General Induced Matching Extendability of G^{3}

Long Shu WU ${ }^{1}$, Yun Sheng YAN ${ }^{2}$, Qin WANG ${ }^{1, *}$
1. Department of Mathematics, China Jiliang University, Zhejiang 310018, P. R. China;
2. College of Science, Henan University of Technology, Henan 450052, P. R. China

Abstract

A graph G is induced matching extendable if every induced matching of G is included in a perfect matching of G. A graph G is generalized induced matching extendable if every induced matching of G is included in a maximum matching of G. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to $K_{1,3}$. The k-th power of G, denoted by G^{k}, is the graph with vertex set $V(G)$ in which two vertices are adjacent if and only if the distance between them is at most k in G. In this paper we show that, if the maximum matchings of G and G^{3} have the same cardinality, then G^{3} is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected claw-free graph, then G^{3} is generalized induced matching extendable.

Keywords near perfect matching; induced matching extendable; general induced matching extendability; power of graph.
Document code A
MR(2000) Subject Classification 05C05; 05C50
Chinese Library Classification O157.5

1. Introduction

The graphs considered in this paper are finite and simple. For a graph $G, V(G)$ and $E(G)$ denote, respectively, its vertex set and its edge set. For two vertex subsets X and Y in G, the distance between them, denoted by $d_{G}(X, Y)$, is the minimum length of a path connecting X and $Y . d_{G}(\{x\},\{y\})$ is written in shorter form as $d_{G}(x, y)$ for $x, y \in V(G)$. A component H of G is odd (even) if $|V(H)|$ is odd (even). The component number of G is denoted by $c(G)$ and the odd component number of G is denoted by $o(G)$. A graph G is claw-free, if G dose not contain any induced subgraph isomorphic to $K_{1,3}$. The k-th power of G, denoted by G^{k}, is the graph with vertex set $V(G)$ in which two vertices are adjacent if and only if they have distance at most k in G. For two graphs G and $H, G \cup H$ is used to denote the union of them. The join $G \vee H$ of disjoint graphs G and H is the graph obtained from the disjoint union $G \cup H$ by joining each vertex of G to each vertex of H. For $X \subseteq V(G)$, the neighbor set $N_{G}(X)$ of X is defined by

$$
N_{G}(X)=\{y \in V(G) \backslash X: \text { there is } x \in X \text { such that } x y \in E(G)\}
$$

[^0]$N_{G}(\{x\})$ is written in shorter form as $N_{G}(x)$ for $x \in V(G)$. For $S \subseteq V(G)$, set
$$
E(S)=\{u v \in E(G): u, v \in S\} .
$$

If $I \subseteq V(G)$ such that $E(I)=\emptyset, I$ is called an independent set of G. For $M \subseteq E(G)$, set

$$
V(M)=\{v \in V(G): \text { there is } x \in V(G) \text { such that } v x \in M\}
$$

$V(\{e\})$ is written in shorter form as $V(e)$ for $e \in E(G) . M \subseteq E(G)$ is a matching of G, if $V(e) \cap V(f)=\emptyset$ for every two distinct edges $e, f \in M$. A matching M of G is a maximum matching, if $|M| \geq\left|M^{\prime}\right|$ for every matching M^{\prime} of G. A matching M of G is a perfect matching, if $V(M)=V(G)$. A matching M of G is a near perfect matching, if $|V(M)|=|V(G)|-1$. A matching M of G is induced $[1,2]$, if $E(V(M))=M$. A graph G is induced matching extendable [3] (shortly, IM-extendable), if every induced matching of G is included in a perfect matching of G. A graph G is strongly IM-extendable, if every spanning supergraph of G is IM-extendable. A graph G is nearly induced matching extendable (shortly, nearly IM-extendable), if $G \vee K_{1}$ is induced matching extendable. A graph G is strongly nearly IM-extendable, if every spanning supergraph of G is nearly IM-extendable. A graph G is generalized induced matching extendable (shortly, generalized IM-extendable), if every induced matching of G is included in a maximum matching of G. A graph G is strongly generalized IM-extendable, if every spanning supergraph of G is generalized IM-extendable. The following is the famous Tutte's Theorem.

Tutte's Theorem ([4, 5]) A graph G has a perfect matching if and only if for every $S \subset V(G)$, $o(G-S) \leq|S|$.

Yuan proved in [6] that, for a connected graph G with $|V(G)|$ even, G^{4} is strongly IMextendable. Qian proved in [7] that, for a 2-connected graph G with $|V(G)|$ even, G^{3} is strongly IM-extendable, and for a locally connected graph G with $|V(G)|$ even, G^{2} is strongly IMextendable. It was shown in [8] that, for a connected graph G with a perfect matching, G^{3} is IM-extendable. In [9], it was shown that, if G is a graph with $|V(G)|$ even and without independent vertex cut, then G^{2} is strongly IM-extendable. These results solved three conjectures posed in [10].

We further study the IM-extendability of the 3-power of graphs. We show in this paper that, if the maximum matchings of G and G^{3} have the same cardinality, then G^{3} is generalized induced matching extendable. We also show that this result is best possible. As a result, we show that if G is a connected graph and has a near perfect matching, then G^{3} is nearly IM-extendable. We also show that if G is connected and claw-free, then G^{3} is generalized induced matching extendable.

2. Main results and proof

The following Lemma was shown in [8].
Lemma 1 ([8]) Suppose that G is a connected graph with $|V(G)| \geq 3$. If $I \subset V(G)$ such that $|I| \leq 2$ and $|I|$ has same parity as $|V(G)|$, then $G^{3}-I$ has a perfect matching.

Corollary 1 Suppose that G is a connected graph with $|V(G)| \geq 3$. If $I \subset V(G)$ such that $1 \leq|I| \leq 2$ and $|I|$ has opposing parity as $|V(G)|$, then $G^{3}-I$ has a near perfect matching.

Proof Arbitrarily select a vertex $u \in I$. Then $|I \backslash\{u\}|$ has the same parity as $|V(G)|$. Write $I^{\prime}=I \backslash\{u\}$. From Lemma 1, we know that $G^{3}-I^{\prime}$ has a perfect matching M. Suppose that $u v \in M$. Then $M \backslash\{u v\}$ is a near perfect matching of $G^{3}-I$. The result follows.

Corollary 2 Suppose that G is a connected graph with $|V(G)| \geq 3$ and $|V(G)|$ odd. Then G^{3} has a near perfect matching.

Proof For an edge $u v \in E(G)$, from Corollary 1, we know that $G^{3}-\{u, v\}$ has a near perfect matching M. Then $M \cup\{u v\}$ is a near perfect matching of G^{3}. The result follows.

Theorem 1 If the maximum matchings of G and G^{3} have the same cardinality, then G^{3} is generalized induced matching extendable.

Proof Let M be a maximum matching of G. It is clear that $G-V(M)$ is an independent set of G. Let N be an induced matching of G^{3}. For $e=x y \in N$, let P_{e} be a shortest (x, y)-path in G. Set

$$
E_{e}=E\left(P_{e}\right) \cup\left\{f \in M \text { : there is } u \in V\left(P_{e}\right) \text { such that } f \text { is incident to } u \text { in } M\right\} .
$$

Let H_{e} be the edge induced subgraph of G induced by E_{e}. Then H_{e} is connected. From the fact that $d_{G}(x, y) \leq 3$, it is easy to see that for every edge $z w \in M \cap E\left(H_{e}\right)$,

$$
d_{G}(\{x, y\},\{z, w\}) \leq 1 .
$$

Suppose that $e=x y$ and $f=u v$ are two distinct edges in N such that $V\left(H_{e}\right) \cap V\left(H_{f}\right) \neq$ \emptyset. Let z be a vertex in $V\left(H_{e}\right) \cap V\left(H_{f}\right)$. Let $z w$ be the edge such that $z w \in M$. By the definition of H_{e} and H_{f}, we know that $z w \in E\left(H_{e}\right) \cap E\left(H_{f}\right)$. Because $d_{G}(\{x, y\},\{z, w\}) \leq 1$ and $d_{G}(\{u, v\},\{z, w\}) \leq 1$, we must have $d_{G}(\{x, y\},\{u, v\}) \leq 3$. This contradicts the fact that N is an induced matching in G^{3}. So we must have for every two distinct edges $e=x y$ and $f=u v$ in $N, V\left(H_{e}\right) \cap V\left(H_{f}\right)=\emptyset$.

Now we distinguish the following two cases.
Case $1 V\left(H_{e}\right) \subseteq V(M)$. In this case, $E_{e} \cap M$ is a perfect matching of H_{e}. Then $\left|V\left(H_{e}\right)\right|$ must be even. By Lemma 1, $\left(H_{e}\right)^{3}-\{x, y\}$ has a perfect matching. Now for each edge $e=x y \in N$ with $\left|V\left(H_{e}\right)\right|$ even, $V\left(H_{e}\right) \subseteq V(M)$ and $\left|V\left(H_{e}\right)\right| \geq 4$, let M_{e} be a perfect matching in $\left(H_{e}\right)^{3}-\{x, y\}$. For $e=x y \in N$ with $\left|V\left(H_{e}\right)\right|=2$, we know that $V\left(H_{e}\right)=\{x, y\} \subseteq V(M)$ and we define $M_{e}=\emptyset$.

Case $2 H_{e}$ contains a vertex $u \in G-V(M)$. Then $\left|V\left(H_{e}\right)\right|$ must be odd. Note that H_{e} can only contain one such vertex u. Otherwise, suppose there is a vertex $v \in G-V(M), v \neq u$ and $v \in V\left(H_{e}\right)$. We must have $u, v \in V\left(P_{e}\right)$ and $u v \in E\left(G^{3}\right)$, a contradiction to the fact that the maximum matchings of G and G^{3} have the same cardinality. We have the following two subcases.

Case $2.1 u \in V\left(P_{e}\right) \backslash\{x, y\}$. Then by Corollary $1,\left(H_{e}\right)^{3}-\{x, y\}$ has a near perfect matching. Let M_{e} be a near perfect matching in $\left(H_{e}\right)^{3}-\{x, y\}$.

Case $2.2 u=x$ or $u=y$. Without loss of generality, suppose that $u=x$. Then $\left(H_{e}\right)^{3}-u$ has a perfect matching. Let $M_{e}{ }^{\prime}$ be a perfect matching in $\left(H_{e}\right)^{3}-u$ and suppose that $e^{\prime}=y t \in M_{e}{ }^{\prime}$. Let $M_{e}=M_{e}{ }^{\prime}-e^{\prime}$.

It can be seen that $\left(M \backslash\left(\cup_{e \in N} E\left(H_{e}\right)\right)\right) \cup\left(\cup_{e \in N} M_{e}\right) \cup N$ is a maximum matching in G^{3}.
This completes the proof.
From Theorem 1, we can easily have
Theorem 2 If G is a connected graph and has a near perfect matching, then G^{3} is nearly IM-extendable.

Lemma 2 ([11]) If G is a connected claw-free graph with even number of vertices, then G has a perfect matching.

Theorem 3 If G is a connected claw-free graph, then G^{3} is generalized induced matching extendable.

Proof We distinguish the following two cases.
Case $1 V(G)$ is even. By Lemma 2, G has a perfect matching and so G^{3} also has a perfect matching. By Theorem $1, G^{3}$ is generalized induced matching extendable.

Case $2 V(G)$ is odd. We have the following two subcases.
Case 2.1 G is 2-connected. Then G has no cut vertex. For any vertex $u \in V(G), G-u$ is connected and $|V(G-u)|$ is even. It is easy to see that $G-u$ is also claw-free. By Lemma 2, $G-u$ has a perfect matching, and so G has a near perfect matching. By Theorem $2, G^{3}$ is nearly IM-extendable.

Case 2.2 G has a cut vertex v. From the fact that G is claw-free, we know that $G-v$ has exactly two components G_{1} and G_{2}. If both $\left|V\left(G_{1}\right)\right|$ and $\left|V\left(G_{2}\right)\right|$ are even, from Lemma $2, G_{1}$ and G_{2} have perfect matchings M_{1} and M_{2}, respectively. So $M_{1} \cup M_{2}$ is a near perfect matching of G. By Theorem $2, G^{3}$ is nearly IM-extendable. If both $\left|V\left(G_{1}\right)\right|$ and $\left|V\left(G_{2}\right)\right|$ are odd, then $G_{2}+v$ has a perfect matching N_{2}. Repeat the above analysis on G_{1}, we will finally deduce that G_{1} has a near perfect matching N_{1}. So $N_{1} \cup N_{2}$ is a near perfect matching of G. By Theorem $2, G^{3}$ is nearly IM-extendable.

This completes the proof.

3. Examples

Our result in Theorem 2 is best possible in three aspects. Firstly, there is a k-connected $(k \geq 2)$ graph G having a near perfect matching such that G^{2} is not nearly IM-extendable. This
will be shown in Example 1. Secondly, there is a connected graph H with $|V(H)|$ odd such that H^{3} is not nearly IM-extendable. This will be shown in Example 2. Thirdly, there is a connected graph D having a near perfect matching such that D^{3} is not strongly nearly IM-extendable. This will be shown in Example 3. Note that the nearly IM-extendable graph is a special case of the generalized IM-extendable graph, we can also use these three Examples to explain the best possibility of the result in Theorem 1.

Example 1 Let $k \geq 2$ be an integer. Let G_{1}, G_{2}, G_{3} and G_{4} be four complete graphs with $\left|V\left(G_{1}\right)\right|=\left|V\left(G_{2}\right)\right|-1=\left|V\left(G_{3}\right)\right|=\left|V\left(G_{4}\right)\right|$ and such that $\left|V\left(G_{1}\right)\right| \geq k^{2}$ and $\left|V\left(G_{1}\right)\right|$ is odd. Let $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a k-partition of $V\left(G_{1}\right),\left(U_{1}, U_{2}, \ldots, U_{k}\right)$ be a k-partition of $V\left(G_{2}\right),\left(R_{1}, R_{2}, \ldots, R_{k}\right)$ be a k-partition of $V\left(G_{3}\right)$ and $\left(S_{1}, S_{2}, \ldots, S_{k}\right)$ be a k-partition of $V\left(G_{4}\right)$ such that $\left|V_{i}\right|,\left|U_{i}\right|,\left|R_{i}\right|,\left|S_{i}\right| \geq k$ for $1 \leq i \leq k$. Let M be the set of $2 k$ edges with $M=\left\{v_{i} u^{1}{ }_{i}, r^{2}{ }_{i} s_{i}: 1 \leq i \leq k\right\}$ and let M_{1} be the set of k edges with $M_{1}=\left\{u^{2}{ }_{i} r^{1}{ }_{i}: 1 \leq i \leq k\right\}$, where $v_{i}, u^{1}{ }_{i}, u^{2}{ }_{i}, r^{1}{ }_{i}, r^{2}{ }_{i}, s_{i} \notin V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup V\left(G_{3}\right) \cup V\left(G_{4}\right)$ for $1 \leq i \leq k$. The graph G is constructed as follows.

$$
\begin{gathered}
V(G)=V\left(G_{1}\right) \cup V\left(G_{2}\right) \cup V\left(G_{3}\right) \cup V\left(G_{4}\right) \cup V(M) \cup V\left(M_{1}\right), \\
E(G)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup E\left(G_{3}\right) \cup E\left(G_{4}\right) \cup M \cup M_{1} \cup \\
\left(\cup_{1 \leq i \leq k}\left\{v_{i} v: v \in V_{i}\right\}\right) \cup\left(\cup_{1 \leq i \leq k}\left\{u^{1}{ }_{i} u: u \in U_{i}\right\}\right) \cup\left(\cup_{1 \leq i \leq k}\left\{u^{2}{ }_{i} u: u \in U_{i}\right\}\right) \cup \\
\left(\cup_{1 \leq i \leq k}\left\{r^{1}{ }_{i} r: r \in R_{i}\right\}\right) \cup\left(\cup_{1 \leq i \leq k}\left\{r^{2}{ }_{i} r: r \in R_{i}\right\}\right) \cup\left(\cup_{1 \leq i \leq k}\left\{s_{i} s: s \in S_{i}\right\}\right) .
\end{gathered}
$$

M is an induced matching of G. It is easy to check that G is a k-connected graph and has a near perfect matching. Now, M is still an induced matching in G^{2}. But $G^{2}-V(M)$ has three odd components. Hence, G^{2} is not nearly IM-extendable.

Example 2 Let $P=x_{1} x_{2} x_{3} x_{4} x_{5}, Q=y_{1} y_{2} y_{3} y_{4} y_{5}, R=z_{1} z_{2} z_{3} z_{4} z_{5}$ and $S=w_{1} w_{2} w_{3} w_{4} w_{5}$ be four 5 -pathes. Let v be a vertex which is different from $x_{i}, y_{i}, z_{i}, w_{i}, 1 \leq i \leq 5$. The graph H is constructed as follows.

$$
\begin{gathered}
V(H)=\{v\} \cup V(P) \cup V(Q) \cup V(R) \cup V(S) \\
E(H)=E(P) \cup E(Q) \cup E(R) \cup E(S) \cup\left\{v x_{3}, v y_{3}, v z_{3}, v w_{3}\right\} .
\end{gathered}
$$

Let $M=\left\{x_{2} x_{4}, y_{2} y_{4}, z_{2} z_{4}, w_{2} w_{4}\right\}$. It is easy to see that M is an induced matching of H^{3}. For a vertex $u \notin V(H),\left\{x_{1}, x_{5}, y_{1}, y_{5}, z_{1}, z_{5}, w_{1}, w_{5}\right\}$ is an independent set in H^{3} and $H^{3} \vee u$. This means that $H^{3} \vee u-V(M)-\left\{u, v, x_{3}, y_{3}, z_{3}, w_{3}\right\}$ has eight odd components. By Tutte's Theorem, $H^{3} \vee u-V(M)$ has no perfect matching. Hence, H^{3} is not nearly IM-extendable.

Example 3 Let $P=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} x_{8}, Q=y_{1} y_{2} y_{3} y_{4} y_{5} y_{6} y_{7} y_{8}, R=z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} z_{7} z_{8}$ and $S=w_{1} w_{2} w_{3} w_{4} w_{5} w_{6} w_{7} w_{8}$ be four 8 -pathes. Let v be a vertex which is different from $x_{i}, y_{i}, z_{i}, w_{i}$, $1 \leq i \leq 8$. The graph D is constructed as follows.

$$
\begin{gathered}
V(D)=\{v\} \cup V(P) \cup V(Q) \cup V(R) \cup V(S) \\
E(D)=E(P) \cup E(Q) \cup E(R) \cup E(S) \cup\left\{v x_{3}, v y_{3}, v z_{3}, v w_{3}\right\} .
\end{gathered}
$$

Let $M=\left\{x_{2} x_{4}, y_{2} y_{4}, z_{2} z_{4}, w_{2} w_{4}, x_{8} y_{8}, z_{8} w_{8}\right\}$. For a vertex $u \notin V(D)$, it is easy to see that M is an induced matching of $D^{3}+x_{8} y_{8}+z_{8} w_{8}$ and $\left(D^{3}+x_{8} y_{8}+z_{8} w_{8}\right) \vee u$. But $\left(D^{3}+\right.$ $\left.x_{8} y_{8}+z_{8} w_{8}\right) \vee u-V(M)-\left\{u, v, x_{3}, y_{3}, z_{3}, w_{3}\right\}$ has eight odd components. By Tutte's Theorem, $\left(D^{3}+x_{8} y_{8}+z_{8} w_{8}\right) \vee u-V(M)$ has no perfect matching. Hence $D^{3}+x_{8} y_{8}+z_{8} w_{8}$ is not nearly IM-extendable, and so, D^{3} is not strongly nearly IM-extendable.

References

[1] CAMERON K. Induced matchings [J]. Discrete Appl. Math., 1989, 24(1-3): 97-102.
[2] FAUDREE R J, GYÁRFÁS A, SCHELP R H. et al. Induced matchings in bipartite graphs [J]. Discrete Math., 1989, 78(1-2): 83-87.
[3] YUAN Jinjiang. Induced matching extendable graphs [J]. J. Graph Theory, 1998, 28(4): 203-213.
[4] BONDY J A, MURTY U S R. Graph theory with applications. [M]. American Elsevier Publishing Co., Inc., New York, 1976.
[5] TUTTE W T. The factorization of linear graphs [J]. J. London Math. Soc., 1947, 22: 107-111.
[6] YUAN Jinjiang. Independent-set-deletable factor-critical power graphs [J]. Acta Math. Sci. Ser. B Engl. Ed., 2006, 26(4): 577-584.
[7] QIAN Jianguo. Induced matching extendable graph power [J]. Graphs Combin., 2006, 22(3): 391-398.
[8] YUAN Jinjiang, WANG Qin. Induced matching extendability of G^{3} [J]. Graph Theory Notes N. Y., 2002, 43: 16-19.
[9] YUAN Jinjiang, WANG Qin, QIAN Jianguo. IM-extendability of the square of the graphs without independent vertex cut [J]. J. Xinjiang Univ., 2006, 23(suppl.): 31-35. (in Chinese)
[10] YUAN Jinjiang. Induced matching extendable graphs - A survey [C]. Invited Report of the 6th Conference on Operations Research of China. (Changsha), 2000.
[11] LOVÁSZ L, PLUMMER M D. Matching Theory [M]. North-Holland Publishing Co., Amsterdam, 1986.

[^0]: Received December 1, 2008; Accepted September 18, 2009
 Supported by the National Natural Science Foundation of China (Grant Nos. 10601051; 90818020) and the Natural Science Foundation of Zhejiang Province (Grant No. Y6090472).

 * Corresponding author

 E-mail address: wq@cjlu.edu.cn (Q. WANG)

