
Journal of Mathematical Research & Exposition

May, 2010, Vol. 30, No. 3, pp. 423–428

DOI:10.3770/j.issn:1000-341X.2010.03.006

Http://jmre.dlut.edu.cn

The Uniqueness of Decomposition of Symplectic Ternary
Algebras with Trivial Center

Xi Mei BAI∗, Wen Li LIU

College of Mathematics and Computer, Hebei University, Hebei 071002, P. R. China

Abstract In this paper, the authors define the center of a Symplectic ternary algebra, and

investigate the relationship between the center of a Symplectic ternary algebra and that of the Lie

triple system associated with it. As an application of the relationship, the unique decomposition

theorem for Symplectic ternary algebras with trivial center is obtained.
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1. Introduction

The algebras studied here are a generalization of the class of ternary algebras given in [1],

which are, in turn, a variation of Freudenthal triple systems [2]. The advantage of the latest

algebras, which we call Symplectic ternary algebras, is that they are defined by identities and

hence admit direct sums. Faulkner and Ferrar have investigated the structure of this algebra.

They have proved that semisimple Symplectic ternary algebras can be decomposed into simple

ideals and given a classification of simple algebras over algebraically closed fields of characteristic

zero. They gave a construction of a Lie triple system from a Symplectic ternary algebra, and

related notions of ideal and form of a symplectic ternary algebra to the parallel notions in a Lie

triple system constructed from the symplectic ternary algebra.

It is well known that a Lie triple system T with trivial center can be decomposed into the

direct sum of simple ideals, and the decomposition is unique. The purpose of the present paper is

to investigate this problem for Symplectic ternary algebras. Firstly, we recall some fundamental

notions and facts which can be found in [2] or [3].

If U is a ternary algebra with trilinear product 〈x, y, z〉 satisfying

S(x, y) = L(x, y) − L(y, x) = R(x, y) −R(y, x), (1)

S(x, y)R(z, w) = R(z, w)S(x, y) = R(S(x, y)z, w) = R(z, S(x, y)w), (2)

[R(x, y), R(z, w)] = R(R(z, w)x, y) = R(x,R(w, z)y), (3)
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for all x, y, z, u, v ∈ U , where 〈x, y, z〉 = L(x, y)z = R(y, z)x = U(x, z)y, we say that U is a

Symplectic ternary algebra.

Example 1.1 ([2]) If U is a vector space with a nondegenerate skew form 〈 , 〉 , then 〈 , , 〉

defined by

〈x, y, z〉 = 1/2(〈x, y〉z + 〈y, z〉x+ 〈x, z〉y), x, y, z ∈ U,

satisfies (1)–(3).

The verification of Example 1.1 is straightforward, which means that U is a Symplectic

ternary algebra.

A subspace I of a Symplectic ternary algebra U is called a subalgebra if 〈I, I, I〉 ⊆ I. An

ideal of a Symplectic ternary algebra U is a subspace I such that the product of an element of I

with any two elements of U in any order lies in I. Indeed, if 〈U, I, U〉 ⊆ I and either 〈I, U, U〉 ⊆ I

or 〈U,U, I〉 ⊆ I, then I is an ideal of U .

An endomorphism of a Symplectic ternary algebra U is a linear transformation ϕ of U

satisfying ϕ〈x, y, z〉 = 〈ϕ(x), ϕ(y), ϕ(z)〉. Clearly, Kerϕ is an ideal of U .

A Lie triple system over a field F is a vector space T with a trilinear product [ , , ] satisfying

[x, y, y] = 0, (4)

[x, y, z] + [y, z, x] + [z, x, y] = 0, (5)

[[x, y, z], u, v] = [[x, u, v], y, z] + [x, [y, u, v], z] + [x, y, [z, u, v]], (6)

for all x, y, z, u, v ∈ T , where [x, y, z] = L(x, y)z = R(y, z)x.

An ideal of a Lie triple system T is a subspace I for which [T, T, I] ⊆ I.

Finally, we recall the following fact [2] which will be needed in the sequel.

Lemma 1.1 ([2]) If U is a Symplectic ternary algebra, then T (U) = U ⊕ U will be a Lie triple

system with the following product
[ (

a

b

) (

c

d

) (

e

f

) ]

=

(

R(c, f) −R(e, d) S(e, c)

S(d, f) R(f, c) −R(d, e)

)(

a

b

)

=

(

〈a, c, f〉 − 〈a, e, d〉 + 〈e, c, b〉 − 〈c, e, b〉

〈d, f, a〉 − 〈f, d, a〉 + 〈b, f, c〉 − 〈b, d, e〉

)

. (7)

We call T (U) the Lie triple system associated with U .

2. The center of Symplectic ternary algebras

In this section, we define the center, C(U), of a Symplectic ternary algebra U , and enumerate

several elmentary results concerning C(U).

Definition 2.1 For a subspace S of a Symplectic ternary algebra U , we define the centralizer of

S in U , CU (S) := {x ∈ U | 〈x, S, U〉 = 〈S, x, U〉 = 〈x, U, S〉 = 〈U, x, S〉 = 0}. In fact, by identity

(1), we have 〈U, S, x〉 = 〈S,U, x〉 = 0, ∀x ∈ CU (S). In particular, C(U) := CU (U) = {x ∈ T |
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〈x, U, U〉 = 〈U, x, U〉 = 0} is the center of U .

Definition 2.2 The centralizer of a subspace S in a Lie triple system T is the set of

CT (S) := {x ∈ T | L(x, a) = R(a, x) = 0, ∀a ∈ S}.

In particular, C(T ) := CT (T ) = {x ∈ T | [T, T, x] = 0} is the center of T .

Lemma 2.1 If U is a Symplectic ternary algebra, then the following statements hold:

(i) If S is a subset of U and S 6= ∅, then CU (S) is a subalgebra of U ;

(ii) If S is an ideal of U , then CU (S) is an ideal of U .

Proof 1) It is easily seen that CU (S) is a subspace. Now we prove 〈x, y, z〉 ∈ CU (S), for any

x, y, z ∈ CU (S). For any s ∈ S, and u ∈ U , by identity (3) we have

〈〈x, y, z〉, s, u〉 = 〈〈x, s, u〉, y, z〉 + 〈x, 〈y, s, u〉, z〉 + 〈x, y, 〈z, u, s〉〉 = 0, (8)

and

〈s, 〈x, y, z〉, u〉 = 〈〈s, x, u〉, y, z〉 − 〈〈x, y, z〉x, u〉 − 〈s, x, 〈u, z, y〉〉 = 0. (9)

The similar argument shows that 〈〈x, y, z〉, u, s〉 = 〈u, 〈x, y, z〉, s〉 = 0. The proof of (i) is com-

pleted.

2) By Definition 2.1, it suffices to prove that a permutation of 〈CU (S), U, U〉 is contained

in CU (S). In order to show that CU (S) contains 〈CU (S), U, U〉, let us consider x ∈ CU (S),

u, u1, u2 ∈ U , and s ∈ S. By virtue of (3), we have

〈〈x, u, u1〉, s, u2〉 = 〈〈x, s, u2〉, u, u1〉 + 〈x, 〈u, s, u2〉, u1〉 + 〈x, u, 〈u1, u2, s〉〉 = 0 (10)

and

〈s, 〈x, u, u1〉, u2〉 = 〈〈x, u, u1〉, u2, s〉 = 〈u2, 〈x, u, u1〉, s〉 = 0.

This means 〈CU (S), U, U〉 ⊆ CU (S). The proof for 〈U,CU (S), U〉 ⊆ CU (S) is analogous, which

finishes the proof. 2

Lemma 2.2 If T (U) is the Lie triple system associated with a symplectic ternary algebra U ,

then T (C(U)) = C(T (U)).

Proof Since the identity (7) is zero for e, f ∈ C(U), we have T (C(U)) ⊆ C(T (U)). On the

other hand, by applying (7) to
(

e

f

)

∈ C(T (U)) and letting b = d = 0, we get 〈a, c, f〉 = 0. Let

a = d = 0. We have 〈b, f, c〉 = 0. Hence f ∈ C(U). A similar calculation shows that e ∈ C(U).

Therefore C(T (U)) ⊆ T (C(U)), which completes the proof. 2

Theorem 2.1 If a Symplectic ternary algebra U has the decomposition U = U1 ⊕ U2, where

U1, U2 are ideals of U , then T (U) = T (U1) ⊕ T (U2).

Proof For
(

e
f

)

∈ T (U1), and
(

a
b

)

,
(

c
d

)

∈ T (U). Since U1 is an ideal of U , by (7), it is easy to

prove that T (U1) is an ideal of T (U). A similar argument works for T (U2). Since U1 ∩U2 = {0},

we have T (U1) ⊕ T (U2) ⊆ T (U). Now we verify that T (U) ⊆ T (U1) ⊕ T (U2). Assume that
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a = a1 + a2, b = b1 + b2, ai, bi ∈ Ui. Since
(

a

b

)

=

(

a1 + a2

b1 + b2

)

=

(

a1

b1

)

+

(

a2

b2

)

∈ T (U1) + T (U2),

we have T (U) ⊆ T (U1) ⊕ T (U2). The proof is completed. 2

The following two Lemmas (Lemma 2.3 and Lemma 2.4) were given in [3].

Lemma 2.3 ([3]) If a Lie triple system T has the decomposition T = T1 ⊕ T2, where T1, T2 are

ideals of T , then C(T ) = C(T1) ⊕ C(T2).

Theorem 2.2 If a Symplectic ternary algebra U has the decomposition: U = U1 ⊕ U2, where

U1, U2 are ideals of U , then C(U) = C(U1) ⊕ C(U2).

Proof This is an immediate consequence of Theorem 2.1, Lemmas 2.2 and 2.3. 2

Lemma 2.4 ([3]) If a Lie triple system T can be decomposed into the direct sum of two ideals:

T = T1 ⊕ T2, and A is a subsystem of T such that T1 ⊆ A, then A = T1 ⊕ (T2 ∩A).

Combining Theorem 2.1 with Lemma 2.4, we have the following lemma:

Lemma 2.5 If a Symplectic ternary algebra U can be decomposed into the direct sum of two

ideals: U = U1 ⊕ U2, and A is a subalgebra of U such that U1 ⊆ A, then A = U1 ⊕ (U2 ∩A).

3. The unique decomposition theorem

In this section, we will discuss the unique decomposition theorem for Symplectic ternary

algebras.

Definition 3.1 If ϕ is an endomorphism of a Symplectic ternary algebra U , satisfying

ϕL(a, b) = L(a, b)ϕ,ϕU(a, b) = U(a, b)ϕ,

then we say that ϕ is a U -endomorphism of U .

Example 3.1 If U is the direct sum of two ideals U = U1 ⊕ U2, we define a linear map π:

U → U1 by π(u1 + u2) = u1. By direct calculation, we have that π is a U -endomorphism of U .

Lemma 3.1 Let ϕ be a U -endomorphism of U . Then the following statements hold:

1) U = Kerϕk ⊕ Imϕk, for some integer k;

2) If U is indecomposable, then ϕk = 0, or ϕ ∈ AutU .

Proof 1) Let f(λ) be the minimum polynomial of ϕ and f(λ) = λkg(λ). As λ and g(λ) are

coprime polynomials, there are two polynomials u(λ), v(λ) such that u(λ)g(λ) + v(λ)λk = 1.

Hence we have

u(ϕ)g(ϕ)y + v(ϕ)ϕky = y, ∀y ∈ U

and

u(ϕ)g(ϕ)y ∈ Kerϕk, v(ϕ)ϕky ∈ Imϕk.
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It then follows that U = Kerϕk + Imϕk.

For any y ∈ Kerϕk ∩ Imϕk, clearly, ϕky = 0, and there is y0 ∈ U satisfying ϕky0 = y. Thus

y = u(ϕ)g(ϕ)y + v(ϕ)ϕky = ϕku(ϕ)g(ϕ)y0 = 0.

Hence the Symplectic ternary algebra U can be decomposed into the direct sum of subspaces:

U = Kerϕk ∔ Imϕk.

It remains to show that both Kerϕk and Imϕk are ideals. As ϕ is a U -endomorphism, so is

ϕk. It is easy to prove that Kerϕk is an ideal of U . Now if we take a vector y in Imϕk, since ϕk

is a U -endomorphism, for x1, x2 ∈ U , we have

〈x1, x2, y〉 = 〈x1, x2, ϕ
ky0〉 = L(x1, x2)ϕ

k(y0) = ϕk〈x1, x2, y0〉 ∈ Imϕk,

〈x1, y, x2〉 = 〈x1, ϕ
ky0, x2〉 = U(x1, x2)ϕ

k(y0) = ϕk〈x1, y0, x2〉 ∈ Imϕk.

These two equations yield that Imϕk is an ideal of U . Then 1) holds.

2) If U is indecomposable, then Kerϕk = U or Imϕk = U. By the result 1), we get that

ϕk = 0 or ϕ ∈ AutU .

Lemma 3.2 If U is indecomposable and ϕ1, ϕ2, . . . , ϕn,
∑j

i=1
ϕi (j = 1, 2, . . . , n) are all U -

endomorphisms and if
∑n

i=1
ϕi = id, then ϕi is an automorphism for some integer i.

Proof We use induction on n. The result is trivial for the case n = 1. Suppose the result holds

for the case n− 1. Now we prove the case n.

Set
∑n−1

i=1
ϕi = ψ. Since ψ+ ϕn = id, we have ψϕn = ϕnψ. If ϕn, ψ are not automorphisms,

by Lemma 3.1, then there are two positive integers k, h such that ψk = ϕh = 0.

Set m = k + h+ 1. We have

(ψ + ϕn)m =
m
∑

j=0

Cj
mψ

jϕm−j
n = 0.

But this leads to a contradiction for ψ + ϕn = id. Therefore, ϕn ∈ AutU or ψ ∈ AutU . If

ϕn ∈ AutU , then the result is proved. If ψ ∈ AutU , since

〈x, y, z〉 = ψψ−1〈x, y, z〉 = ψ〈x, y, ψ−1z〉 = ψ〈x, ψ−1y, z〉,

we have ψ−1 is a U -endomorphism of U , and so is ϕiψ
−1 for i < n. Since

ϕ1ψ
−1 + ϕ2ψ

−1 + · · · + ϕn−1ψ
−1 = id,

by the induction, we have ψ−1ϕi ∈ AutU , which means that ϕi ∈ AutU . The proof is completed.

2

Theorem 3.1 If U is a symplectic ternary algebra with trivial center, and can be decomposed

into the direct sum of ideals, i.e.,

U = M1 ⊕M2 ⊕ · · · ⊕Ms = N1 ⊕N2 ⊕ · · · ⊕Nt, (11)

where Mi, Ni are indecomposable, then s = t and Mi = Ni, i = 1, 2, . . . , s by adjusting their

orders.
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Proof We prove the result by induction on s. If s = 1, we are done. Suppose the result

holds for s − 1. Now we prove the case s. Set M = M2 ⊕ · · · ⊕ Ms, N = N2 ⊕ · · · ⊕ Nt,

then U = M1 ⊕ M = N1 ⊕ N . By Theorem 2.2, it is clear that C(M) = C(N) = 0, and

M = CU (M1),M1 = CU (M), N = CU (N1), N1 = CU (N). To prove the result, we need to prove

that M1 = N1 and M = N .

We denote by π, σ, ρi and τi a projection from U into M1, an imbedding from M1 into U ,

the projection from U into Ni and an imbedding from Ni to U , respectively. It is easy to see that

π, ρ1, ρ2, . . . , ρn and
∑k

i=1
ρi (k = 1, 2, . . . , n) are all U -endomorphisms of U , and

∑n

i=1
ρi = idU .

Set π∗

i = πτi = π|Ni
, ρ∗i = ρiσ = ρi|M1

. Since

π∗

i ρ
∗

iL(x, y)z = π∗

i L(x, y)ρiz = πL(x, y)ρiz

= L(x, y)πρiz = L(x, y)π∗

i ρ
∗

i z, ∀x, y, z ∈M1, (12)

we have π∗

i ρ
∗

iL(x, y) = L(x, y)π∗

i ρ
∗

i . Similarly, we can verify that π∗

i ρ
∗

iU(x, y) = U(x, y)π∗

i ρ
∗

i , for

x, y ∈M1. Hence, π∗

i ρ
∗

i is an M1-endomorphism of M1.

We may define a projection
∑j

i=1
τiρi by :(

∑j

i=1
τiρi)(x) =

∑j

i=1
τiρi(x), ∀x ∈ U. It is easy

to see that this projection is a U -endomorphism of U , and then π(
∑j

i=1
τiρi)σ =

∑j

i=1
π∗

i ρ
∗

i is

an M1-endomorphism of M1. For m ∈M1, since

m = π(m) = π
n
∑

i=1

ρi(m) =
n
∑

i=1

π∗

i ρ
∗

i (m),

we have
∑n

i=1
π∗

i ρ
∗

i = idM1
. By Lemma 3.2, there is an integer i such that π∗

i ρ
∗

i ∈ AutM1. If

we adjust the order of the sequence N1, N2, . . . , Nt, suppose i = 1, then we have that ρ∗
1

is a

1 − 1 projection. Thus Kerρ∗
1

= M1 ∩ Kerρ1 = M1 ∩ N = {0}. Since 〈M1, N, U〉, 〈N,M1, U〉,

〈M1, U,N〉, 〈U,M1, N〉 are all contained in M1 ∩ N = {0}, we have M1 ⊆ CU (N) = N1. By

Lemma 2.5, we have N1 = M1 ⊕ (N1 ∩M). But N1 is indecomposable, hence N1 = M1 and

M = N . 2
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