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Abstract In this paper, we investigate a discrete semi-ratio dependent predator-prey system

with Holling IV type functional response. For general nonautonomous case, sufficient conditions

which ensure the permanence and the global stability of the system are obtained. Meanwhile,

we discuss the existence of the positive periodic solution and global stability of the system.
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1. Introduction

The aim of this paper is to investigate the dynamic behavior of the following discrete form

of (1):

x(k + 1) =x(k) exp
{

a(k) − b(k)x(k) − m(k)x(k)y(k)

(A(k) + x(k))(B(k) + x(k))

}
,

y(k + 1) =y(k) exp
{

d(k) − e(k)
y(k)

x(k)

}
, (1)

where x(k) is the density of prey species at kth generation and y(k) is the density of predator

species at kth generation. In (1), it has been assumed that the prey grows logistically with

growth rate a(k) and carrying capacity a(k)
b(k) in the absence of predation. The predator consumes

the prey according to the functional response m(k)x2(k)
(A(k)+x(k))(B(k)+x(k)) , and grows logistically with

growth rate d(k) and carrying capacity x(k)
e(k) proportional to the population size of prey (or prey

abundance). The parameter e(k) is a measure of the food quality that the prey provides for

conversion into predator birth.

Recently, many scholars paid attention to the non-autonomous discrete population models.
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Such kind of model could be more appropriate than the continuous one when there are nonover-

lapping generations in the population [1–3].

As was pointed out by Berryman [4], the dynamic relationship between predators and their

preys has long been and will keep on to be one of the dominant themes in both ecology and

mathematical ecology due to its universal existence and importance. Several scholars have done

their work on the permanence and existence of positive periodic solution about several species

discrete predator-prey system, see [5–7] and the references cited therein. However, so far as

we know, to this day, still no scholar has done the work on the so-called semi-ratio dependent

predator-prey system.

Fan [8] studied the following semi-ratio-dependent predator-prey system:

x′ = x[a(t) − b(t)x] − c(t, x)y, y′ = y[d(t) − e(t)
y

x
]. (2)

For the functional response c(t, x) = m(t)x2

(A(t)+x)(B(t)+x) , we have the following model of R.M. May,

also known as the so-called Holling-Tanner predator-prey model [9, 10], which takes the form of

x′ = x[a(t) − b(t)x] − m(t)x2y

(A(t) + x)(B(t) + x)
, y′ = y[d(t) − e(t)

y

x
]. (3)

Obviously, system (1) is the counterpart of continuous semi-ratio-dependent predator-prey sys-

tem (3). As far as we know, this is the first discrete semi-ratio-dependent predator-prey system

ever considered. The aim of this paper is to investigate the persistence and global stability prop-

erty of the system (1) by developing the analysis technique of Huo and Li [11] and Chen and

Zhou [12].

We say that system (1) is permanent if there are positive constants M and m such that for

each positive solution (x(k), y(k)) of system (1) there hold

m ≤ lim
k→∞

inf x(k) ≤ lim
k→∞

sup x(k) ≤ M,

m ≤ lim
k→∞

inf y(k) ≤ lim
k→∞

sup y(k) ≤ M.

Throughout this paper, we assume that a(k), b(k), m(k), A(k), d(k), e(k) are all bounded non-

negative sequences, and use the following notations for any bounded sequence {x(n)},

xu = sup
n∈N

x(n), xl = inf
n∈N

x(n).

For biological reasons, we only consider solution (x(k), y(k)) with x(0) > 0, y(0) > 0.

Then system (1) has a positive solution (x(k), y(k)) passing through (x(0), y(0)).

This paper is organized as follows: In Section 2, we give sufficient conditions which guarantee

the permanence of the system (1). In Section 3, we obtain sufficient conditions which guarantee

the global stability of the positive solution of system (1). As a consequence, for periodic case,

we obtain sufficient conditions which ensure the existence of a globally stable positive solution

of system (1).
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2. Permanence

In this section, we establish a permanence result for system (1).

Lemma 1 For every solution (x(k), y(k)) of system (1), we have

lim
k→+∞

sup x(k) ≤ p, (4)

where p = 1
bl exp(au − 1).

Proof To prove (4), we first assume that there exists an l0 ∈ N such that x(l0 + 1) ≥ x(l0).

Then

a(l0) − b(l0)x(l0) −
m(l0)x(l0)y(l0)

(A(l0) + x(l0))(B(l0) + x(l0))
≥ 0.

Hence

x(l0) ≤
a(l0)

b(l0)
≤ au

bl
. (5)

By applying the fact exp(x−1)
x

≥ 1, it immediately follows that

au

bl
≤ 1

bl
exp(au − 1).

It follow from (5) that

x(l0 + 1) = x(l0) exp
{
a(l0) − b(l0)x(l0) −

m(l0)x(l0)y(l0)

(A(l0) + x(l0))(B(l0) + x(l0))
)
}

≤ x(l0) exp{au − blx(l0)} ≤ 1

bl
exp(au − 1) = p,

where we have used the fact maxx∈R x exp(b − ax) = exp(b−1)
a

for a, b > 0.

We claim that

x(k) ≤ p for k ≥ l0.

Assume that there exists a q0 > l0 such that x(q0) > p. Then q0 ≥ l0 + 2. Let q̃0 ≥ l0 + 2 be the

smallest such that x(q̃0) > p. Then x(q̃0 − 1) < x(q̃0). The above argument leads to x(q̃0) < p,

a contradiction. This proves the claim. 2

Now we assume that x(k + 1) < x(k) for all k ∈ N . In particular, limk→+∞ x(k) exists,

denoted by x. We claim that x ≤ au

bl . Assume x > au

bl . Taking limit in the first equation in

system gives

lim
k→∞

(
a(k) − b(k)x(k) − m(k)x(k)y(k)

(A(k) + x(k))(B(k) + x(k))

)
= 0,

which is a contradiction since:

a(k) − b(k)x(k) − m(k)x(k)y(k)

(A(k) + x(k))(B(k) + x(k))
≤ a(k) − b(k)x(k) ≤ au − blx < 0

for k ∈ N large enough. This proves the claim.

Lemma 2 For every solution (x(k), y(k)) of system (1), we have

lim
k→∞

sup y(k) ≤ q, (6)
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where q = p

el exp{du − 1}.

Proof For any ε > 0, according to Lemma 1, there exists a k1 ∈ N, x(k) ≤ p + ε for all k ≥ k1.

Thus, by using the second equation in system (1), for k ≥ k1, one has

y(k + 1) ≤ y(k) exp
{
d(k) − e(k)

y(k)

p + ε

}
. (7)

To prove (6), we first assume that there exists an l0 > k1, such that y(l0 + 1) ≥ y(l0), then it

follows from (7) that

d(l0) − e(l0)
y(l0)

x(l0)
≥ 0.

And so,

y(l0) ≤
d(l0)

e(l0)
x(l0) ≤

d(l0)

e(l0)
(p + ε) ≤ du

el
(p + ε). (8)

By using (8), one has

y(l0 + 1) ≤ y(l0) exp
{
d(l0) − e(l0)

y(l0)

x(l0)

}
≤ y(l0) exp

{
d(l0) − e(l0)

y(l0)

p + ε

}

≤ p + ε

el
exp{du − 1}.

Let

qε =
p + ε

el
exp{du − 1}.

We claim that y(k) ≤ qε for k ≥ l0. Assume that there exists a q1 > l0 such that y(q1) > qε.

Then q1 ≥ l0 + 2. Let q̃1 ≥ l0 + 2 be the smallest such that y(q̃1) > qε. Then y(q̃1 − 1) < y(q̃1).

The above argument produces that y(q̃1) < qε, This proves the claim.

Now assume y(k + 1) < y(k) for all k ≥ k1. In particular, limk→∞ y(k) exists, denoted by y.

We claim that

y ≤ du

el
(p + ε).

Assume

y >
du

el
(p + ε).

Taking limit in the second equation in system (1) gives

lim
k→∞

(
d(k) − e(k)

y(k)

x(k)

)
= 0,

which is a contradiction, since for k ≥ k1,

d(k) − e(k)
y(k)

x(k)
≤ du − el y(k)

p + ε
≤ du − el y

p + ε
< 0.

This proves the claim. Noting the fact that du

el (p + ε) ≤ p+ε

el exp{du − 1} and limε→0 qε = q. It

follows that (6) holds. This completes the proof of Lemma 2. 2

Lemma 3 Assume that

al − muq

(
√

Al +
√

Bl)2
> 0 (9)
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holds, where q is defined by (6). Then for every solution (x(k), y(k)) of system (1), we have

lim
k→∞

inf x(k) ≥ α, (10)

where

α =
al − muq

(
√

Al+
√

Bl)2

bu
exp

{
al − bup − muq

(
√

Al +
√

Bl)2

}
.

Proof Condition (9) implies that there exists positive number ε > 0, such that

al − mu(q+ε)

(
√

Al+
√

Bl)2

bu
> 0.

For above ε, from Lemmas 1 and 2 we know that there exists k2 such that

x(k) ≤ p + ε, y(k) ≤ q + ε for all k ≥ k2. (11)

To prove (10), We first assume that there exists an l0 > k2 such that x(l0 + 1) ≤ x(l0), which

derives

a(l0) − b(l0)x(l0) −
m(l0)x(l0)y(l0)

(A(l0) + x(l0))(B(l0) + x(l0))
≤ 0.

Then, from (11) it follows that

x(l0) ≥
a(l0) − m(l0)x(l0)(q+ε)

(A(l0)+x(l0))(B(l0)+x(l0))

b(l0)
≥

al − mu(q+ε)

(
√

Al+
√

Bl)2

bu
. (12)

It follows from (12) that

x(l0 + 1) = x(l0) exp
{
a(l0) − b(l0)x(l0) −

m(l0)x(l0)y(l0)

(A(l0) + x(l0))(B(l0) + x(l0))

}

≥ x(l0) exp
{
al − bux(l0) −

mux(l0)y(l0)

(A(l0) + x(l0))(B(l0) + x(l0))

}

≥
al − mu(q+ε)

(
√

Al+
√

Bl)2

bu
exp

{
al − bu(p + ε) − mu(q + ε)

(
√

Al +
√

Bl)2

}
= αε.

We claim that x(k) ≥ αε for k ≥ l0. Assume that there exists a q2 > l0, such that x(q2) < αε, then

q2 ≥ l0 +2. Let q̃2 ≥ l0 +2 be the smallest integer such that x(q̃2) < αε. Then x(q̃2 −1) > x(q̃2).

The above argument produces x(q̃2) ≥ αε.

Now we assume that x(k + 1) > x(k), for all k ≥ k2. In particular, limk→∞ x(k) exists,

denoted by x. We claim that

x ≥
al − mu(q + ε)

(
√

Al +
√

Bl)2

bu
.

Assume

x <

al − mu(q + ε)

(
√

Al +
√

Bl)2

bu
.

Taking limit in the first equation in system (1) gives

lim
k→∞

{
a(k) − b(k)x(k) − m(k)x(k)y(k)

(A(k) + x(k))(B(k) + x(k))

}
= 0,
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which results in a contradiction since

lim
k→∞

inf
{
a(k) − b(k)x(k) − m(k)x(k)y(k)

(A(k) + x(k))(B(k) + x(k))

}

≥ al − bux − mu(q + ε)

(
√

Al +
√

Bl)2
> 0.

This proves the claim. Note that au

bl ≤ p implies that

al − mu(q+ε)

(
√

Al+
√

Bl)2

bu
≥ αε.

The fact limε→0 αε = α implies that (10) holds. This completes the proof of Lemma 3. 2

Lemma 4 In addition to (9), assume further that

dl − euq

α
< 0 (13)

holds, where q, α are defined by (6) and (10), respectively. Then for every solution (x(k), y(k))

of system (1), we have

lim
k→∞

y(k) ≥ β,

where

β =
αdl

eu
exp{du − euq

α
}.

Proof From (13) one could take ε > 0, such that

dl − eu(q + ε)

(α − ε)
< 0.

For above ε > 0, according to Lemmas 1–3, there exists a k3 ≥ k2 such that for all k ≥ k3,

x(k) ≤ p + ε, y(k) ≤ q + ε, x(k) ≥ α − ε.

The rest of the proof of Lemma 4 is similar to that of Lemma 3 and we omit the detail here. 2

Theorem 1 Assume that (9) and (13) hold. Then system (1) is permanent.

It should be noticed that, from the proofs of Lemmas 1-4, we know that under the assumption

of Theorem 1, the set [α, p] × [β, q] is an invariant set of system (1).

3. Global stability

On the basis of permanence, we further investigate the stability of system (1) and provide

the following sufficient conditions that guarantee the global stability of system (1).

Theorem 2 Assume that (9) and (13) hold. Assume further that

λ =max{|1 − blα|, |1 − bup|} +
AuBupq + p3q

(Al + α)2(Bl + β)2
+

AuBupq + Aup2q + Bup2q + p3q

(Al + α)2(Bl + β)2
< 1,
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δ =max
{
|1 − euq

α
|, |1 − elβ

p
|
}

+
eupq

α2
< 1. (14)

Then for any two positive solutions (x(k), y(k)) and (x̃(k), ỹ(k)) of system (1), we have

lim
k→∞

(x̃(k) − x(k)) = 0, lim
k→∞

(ỹ(k) − y(k)) = 0. (15)

Proof Let

x(k) = x̃(k) exp u1(k), y(k) = ỹ(k) exp u2(k). (16)

The system (1) is equivalent to

u1(k + 1) =u1(k) − b(k)x̃(k)(eu1(k) − 1)−
(A(k)B(k)x̃(k)y(k) − x(k)x̃2(k)ỹ(k))(eu1(k) − 1)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
−

(A(k)B(k)x̃(k)ỹ(k) + A(k)x(k)x̃(k)ỹ(k))(eu2(k) − 1)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
−

(B(k)x̃(k)x(k)ỹ(k) + x(k)x̃2(k)ỹ(k))(eu2(k) − 1)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
,

u2(k + 1) =u2(k) − e(k)

x̃(k)x(k)
[x̃(k)ỹ(k)(eu2(k) − 1) − x̃(k)ỹ(k)(eu1(k) − 1)]. (17)

And so,

u1(k + 1) =
(
1 − b(k)x̃(k)eθ1(k)u1(k))u1(k)−

(A(k)B(k)x̃(k)y(k) − x(k)x̃2(k)ỹ(k))eθ1(k)u1(k)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
u1(k)−

(A(k)B(k)x̃(k)ỹ(k) + A(k)x(k)x̃(k)ỹ(k))eθ2(k)u2(k)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
u2(k)−

(B(k)x̃(k)x(k)ỹ(k) + x(k)x̃2(k)ỹ(k))eθ2(k)u2(k)

(A(k) + x(k))(B(k) + x(k))(A(k) + x̃(k))(B(k) + x̃(k))
u2(k),

u2(k + 1) =
(e(k)ỹ(k)eθ1(k)u1(k)x̃(k)

x(k)x̃(k)

)
u1(k) +

(
1 − e(k)ỹ(k)eθ2(k)u2(k)

x(k)

)
u2(k), (18)

where θ1(k), θ2(k) ∈ [0, 1]. To complete the proof, it suffices to show

lim
k→∞

u1(k) = 0, lim
k→∞

u2(k) = 0.

In view of (14), we can choose ε > 0 small enough such that

λε =max{|1 − bl(α − ε)|, |1 − bu(p + ε)|} +
AuBu(p + ε)(q + ε) + (p + ε)3(q + ε)

(Al + α − ε)2(Bl + β − ε)2
+

AuBu(p + ε)(q + ε) + Au(p + ε)2(q + ε) + Bu(p + ε)2(q + ε) + (p + ε)3(q + ε)

(Al + α − ε)2(Bl + β − ε)2
< 1;

δε =max{|1 − eu(q + ε)

(α − ε)
|, |1 − el(β − ε)

p + ε
|} +

eu(p + ε)(q + ε)

(α − ε)2
< 1. (19)

For above ε > 0, according to Lemmas 1–4, there exists k∗ ∈ N such that

α − ε ≤ x(k) ≤ p + ε,



Research on a discrete semi-ratio-dependent predator-prey system with Holling IV type 449

β − ε ≤ y(k) ≤ q + ε

for all k ≥ k∗. Note that θ1(k), θ2(k) ∈ [0, 1] implies that x̃(k) exp{θ1(k)u1(k)} lies between x(k)

and x̃(k), and ỹ(k) exp{θ2(k)u2(k) lies between y(k) and ỹ(k). From (18), we get

|u1(k + 1)| =
(

max{|1 − bl(α − ε)|, |1 − bu(p + ε)|}+
AuBu(p + ε)(q + ε) + (p + ε)3(q + ε)

(Al + α − ε)2(Bl + β − ε)2

)
|u1(k)|+

AuBu(p + ε)(q + ε) + Au(p + ε)2(q + ε)

(Al + α − ε)2(Bl + β − ε)2
|u2(k)|+

Bu(p + ε)2(q + ε) + (p + ε)3(q + ε)

(Al + α − ε)2(Bl + β − ε)2
|u2(k)|,

|u2(k + 1)| =max{|1 − eu(q + ε)

(α − ε)
|, |1 − el(β − ε)

p + ε
|}|u2(k)|+

eu(p + ε)(q + ε)

(α − ε)2
|u1(k)|. (20)

Let γ = max{λε, δε}. Then γ < 1. In view of (20), for k ≥ k∗, we get

max{|u1(k + 1)|, |u2(k + 1)|} ≤ γ max{|u1(k)|, |u2(k)|}.

This implies

max{|u1(k)|, |u2(k)|} ≤ γk−k∗

max{|u1(k
∗)|, |u2(k

∗)|}.
Therefore, (15) holds and the proof is completed. 2

4. Existence and stability of periodic solution

In this section, we further assume that the coefficients of system (1) satisfies (21).

There exists a positive integer ω such that for k ∈ N ,

0 < a(k + ω) = a(k), 0 < b(k + ω) = b(k),

0 < m(k + ω) = m(k), 0 < d(k + ω) = d(k),

0 < e(k + ω) = e(k), 0 < A(k + ω) = A(k). (21)

Our first result concerns the existence of positive periodic solution of system (1).

Theroem 3 Assume that (9) and (13) hold. Then system (1) admits at least one positive

ω-periodic solution which we denote by (x̃(k), ỹ(k)).

Proof As mentioned at the end of Section 2,

D2 = [α, p] × [β, q]

is an invariant set of system (1). Thus, we can define a mapping F on D2 by

F (x(0), y(0)) = (x(ω), y(ω)),

for (x(0), y(0)) ∈ D2. Obviously, F depends continuously on (x(0), y(0)). Thus, F is continuous

and maps the compact set D2 into itself. Therefore, F has a fixed point. It is easy to see that
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the solution (x(k), y(k)) passing through this fixed point is an ω-periodic solution of the system

(1). This completes the proof of Theorem 3. 2

Theorem 4 Assume that (9), (13) and (14) hold. Then system (1) has a global stable positive

ω-periodic solution.

Proof Under the assumption of Theorem 4, it follows from Theorem 3 that system (1) admits

at least one positive ω-periodic solution. Also, Theorem 3 ensures the positive solution to be

globally stable. This completes the proof of Theorem 4. 2
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