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Abstract Using the generating functions, we prove some symmetry identities for the Euler
polynomials and higher order Euler polynomials, which generalize the multiplication theorem
for the Euler polynomials. Also we obtain some relations between the Bernoulli polynomials,
Euler polynomials, power sum, alternating sum and Genocchi numbers.
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1. Introduction

The Bernoulli numbers B,, and the Bernoulli polynomials By, (z) are defined by the exponen-

tial generating functions

e t
ZBnH:et_lv (1)
n=0
and
> tn tet®
2 Bl = 5 )

respectively. The Bernoulli numbers B, satisfy the recurrence relation y . (”:.rl)Bi = 0 for

all n > 0 with By = 1, and the explicit formula for the Bernoulli polynomial is B, (z) =
Yo () Bia" .
For each integer k > 0, Sy,(n) = 0% + 1¥ 4+ 2 +... 4 (n — 1)* is called sum of integer powers,

k

or simply power sum. It is well known that Si(n) = Z?:_Ol 1" is a polynomial in n of degree k+ 1

(see [1,2]):
k
Sk(n) = %4—1 ;Bi (kj 1>”k+1i7 3)
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which is called the power sum polynomial. The exponential generating function for S(n) is [2]

iSk(n)ﬁ:1+et+e2t+...+e(n—1)t:€nti—1 @
k! pr—
k=0
Deeba and Rodriguez [3] and Gessel [4] proved the following recurrence

1 n—1

B = oy Sk <Z> Bi.Sn_r(a), (5)

k=0
which is true for any positive integer n and any positive integer a > 1.
Howard [5] showed that (5) is a consequence of the multiplication theorem for the Bernoulli
polynomials. The multiplication theorem can be stated this way: If n and a are positive integers,
then

a—1

"By (ax) = 3 Ba(o + 2). (6)
1=0

Tuenter [6] obtained a relation of symmetry between the power sum and the Bernoulli num-
bers, and also showed that the recurrence (5) is a special case of the relation. This relation can

be stated as the following identity, which is symmetric in a and b

- N\ i1 n—i , :n N\i—1pn n—i , =
Z(l)a Bib" 'S, _i(a) Z(l)b B;a" 'S, _(b), a,b>0,n>0. (7)

i=0 1=0
In [7], we generalize this relation of symmetry between the power sum polynomials and the
Bernoulli numbers to the relations between the power sum polynomials and the Bernoulli poly-
nomials in two ways. The aim of the present paper is to generalize the symmetric relation to the
Euler polynomials, alternating sum, and Genocchi numbers.
For integers k > 0 and n > 1, the alternating sum T (n) is defined by

n—1

Ti(n) = > (=1)rF =0F —1F 428 — . 4 (=1)" T (n = 1), (8)
r=0

and the generating function is

& tk B 1— (_1)nent
2 Tl = ©)

The Euler polynomials F,, (2) and Genocchi numbers G, are defined by means of the following

generating functions:

> t" 2et®
Ep(z)— = ——, 10
2 Bl = 1)
and
S tn 2
Gp— = ———, 11
1;) n!l  et+1 (11)

respectively. The following formulas (12)—(14) are well known [5]:

Gp =2(1—2")B,, (12)
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By =Y (1) Zeerans, (13)

k=0
m—1 m

(n—=n")G,, = Z (k)nkaTm_k(n), m>1,n>1, and n odd . (14)
k=0

The multiplication theorem for E,,(x), for a odd, is [5]:

a—1

S B+ 5) = a "By (a), (15)

=0
and the multiplication theorem for E,,(x), for a even, is [5]:

a—1

S () Brale + 5) = g m+ Da~" By (aa). (16)
1=0

In this paper, we prove some symmetry identities for the Euler polynomials and higher
order Euler polynomials, which generalize the multiplication theorems for the Euler polynomials.
We obtain some relations between the Bernoulli polynomials, Euler polynomials, power sum,

alternating sum, and Genocchi numbers.

2. Some symmetry identities for the Euler polynomials

We shall prove the following theorem for the Euler polynomials, which are symmetric in a
and b.

Theorem 2.1 Let a and b be positive integers with the same parity. Then

a—1 b—1
) b . a
—1)'a™E, (b —1) = —-1)'0"E,, —1). 1
(1 Blbr + 1) = (1) 8" Bz + ) (7)
1=0 1=0
Proof Let f(t) = igjiflt . 1+(—e1bzc:eabt' Then
2eabxt 1 _ (_ebt)a 9eabrt a-1 b a-1 l2e(bw+%i)at
t) = . _ . _ bty —1)
1) et +1 ebt +1 et +1 ;( ¢ g( e + 1
a—1 o b pm o'} a—1 . b gm
=Y (DY Enbrt i = 37 (Y (1) 0" (bt 1)) .
=0 m—0 T om=0 =0 ’

: . abat _{yat1abt o
Since (—1)**! = (=1)"™!, the expression for f(t) = 25— - L+ e}’2+1 °— is symmetric in a and

b. Therefore, we obtain the following power series expansion for f(t) by symmetry:

(o'} b—1 m
=3 (Z(—l)imem(a;v + %z))%

’% in the two expressions for f(¢) gives us the desired result. O

Equating the coefficients of
Replacing b = 1 in (17) gives us the multiplication theorem (15), for odd a.
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2eabzt . 1+(_1)a+leabt

We can also use (9) and (10) to expand f(t) = 25 T

as

= ( i Em(b:c)am%) ( i Tm(a)bm%m') = i (i (7;) a* o™ By, (bx) T
m=0 T m=0 ) k=0

m=0

tm

m!’

By considering the symmetry of f(¢) in a and b, we obtain the following (18) which is an analogue

of (7) for the Euler polynomials.

Theorem 2.2 Let a and b be positive integers with the same parity. Then

m m

k=0 k=0

Theorem 2.3 Let a and b be positive integers, and a be even. Then

a—1 b—1
X 2 b a
_ 1)+l m 25 — m s
;:0( D a | 1Bm+1(b:17 + az) ;:0 V" E,,(ax + bz).

Proof Let g(t) = iijf{ . 11 eeat Then

2eab;ﬂt 1— eabt abwt -
g(t) = bt ’ at bt Zean
e4+1 1—e et +1
b—1 b—1 oo
2¢ abxt+ait a..m tm
=2 e = 2 2 Bmlaz i
=0 =0 m=0

00 b— m
mzo(zo a;v—l——zbm)%.

On the other hand, considering a is even, we have

(t) 7 2eabzt 1— eabiE B 2eabzt 1— (_ebt)a
T =71 T —eat et 1 1— (—ebt)
—92at abzt a—1 ) —9 a—1 at abxt+bit
__Lme Z(—ebt)l = AN (e
at e —1 4 at 4 e —1
=0 1=0
= l Z Bm bx + _7/ _|
= 0
oo a—1
-2 b. tm
=— > D (1) Bu(bz+ —i)a" —
m=0 =0
oo a—1 tm_l
=23 S () Bulbe+ Zipan
m=0 i=0
oo a—1 ) 1 m
= -2 Z (-1)* —1Bm+1(b:17 + —z) —
m=0 i=0 +

Equating the coefficients of % in the two expressions for ¢(t) gives us the desired result. O

Putting b = 1 in (20) gives us the multiplication theorem (14), for even a.

> (C’Z) a* V" Ey (ba) Tn-p(a) = ) (TZ) v a™F By, (ax) T (D).

For a real or complex parameter r, the generalized Euler polynomials Eff) (x), with each



Some symmetry identities for the Euler polynomials 461

being of degree n (n > 0) in x as well as in r, are defined by means of the following generating

function [8]:

2 r xt

Z Er 1= (o o). (20)

Theorem 2.4 Let a and b be positive integers with the same parity. Then
m a—1

m m— r—1 i (7 b .
5 () )av B ) Y -1 B 0+ 2
k=0 i=0
m m b—1 a
m— r—1 i r .
-y (k>bka $B D (b)Y (1) B e + ), (21)
k=0 i=0
22T716abmteabyt(1+(71)a+1eabt)
(e**+1)m(eP*+1)"

Proof Let h(t) = . Then we can expand h(t) as

_ _ebt a
h(t) _ ( 2 )reabmt . 1 ( ) ( 2 )r—l abyt

eat+1 ebt_|_1 ’ ebt_|_1 e
: 2
r _abxt+bit r—1_abyt
_Z eat+1)e .(ebt+1) e
- S Y B L S m e
=0
oo a—1 0 tm
:(Z (-1)° (T)(ba:—l——z )(ZE ')
m=0 i=0 =0 m
o0 tm
- Z Cm 1
m=0 m
where by multiplying rule of formal power series
m a—1 b
Cm = Z <k> akpm kE(T 1) (ay Z T) (bx + —z).
k=0 =0
We may also expand h(t) as
2 1 — (—et)b 2 _
h(t) = r baxt . r—1 _bayt
(1) = (et =l (e
b—1
- 2 . 2
— —1)¢ r barttait r—1 _bayt
>V ) (@jﬁ ‘
b—1 0o
= (—=1)¢ Z E(T)(ax + —z por Z E(T 1) (by)a™ —
=0 m=0
oo b—1 a 4m gm
_ 1\ () Loaypgm Y (r—1) mY
— (mz_:o i:o( DB (az + 26" — ) (;Em (by)a m!)
o0 tm
- Z Cm 1
m=0 m

where ¢, = Y (W)bFa™" kE(T 1) (by) S0 (~1 )iE,(CT) (ax + $i). That is, h(t) is symmetric
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in @ and b, so is ¢,,. Equating the two expressions for ¢,, gives the identity of the theorem. O
3. Some identities for the power sum and Genocchi numbers

Theorem 3.1 Let a and b be positive integers with the same parity. Then

> (@ Gua " T, ) =3 (7:) Grb"a™ " i (1), (22)

k=0 k=0

Proof Let f(t)= Zebt. . HCDT ™ Then

() = 2abt 1 — (—eb)® 2abt ail(_ebt)i

edt 11 bt 41 _e“t—i—l'izo
a—1 a—1 00 0o
i 2at bit % mtm mtm
= Db = 3 DB( 3 Gma ) (30 (00" )
=0 = m=0 m=0
a—1 o) m
i m mei) "
S NEHIDY (Z <k)Gkak(bz) k)%
1=0 m=0 k=0
0o m a—1
_ m kim—k+1 i :m—k "
-y (T k)Gkab Sy o
m=0 k=0 =0
o0 m tm
= Z (Z (ZL> Gkakbm k+1T ,k(a))—'
m=0 k=0 m
Since (—1)**t! = (—1)**!, the expression for f(t) = -2abt . H(*},zaﬂeabt is symmetric in
eat4+1 ebt+1

a and b. Therefore, we obtain the following power series expansion for f(¢) by symmetry:
f) =30 (o (M Geb*Fa™ = 1T, (b)) L. Compairing the coefficients of L+ in the two

m!

expressions for f(t), we get the desired result (22). O
Since Tp(1) =1, and Ty (1) = 0 for all k > 1, setting b =1 in (22) will yield (14).

Theorem 3.2 Let m and n be positive integers. Then

Z (7:) Tk (n)Sp—k(n) = 2™S,,(n), where n is odd, (23)
k=0
G m m—+1 n m :
> L ) Tk()Sm () = 27718 (5) — 27 Spn (1), where n is even. (24)
k=0

Proof If n is odd, then

tm

(gs ) ) (30 Ty o) = St T

m=0

e2nt _q & . tm
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By the multiplying rule of formal power series,

(3 Su i) (3 Bniy) = 32 3 (3 ) temsaty

Compairing the coefficients of % in the two expressions, we obtain the desired result (23).

Similarly, considering

e tm e tm ent — 1 1 —ent ent 1 e2nt _q
(ZS’”( )(ZT’” ) S R S
m=0

m=0

for n even, we obtain the result (24). O

Theorem 3.3 Let m and n be positive integers. Then

m

> (1) BT a0 = 2 (Bn(3) + (1) B (), (25)

k=0

m

> (1) Bu0)S-a0) = 2" (Bno) ~ B3 (26)

k=0

Proof Let f(t) = ml . % Then

tent 1 + (_1)n+1ent

1) = et — 1 et +1 - (i Bm(n)%)<i Tm(n)—)

On the other hand,

ent -1 n+1 e2nt 1 x n_ (2t)™ _ AL
ry=" +§2t_>1t — 0y B E S )2
m=0

oo

= Y@ Bu(G) + (1) Bu()

m=0

Equating coefficients of % in the two expressions of f(t) yields the identity (25).

Similarly, by considering

_ i (Zm: (TZ) Ek(n)sm_k(n))%

m=0 k=0
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and
2e2mt — 2¢2nt (O3 A— n, (2t)™
g(t) = BT mZOEm(”)W - mZ:OEm(g) -
o n, t"
= 3B~ En(3))
we obtain (26). O
Theorem 3.4 Let m and n be positive integers. Then
" (m n
5 (W) Ginmslo) = 27 (Bu() -~ B @)
k=0
Proof Let f(t) = A - e:tt_’ll. Then
2t e -1 - "N [ tm
10 = g Tt = (2 Gnmg) (32 St y)
-y (Z (k)Gk(n)S’m_k(n)> -

and

f(t):w: ZBm(f)w_ Bm@

27 m! m!
m=0 m=0
= > @ Bu(3) ~ Bum) oy
m=0 '

Equating coefficients of % in the two expressions of f(¢) yields the identity (27). O
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