriple systems.

Definition 1.4 ([9]) A superderivation of a Lie supertriple system T is a homogeneous linear

mapping D of T into T such that

D([x, y, z]) = [D(x), y, z] + (−1)Dx[x, D(y), z] + (−1)(x+y)D[x, y, D(z)], ∀x, y, z ∈ T.

Der(T ) denotes the set of all superderivations of T .

It can be shown that Der(T ) is a Lie superalgebra under the bracket operation [D1, D2] =

D1D2 − (−1)D1D2D2D1 taken in EndF(T ).

Definition 1.5 ([9]) Let L(x, y)z = [x, y, z] and R(x, y)z = (−1)z(x+y)[z, x, y]. Then L(x, y)

and R(x, y) are called the left and right multiplication operator of T , respectively.

Clearly, L(x, y) = (−1)xyR(y, x) − R(x, y). Define InnDer(T ) = {D|D = ΣL(x, y)} for any

x, y ∈ T , then InnDer(T ) is a subset of Der(T ) and InnDer(T ) is closed with respect to [, ].

InnDer(T ) is called the inner derivation algebra of T . It is easy to see that InnDer(T ) is an ideal

of Der(T ). So InnDer(T ) is a Lie superalgebra.

Definition 1.6 ([9]) Let B be an ideal of T , T 2 = [T, T, T ] = T (2), B(1) = B and B(k+1) =

[T, B(k), B(k)]. Clearly, B(k) is an ideal of T for any k ∈ N. An ideal B of T is called T -solvable

in T if there is some positive integer k such that B(k) = {0}. T is called solvable if T (k) = {0}.

In particular, an ideal B of T is called abelian if B(2) = {0}.

2. Some properties of the Frattini subsystem

Lemma 2.1 Let T be a Lie supertriple system. Then the following statements hold:

(1) If B is a subsystem of T such that B + F (T ) = T , then B = T .

(2) If B is a subsystem of T such that B + φ(T ) = T , then B = T .

Proof (1) Suppose that B 6= T . Then there is a maximal subsystem M of T such that B ⊆ M

since B is a subsystem of T . Now F (T ) ⊆ M , and so T = M since B +F (T ) = T , contradicting

the maximality of M . Thus B = T .

(2) It is similar to Lemma 2.1 (1). 2

Lemma 2.2 Let T be a Lie supertriple system. If B is an ideal of T , then there is a proper

subsystem C of T such that T = B + C if and only if B 6⊆ F (T ).

Proof Let C be a proper subsystem of T such that T = B + C. If B ⊆ F (T ), then T =

B + C ⊆ F (T ) + C ⊆ T . So T = F (T ) + C. In the light of Lemma 2.1, we have C = T and

a contradiction. Hence B 6⊆ F (T ). Conversely, if there is no proper subsystems C of T such
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that T = B + C, then every maximal subsystem of T contains B. So B ⊆ F (T ) and we have a

contradiction. The result holds. 2

Lemma 2.3 Let T be a Lie supertriple system. Let C be a subsystem of T and B be an ideal

of T . Then the following statements hold:

(1) If B ⊆ F (C), then B ⊆ F (T );

(2) If B ⊆ φ(C), then B ⊆ φ(T ).

Proof (1) If C = T , then it is clear. If C 6= T and B 6⊆ F (T ), then there is a proper subsystem

M of T such that T = B +M = C +M by Lemma 2.2. We can obtain dimC = dim(B +C ∩M)

by virtue of the dimensional formula. Then C = B + C ∩ M since C ⊇ B + C ∩ M , i.e.,

C = B + C ∩ M ⊆ F (C) + C ∩ M ⊆ C. So F (C) + C ∩ M = C and C = M ∩ C by means of

Lemma 2.1, i.e., C ⊆ M . Thus T = B + M ⊆ C + M ⊆ M and we have a contradiction. Hence

B ⊆ F (T ).

(2) It is similar to Lemma 2.3 (1). 2

Lemma 2.4 Let T be a Lie supertriple system. Then F (T ) ⊆ T 2 and J(T ) ⊆ T 2.

Proof If T = T 2 = [T, T, T ], then it is clear that F (T ) ⊆ T 2. If T 6= [T, T, T ], then suppose

that x ∈ F (T ) and x /∈ T 2, and that dimT = n. We can construct an (n − 1)-dimensional

subspace of T containing T 2 but not x, and this subspace is clearly a maximal subsystem of T .

But x belongs to every such that subsystem since x ∈ F (T ). Then we have a contradiction, so

F (T ) ⊆ T 2. Similarly, it is easy to show that J(T ) ⊆ T 2. 2

Lemma 2.5 Let T be a Lie supertriple system. If T = A1 ⊕ A2 ⊕ · · · ⊕ An, where each

Ai (1 ≤ i ≤ n) is an ideal of T , then φ(T ) = φ(A1) ⊕ φ(A2) ⊕ · · · ⊕ φ(An).

Proof We show first that F (T ) ⊆ F (A1)+F (A2)+ · · ·+F (An). If Mi is a maximal subsystem

of Ai (1 ≤ i ≤ n), then Mi +(A1 ⊕A2 ⊕ · · ·⊕ Âi ⊕ · · ·⊕An) is a maximal subsystem of T , where

Âi indicates that Ai is omitted from the direct sum. The result follows by taking intersections.

We will show that φ(Ai) = φ(T )∩Ai (1 ≤ i ≤ n). Since F (T ) ⊆ F (A1)+F (A2)+· · ·+F (An),

we have φ(T ) ∩ Ai ⊆ F (T ) ∩ Ai ⊆ F (Ai). Then φ(T ) ∩ Ai ⊆ φ(Ai). It is easy to show that

φ(Ai) is an ideal of T . So φ(Ai) ⊆ φ(T ) by Lemma 2.3. Consequently, φ(Ai) ⊆ φ(T )∩Ai, which

means that φ(Ai) = φ(T ) ∩ Ai as claimed. So clearly φ(T ) ⊇ φ(A1) + φ(A2) + · · · + φ(An).

Now suppose that x ∈ φ(T ). Then x = x1 + x2 + · · · + xn and [x, Ai, Ai] = [xi, Ai, Ai] ⊆

Ai ∩ φ(T ) = φ(Ai), where xi ∈ F (Ai), 1 ≤ i ≤ n. If xi /∈ φ(Ai), then [φ(Ai)+̇ Fxi, Ai, Ai] ⊆

φ(Ai) ⊂ φ(Ai)+̇ Fxi. So φ(Ai)+̇ Fxi is an ideal of Ai. Since xi ∈ F (Ai) and φ(Ai) ⊆ F (Ai),

it is clear that φ(Ai)+̇ Fxi is an ideal of Ai contained in F (Ai) and strictly bigger than φ(Ai).

Thus we have a contradiction since φ(Ai) is the largest ideal of Ai which is contained in F (Ai).

Hence xi ∈ φ(Ai) and x ∈ φ(A1)+φ(A2)+ · · ·+φ(An) and φ(T ) = φ(A1)+̇ φ(A2)+̇ · · · +̇ φ(An).

The proof is completed since φ(Ai) is an ideal of φ(T ). 2

Lemma 2.6 Let T be solvable. Then the following statements hold:
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(1) If A is a minimal ideal of T , then A is abelian;

(2) J(T ) = T 2. In particular, if T is abelian, then F (T ) = φ(T ) = J(T ) = {0}.

Proof (1) Let A be an ideal of T . It is clear that [T, A, A] is also an ideal of T . Since

A is a minimal ideal of T , [T, A, A] = A or [T, A, A] = {0}. If [T, A, A] = A(2) = A, then

A(k+1) = [T, A(k), A(k)] = [T, A, A]. Since T is solvable, [T, A, A] = A(k+1) = {0} for some

k ∈ N. Hence A is abelian.

(2) Let I be a maximal ideal of T . Since the quotient algebra T/I is solvable, T/I contains

no proper ideals. So T/I is one-dimensional and abelian. Hence we have I ⊇ T 2. This applies

for all maximal ideals I of T , so that J(T ) ⊇ T 2. By Lemma 2.4, the result follows. 2

Theorem 2.7 Let T be solvable. Then F (T ) is an ideal of T .

Proof We use induction over dimT . The result is trivial for dimT = 1.

Let A be a minimal ideal of T . Put F (T : A) =
⋂
{M : A ⊆ M , M is a maximal subsystem

of T }. Then F (T : A)/A = F (T/A) and F (T : A) is an ideal of T by induction hypothesis.

If A ⊆ F (T ), then F (T ) = F (T : A) is an ideal of T . Suppose A 6⊆ F (T ). So there is a

maximal subsystem M of T such that T = M +A by Lemma 2.2. Since A is a minimal ideal of T ,

[T, A, A] = {0} by Lemma 2.6 (1). Then A ⊆ CT (A) and [A∩M, T, T ] = [A∩M, M +A, M+A] ⊆

A ∩ M , i.e., A ∩ M is an ideal of T contained in A, hence T = A+̇M . If A ⊂ CT (A), then

{0} ⊂ M ∩ CT (A) � T and every maximal subsystem M of T contains some minimal ideal B of

T . In this case, F (T ) =
⋂
{F (T : B): B is a minimal ideal of T }, which is an ideal of T .

Suppose CT (A) = A. We will show that F (T ) = {0}. Let M be a maximal subsystem not

containing A and suppose m ∈ M, m /∈ A. We prove m 6∈ F (T ). Since m 6∈ CT (A) = A, there

exists a ∈ A such that [m, a, T ] 6= 0. Define θ : T → T by putting θ = idT + L(m, a). Since

L(m, a)2 = 0, (idT + L(m, a))(idT − L(m, a)) = idT . Then θ is an automorphism of T . Put

M1 = θ(M). Clearly, M1 is a maximal subsystem of T . If m ∈ M1, then there is m′ ∈ M such

that m = m′ + [a, m, m′], so [a, m, m′] ∈ M .

Since [a, m, [a, m, m′]] ∈ [A, T, A] = {0}, [a, m, m] = [a, m, m′ + [a, m, m′]] = [a, m, m′] +

[a, m, [a, m, m′]] = [a, m, m′] ∈ M . Then [a, m, m] = [a, m, m′] ∈ A ∩ M = {0}, i.e., there is an

element m ∈ T such that [m, a, m] = 0. But [m, a, T ] 6= 0, a contradiction. So m /∈ M1 = θ(M),

namely, m /∈ F (T ). It follows that F (T ) = {0}. Thus F (T ) is an ideal of T . 2

3. On φ-free Lie supertriple systems

Definition 3.1 T is called φ-free if φ(T ) = {0}.

Lemma 3.2 Let A be an ideal of T and let B be a subsystem of T which is minimal with

respect to T = A + B. Then A ∩ B ⊆ φ(B).

Proof Suppose that A∩B 6⊆ φ(B). Then A∩B 6⊆ F (B) since A∩B is an ideal of B and φ(B)

is the largest ideal of B which is contained in F (B). It follows that there is a maximal subalgebra

M of B such that A∩B 6⊆ M . Clearly, B = A∩B + M , and so T = A+ (A∩B + M) = A+ M ,
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which contradicts the minimality of B. Hence A ∩ B ⊆ φ(B). 2

Lemma 3.3 Let I be an abelian ideal of T . If I ∩ φ(T ) = {0}, then there is a subsystem B of

T such that T = I+̇B.

Proof Choose a subsystem B of T to be minimal with respect to T = I+B. Then I∩B ⊆ φ(B)

by virtue of Lemma 3.2. It is clear that I ∩ B is an ideal of T since [T, I, I] = {0}. Hence

I ∩ B ⊆ φ(T ) by means of Lemma 2.3. It follows that I ∩ B ⊆ I ∩ φ(T ) = {0} and the result

follows. 2

Definition 3.4 T is called complemented if for each subsystem A of T , there exists a subsystem

B of T such that T = 〈A, B〉 and A ∩ B = {0}, where 〈A, B〉 denotes T generated by A and B.

Lemma 3.5 If T is complemented, then T is φ-free.

Proof If F (T ) 6= {0}, then there is a subsystem A of T such that T = 〈F (T ), A〉. Let B be

a maximal subsystem of T containing A. So T = 〈F (T ), A〉 ⊆ 〈F (T ), B〉 ⊆ B, a contradiction.

Hence F (T ) = φ(T ) = {0} and T is φ-free. 2

Lemma 3.6 If T is complemented and B is an ideal of T , then T/B is complemented.

Proof Consider T/B. Let H/B ⊆ T/B. Then there exists a proper subsystem K of T such

that T = 〈H, K〉 and H ∩ K = {0}. Therefore, T/B = 〈H/B, (K + B)/B〉. It is easy to show

that H ∩ (K + B) = B, so (H/B) ∩ ((K + B)/B) = {0}. Hence T/B is complemented. 2

Theorem 3.7 If A is a minimal abelian ideal of T , then T is complemented if and only if there

exists a subsystem B of T such that T = A+̇B and B is complemented.

Proof (⇒). If T is complemented, then T is φ-free in the light of Lemma 3.5. So there

exists a subsystem B of T such that T = A+̇B by means of Lemma 3.3. It is clear that B is

complemented by virtue of Lemma 3.6.

(⇐). Suppose that T = A+̇B and B is complemented, where B is a subsystem of T . Let

U be a subsystem of T . We need to find a subsystem W of T such that T = 〈U, W 〉 and

U ∩W = {0}. Since B is complemented, there is a subsystem V of T with respect to A ⊆ V ⊆ T

such that B ∼= T/A = 〈(U + A)/A, V/A〉 and ((U + A)/A) ∩ (V/A) = {0}. So 〈U + A, V 〉 = T

and (U + A) ∩ V = A. We consider three cases.

(1) If A ∩ U = {0}, then T ⊇ 〈U, V 〉 = 〈〈U, A〉, V 〉 ⊇ 〈U + A, V 〉 = T , that is, T = 〈U, V 〉.

Since (U +A)∩V = A, we have dim((U +A)∩V ) = dimA, that is, dimU +dimA−dim(U ∩A)+

dimV −dim(U+V ) = dimA and dimU+dimA−dim(U∩A)+dimV −dimU−dimV +dim(U∩V ) =

dimA. So dim(U ∩ A) = dim(U ∩ V ). Since U ∩ A ⊆ U ∩ V , we have U ∩ A = U ∩ V = {0}. So

we can put W = V . Hence 〈U, W 〉 = T and U ∩ W = {0}.

(2) If A ∩ U 6= {0} and A ⊆ U , then we put W = V ∩ B. Since 〈U, W 〉 = 〈U, V ∩ B〉 =

〈U, A, V ∩ B〉 = 〈U, 〈A, V ∩ B〉〉 ⊇ 〈U, A + V ∩ B〉 = 〈U, V 〉 = T , we have 〈U, W 〉 = T . So

U ∩W = U ∩ (V ∩B) = (U ∩ V )∩B ⊆ A ∩B = {0} since (U + A) ∩ V = A. Hence 〈U, W 〉 = T
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and U ∩ W = {0}.

(3) If A ∩ U 6= {0} and A 6⊆ U , then we put W = V ∩ B. So A ⊆ 〈U, W 〉. For, if not,

let M be a maximal subsystem of T with respect to 〈U, W 〉 ⊆ M . Since dim(V ∩ B + A) =

dim(V ∩B)+dimA−dim(V ∩B∩A) = dim(V ∩B)+dimA = dimV +dimA+dimB−dim(V +B) =

dimV + dimT − dimT = dimV by means of T = A+̇B and A ⊆ V , we have V ∩ B + A = V by

virtue of A+V ∩B ⊆ V . So 〈U, W, A〉 = 〈U, V ∩B, A〉 = 〈U+A, V ∩B, A〉 = 〈U+A, 〈V ∩B, A〉〉 =

〈U +A, V 〉 = T . If A ⊆ M , then 〈U, W, A〉 ⊆ M , a contradiction. Hence A 6⊆ M and this implies

T = A + M .

If A∩M 6= {0}, then [A∩M, T, T ] = [A∩M, A+ M, A+M ] ⊆ A∩M by [T, A, A] = {0}, so

A∩M is an abelian ideal of T . Since A is a minimal abelian ideal of T , we have a contradiction.

Then A ∩ M = {0} and hence U ∩ A ⊆ M ∩ A = {0}, this contradicts A ∩ U 6= {0}. Thus

〈U, W 〉 = 〈U + A, W + A〉 = 〈U + A, V ∩B + A〉 = 〈U + A, V 〉 = T and U ∩W = U ∩ (V ∩B) =

U ∩ V ∩ B = U ∩ A ∩ B = {0} since U ∩ A ⊆ U ∩ V . The result follows. 2
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