Triple Positive Solutions of the Multi-Point Boundary Value Problem for Second-Order Differential Equations

You Ming ZHOU*, Yi CAO
School of Mathematics and Physics, Jiangsu Teachers University of Technology, Jiangsu 213001, P. R. China

Abstract We consider the second-order differential equation

$$
u^{\prime \prime}(t)+q(t) f\left(t, u(t), u^{\prime}(t)\right)=0, \quad 0<t<1
$$

subject to three-point boundry condition

$$
u(0)=0, \quad u(1)=a_{0} u\left(\xi_{0}\right)
$$

or to m-point boundary condition

$$
u^{\prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime}\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) .
$$

We show the existence of at least three positive solutions of the above multi-point boundary-value problem by applying a new fixed-point theorem introduced by Avery and Peterson.
Keywords ordinary differential equation; triple positive solutions; Multi-point boundary-value problem; fixed point theorem.

Document code A
MR(2000) Subject Classification 34B10
Chinese Library Classification O175

1. Introduction

The study of multi-point boundary-value problems for linear second-order ordinary differential equations was initiated by Il'in and Moiseev [1]. Since then nonlinear multi-point boundaryvalue problems have been studied by several authors using the Leray-Schauder continuation, Nonlinear Alternatives of Leray-Schauder, coincidence degree theory, and fixed point theorems in cones. We refer the readers to $[2-8]$ for some existence results of nonlinear multi-point boundaryvalue problems. Recently, Ma [6] proved the existence of positive solutions for the three-point boundary-value problem

$$
u^{\prime \prime}+b(t) g(u)=0, \quad 0<t<1
$$

[^0]$$
u(0)=0, \quad u(1)=h u(\tau)
$$
by the application of a fixed point theorem in cones. Cao and Ma [7] proved the existence of positive solutions to the boundary-value problem
\[

$$
\begin{gathered}
u^{\prime \prime}+\lambda a(t) f\left(u, u^{\prime}\right)=0, \quad 0<t<1, \\
u(0)=0, \quad u(1)=\sum_{i=1}^{m-2} h_{i} u\left(\tau_{i}\right),
\end{gathered}
$$
\]

by the use of the Leray-Schauder fixed point theorem. Ma [8] proved the existence of at least two positive solutions to multi-point boundary-value problem

$$
\begin{gathered}
u^{\prime \prime}+\lambda f(t, u)=0, \quad 0<t<1, \\
u^{\prime}(0)=\sum_{i=1}^{m-2} k_{i} u^{\prime}\left(\tau_{i}\right), \quad u(1)=\sum_{i=1}^{m-2} h_{i} u\left(\tau_{i}\right) .
\end{gathered}
$$

In this paper, we concentrate on getting three positive solutions for the second-order differential equation

$$
\begin{equation*}
u^{\prime \prime}(t)+q(t) f\left(t, u(t), u^{\prime}(t)\right)=0, \quad 0<t<1 \tag{1.1}
\end{equation*}
$$

subject to three-point boundary condition

$$
\begin{equation*}
u(0)=0, \quad u(1)=a_{0} u\left(\xi_{0}\right) \tag{1.2}
\end{equation*}
$$

or to m-point boundary condition

$$
\begin{equation*}
u^{\prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime}\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) . \tag{1.3}
\end{equation*}
$$

In this article, we always assume that
$\left(\mathrm{A}_{1}\right) \xi_{0} \in(0,1), a_{0} \in(0, \infty)$ satisfy $0<a_{0} \xi_{0}<1$.
$\left(\mathrm{A}_{2}\right) \xi_{i} \in(0,1)$ with $0<\xi_{1}<\xi_{2}<\cdots<\xi_{m-2}<1, a_{i}, b_{i} \in[0, \infty)$ satisfy $0<\sum_{i=1}^{m-2} a_{i}<1$ and $\sum_{i=1}^{m-2} b_{i}<1$.
$\left(\mathrm{A}_{3}\right) f:[0,1] \times[0, \infty) \times \mathbb{R} \longrightarrow[0, \infty)$ is continuous.
$\left(\mathrm{A}_{4}\right) q:[0,1] \longrightarrow[0, \infty)$ is continuous and there is $t_{0} \in\left[\xi_{0}, 1\right]$ such that $q\left(t_{0}\right)>0$.
$\left(\mathrm{A}_{4}^{\prime}\right) \quad q:[0,1] \longrightarrow[0, \infty)$ is continuous and there is $t_{1} \in[0,1]$ such that $q\left(t_{1}\right)>0$.
By a positive solution of (1.1) with (1.2) or (1.1) with (1.3) we mean a function $u(t)$ which satisfies the differential equation (1.1), the boundary condition (1.2) or (1.3) and $u(t) \geq 0$, $t \in[0,1]$.

Our main results will depend on an application of a fixed-point theorem due to Avery and Peterson [10] which is a generalization of the fixed-point theorem of Leggett-Williams. The emphasis here is that the nonlinear term f depends on the first-order derivative explicitly. To the best of the authors' knowledge, there are no results for triple positive solutions to the multipoint boundary-value problems.

2. Background materials and definitions

Definition 1 The map α is said to be a nonnegative continuous concave functional on a cone P of a real Banach space E provided that $\alpha: P \rightarrow[0, \infty)$ is continuous and

$$
\alpha(t x+(1-t) y) \geq t \alpha(x)+(1-t) \alpha(y)
$$

for all $x, y \in P$ and $0 \leq t \leq 1$. Similarly, we say the map β is a nonnegative continuous convex functional on a cone P of a real Banach space E provided that $\beta: P \rightarrow[0, \infty)$ is continuous and

$$
\beta(t x+(1-t) y) \leq t \beta(x)+(1-t) \beta(y)
$$

for all $x, y \in P$ and $0 \leq t \leq 1$.
Let P be a cone in a real Banach space E, γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P. Then for positive real numbers c, d, l and R, we define the following convex sets:

$$
\begin{aligned}
& P(\gamma ; R)=\{x \in P \mid \gamma(x)<R\}, \\
& P(\gamma, \alpha ; d, R)=\{x \in P \mid d \leq \alpha(x), \gamma(x) \leq R\}, \\
& P(\gamma, \theta, \alpha ; d, l, R)=\{x \in P \mid d \leq \alpha(x), \theta(x) \leq l, \gamma(x) \leq R\},
\end{aligned}
$$

and a closed set

$$
Q(\gamma, \psi ; c, R)=\{x \in P \mid c \leq \psi(x), \gamma(x) \leq R\}
$$

The following fixed-point theorem due to Avery and Peterson is fundamental in the proofs of our main results.

Lemma 1 ([10]) Let P be a cone in a real Banach space E. Let γ and θ be nonnegative continuous convex functionals on P, α be a nonnegative continuous concave functional on P, and ψ be a nonnegative continuous functional on P satisfying $\psi(\lambda x) \leq \lambda \psi(x)$ for $0 \leq \lambda \leq 1$, such that for some positive numbers M_{0} and R

$$
\begin{equation*}
\alpha(x) \leq \psi(x) \text { and }\|x\| \leq M_{0} \gamma(x) \tag{2.1}
\end{equation*}
$$

for all $x \in \overline{P(\gamma, R)}$. Suppose $T: \overline{P(\gamma, R)} \rightarrow \overline{P(\gamma, R)}$ is completely continuous and there exist positive numbers c, d and l with $c<d$ such that
$\left(S_{1}\right) \quad\{x \in P(\gamma, \theta, \alpha ; d, l, R) \mid \alpha(x)>d\} \neq \emptyset$ and $\alpha(T x)>d$ for all $x \in P(\gamma, \theta, \alpha ; d, l, R) ;$
$\left(S_{2}\right) \alpha(T x)>d$ for $x \in P(\gamma, \alpha ; d, R)$ with $\theta(T x)>l$;
$\left(S_{3}\right) \quad 0 \notin Q(\gamma, \psi ; c, R)$, and $\psi(T x)<c$ for $x \in Q(\gamma, \psi ; c, R)$ with $\psi(x)=c$.
Then T has at least three fixed points $x_{1}, x_{2}, x_{3} \in \overline{P(\gamma, R)}$, such that

$$
\begin{gathered}
\gamma\left(x_{i}\right) \leq R \text { for } i=1,2,3 ; d<\alpha\left(x_{1}\right) \\
c<\psi\left(x_{2}\right) \text { with } \alpha\left(x_{2}\right)<d ; \psi\left(x_{3}\right)<c
\end{gathered}
$$

3. Existence of triple positive solutions

In this section, we impose growth conditions on f which allow us to apply Lemma 1 to establish the existence of triple positive solutions of Problem (1.1), (1.2) and (1.1), (1.3).

We first deal with the problem (1.1) with three-point boundary-value conditon (1.2). Let $X=C^{1}[0,1]$ be endowed with the maximum norm

$$
\|u\|=\max \left\{\max _{0 \leq t \leq 1}|u(t)|, \max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right|\right\}, \quad u \in X .
$$

Define the cone $P \subset X$ by

$$
P=\left\{u \in X \mid u(t) \geq 0, u(0)=0, u(1)=a_{0} u\left(\xi_{0}\right), \quad u(t) \text { is concave on }[0,1]\right\}
$$

Lemma 2 ([6]) Under the assumption (A_{1}), if $u \in P$, then $\min _{\xi_{0} \leq t \leq 1} u(t) \geq \varepsilon_{0} \cdot \max _{0 \leq t \leq 1} u(t)$, where

$$
\varepsilon_{0}=\min \left\{a_{0} \xi_{0}, \frac{a_{0}\left(1-\xi_{0}\right)}{1-a_{0} \xi_{0}}, \xi_{0}\right\} .
$$

Let the nonnegative continuous concave functional α, the nonnegative continuous convex functional θ, γ, and the nonnegative continuous functional ψ be defined on the cone P by

$$
\alpha(u)=\min _{\xi_{0} \leq t \leq 1} u(t), \theta(u)=\psi(u)=\max _{0 \leq t \leq 1} u(t), \gamma(u)=\max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right| .
$$

By Lemma 2, the functionals defined above satisfy

$$
\begin{equation*}
\varepsilon_{0} \theta(u) \leq \alpha(u) \leq \theta(u)=\psi(u),\|u\|=\max \{\theta(u), \gamma(u)\}=\gamma(u) \tag{3.1}
\end{equation*}
$$

for all $u \in P$. Therefore, Condition (2.1) is satisfied.
Let $k(t, s):[0,1] \times[0,1] \rightarrow[0, \infty)$ be defined by

$$
k(t, s)=\left\{\begin{array}{ll}
\frac{t(1-s)}{1-a_{0} \xi_{0}}-\frac{a_{0} t\left(\xi_{0}-s\right)}{1-a_{0} \xi_{0}}-(t-s), & \text { for } 0 \leq s \leq t \leq 1 \text { and } s \leq \xi_{0} \\
\frac{t(1-s)}{1-a_{0} \xi_{0}}-\frac{a_{0} t\left(\xi_{0}-s\right)}{1-a_{0} \xi_{0}}, & \text { for } 0 \leq t \leq s \leq \xi_{0} \\
\frac{t(1-s)}{1-a_{0} \xi_{0}}, & \text { for } 0 \leq t \leq s \leq 1 \text { and } \xi_{0} \leq s ; \\
\frac{t(1-s)}{1-a_{0} \xi_{0}}-(t-s), & \text { for } \xi_{0} \leq s \leq t \leq 1
\end{array} .\right.
$$

Lemma 3 ([5]) Under the assumption $\left(A_{1}\right), k(t, s) \leq \Phi(s)$, for $(t, s) \in[0,1] \times[0,1]$, where

$$
\Phi(s)=\max \left\{1, a_{0}\right\} \cdot \frac{s(1-s)}{1-a_{0} \xi_{0}}
$$

Let

$$
\begin{gathered}
M=\int_{0}^{1} q(s) \mathrm{d} s+\frac{a_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) \mathrm{d} s+\frac{1}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) \mathrm{d} s \\
N=\int_{0}^{1} \Phi(s) q(s) \mathrm{d} s
\end{gathered}
$$

Choose $\delta>0, d>0$ such that

$$
\begin{aligned}
& 0<\delta<\min \left\{1, a_{0}\right\} \cdot \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{\xi_{0}}^{1}(1-s) q(s) \mathrm{d} s \\
& (d+1) \cdot \max \left\{\frac{\left(1-a_{0} \xi_{0}^{2}\right)^{2}}{4\left(1-a_{0} \xi_{0}\right)^{2}}, \frac{a_{0} \xi_{0}-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}\right\}>d
\end{aligned}
$$

Let

$$
d_{0}=\frac{d+1}{\varepsilon_{0}} \cdot \max \left\{\frac{1-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}, \frac{\left(1-a_{0} \xi_{0}^{2}\right)^{2}}{4\left(1-a_{0} \xi_{0}\right)^{2}}\right\}
$$

To present our main results, we assume that there exist constants $c>0, l>0, R>0$ satisfying $0<c<d<d_{0}<l<R$ and $\frac{R}{M}>\frac{\mathrm{d}}{\delta}$, such that
$\left(\mathrm{H}_{1}\right) f(t, u, v) \leq \frac{R}{M}$, for $(t, u, v) \in[0,1] \times[0, R] \times[-R, R]$;
$\left(\mathrm{H}_{2}\right) \quad f(t, u, v) \geq \frac{d}{\delta}$, for $(t, u, v) \in\left[\xi_{0}, 1\right] \times[d, l] \times[-R, R]$;
$\left(\mathrm{H}_{3}\right) f(t, u, v)<\frac{c}{N}$, for $(t, u, v) \in[0,1] \times[0, c] \times[-R, R]$.
Theorem 1 Assume that $\left(A_{1}\right),\left(A_{3}\right),\left(A_{4}\right)$ and $\left(H_{1}\right)-\left(H_{3}\right)$ hold. Then the problem (1.1) with (1.2) has at least three positive solutions u_{1}, u_{2} and u_{3} satisfying

$$
\begin{align*}
& \max _{0 \leq t \leq 1}\left|u_{i}^{\prime}(t)\right| \leq R, \text { for } i=1,2,3 \\
& d<\min _{\xi_{0} \leq t \leq 1} u_{1}(t) \tag{3.2}\\
& c<\max _{0 \leq t \leq 1} u_{2}(t), \text { with } \min _{\xi_{0} \leq t \leq 1} u_{2}(t)<d \\
& \max _{0 \leq t \leq 1} u_{3}(t)<c
\end{align*}
$$

Proof The problem (1.1) with (1.2) is equivalent to the integral equation

$$
\begin{aligned}
u(t)= & -\int_{0}^{t}(t-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-\frac{a_{0} t}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \frac{t}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
= & \int_{0}^{1} k(t, s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \stackrel{\text { def }}{=} T u(t)
\end{aligned}
$$

For $u \in P$, it is easy to check that $(T u)(0)=0,(T u)(1)=a_{0}(T u)\left(\xi_{0}\right)$ and $(T u)^{\prime \prime}(t)=$ $-q(t) f\left(t, u(t), u^{\prime}(t)\right) \leq 0$. Hence, $T u$ is concave on $[0,1]$ and $T u \in P$. Moreover, it is well known that this operator $T: P \rightarrow P$ is completely continuous and fixed points of T are solutions of (1.1), (1.2). We now show that all conditions of Lemma 1 are satisfied.

If $u \in \overline{P(\gamma, R)}$, then $\gamma(u)=\max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right| \leq R$, so $\max _{0 \leq t \leq 1} u(t) \leq R$ and the assumption $\left(\mathrm{H}_{1}\right)$ implies $f\left(t, u(t), u^{\prime}(t)\right) \leq \frac{R}{M}$. On the other hand, for $u \in P$, we have $T u \in P$. Because of the concavity of $T u$ on $[0,1]$, we have $\max _{0 \leq t \leq 1}\left|(T u)^{\prime}(t)\right|=\max \left\{\left|(T u)^{\prime}(0)\right|,\left|(T u)^{\prime}(1)\right|\right\}$, where

$$
\begin{aligned}
\left|(T u)^{\prime}(0)\right|= & \left\lvert\,-\frac{a_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+\right. \\
& \left.\frac{1}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \right\rvert\, \\
\leq & \frac{R}{M}\left(\frac{a_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) \mathrm{d} s+\frac{1}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) \mathrm{d} s\right) \\
< & \frac{R}{M} \cdot M=R, \\
\left|(T u)^{\prime}(1)\right|= & \mid-\int_{0}^{1} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-
\end{aligned}
$$

$$
\begin{aligned}
& \frac{a_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \frac{1}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
\leq & \frac{R}{M}\left(\int_{0}^{1} q(s) \mathrm{d} s+\frac{a_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) \mathrm{d} s+\frac{1}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) \mathrm{d} s\right) \\
= & \frac{R}{M} \cdot M=R .
\end{aligned}
$$

So $\gamma(T u)=\max _{0 \leq t \leq 1}\left|(T u)^{\prime}(t)\right| \leq R$. Hence, $T: \overline{P(\gamma, R)} \rightarrow \overline{P(\gamma, R)}$.
To check condition $\left(S_{1}\right)$ of Lemma 1 , we choose $u_{0}(t)=\frac{d+1}{\varepsilon_{0}}\left(-t^{2}+\frac{1-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}} t\right), t \in[0,1]$. It is easy to see that $u_{0} \in P$. By (3.1) and the choice of u_{0}, d, l, R, we have

$$
\begin{aligned}
& \theta\left(u_{0}\right)=\max _{0 \leq t \leq 1}\left|u_{0}(t)\right|=\frac{d+1}{\varepsilon_{0}} \cdot \max \left\{\frac{a_{0} \xi_{0}-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}, \frac{\left(1-a_{0} \xi_{0}^{2}\right)^{2}}{4\left(1-a_{0} \xi_{0}\right)^{2}}\right\} \leq d_{0}<l \\
& \gamma\left(u_{0}\right)=\max _{0 \leq t \leq 1}\left|u_{0}^{\prime}(t)\right|=\frac{d+1}{\varepsilon_{0}} \cdot \frac{1-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}} \leq d_{0}<R \\
& \alpha\left(u_{0}\right) \geq \varepsilon_{0} \theta\left(u_{0}\right)=(d+1) \cdot \max \left\{\frac{a_{0} \xi_{0}-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}, \frac{\left(1-a_{0} \xi_{0}^{2}\right)^{2}}{4\left(1-a_{0} \xi_{0}\right)^{2}}\right\}>d
\end{aligned}
$$

So $u_{0} \in P(\gamma, \theta, \alpha ; d, l, R)$ and $\alpha\left(u_{0}\right)>d$, i.e., $\{u \in P(\gamma, \theta, \alpha ; d, l, R) \mid \alpha(u)>d\} \neq \emptyset$. If $u \in$ $P(\gamma, \theta, \alpha ; d, l, R)$, then $d \leq u(t) \leq l,\left|u^{\prime}(t)\right| \leq R$ for $\xi_{0} \leq t \leq 1$. From the assumption $\left(\mathrm{H}_{2}\right)$ we have $f\left(t, u(t), u^{\prime}(t)\right) \geq \frac{d}{\delta}$ for $\xi_{0} \leq t \leq 1$, and by the definition of α and the cone P, we have to distinguish two cases: (i) $\alpha(T u)=(T u)\left(\xi_{0}\right)$ and (ii) $\alpha(T u)=(T u)(1)$.

In case (i), by $0<\xi_{0}<1$ we have

$$
\begin{aligned}
(T u)\left(\xi_{0}\right)= & -\int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s- \\
& \frac{a_{0} \xi_{0}}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}}\left(\xi_{0}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
= & \frac{1}{1-a_{0} \xi_{0}} \int_{0}^{\xi_{0}} s q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{\xi_{0}}^{1} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s- \\
& \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{0}^{1} s q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
\geq & \frac{\xi_{0}}{1-a_{0} \xi_{0}}\left(\int_{0}^{\xi_{0}} s q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+\right. \\
& \left.\int_{\xi_{0}}^{1} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-\int_{0}^{1} s q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s\right) \\
= & \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{\xi_{0}}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{d}{\delta} \cdot \frac{\xi_{0}}{1-a_{0} \xi_{0}} \int_{\xi_{0}}^{1}(1-s) q(s) \mathrm{d} s \\
& >\frac{d}{\delta} \cdot \delta=d
\end{aligned}
$$

In case (ii), we have

$$
(T u)(1)=a_{0}(T u)\left(\xi_{0}\right) \geq \frac{d}{\delta} \cdot \frac{a_{0} \xi_{0}}{1-a_{0} \xi_{0}} \int_{\xi_{0}}^{1}(1-s) q(s) \mathrm{d} s>\frac{d}{\delta} \cdot \delta=d
$$

So, combining the cases (i) and (ii), we have $\alpha(T u)>d$, for all $u \in P(\gamma, \theta, \alpha ; d, l, R)$. This shows that the condition $\left(\mathrm{S}_{1}\right)$ of Lemma 1 is satisfied.

Secondly, because of $T(P) \subset P$ and (3.1), noting the choice of d_{0}, d and l, we have

$$
\begin{aligned}
|\alpha(T u)| & \geq \varepsilon_{0} \theta(T u)>\varepsilon_{0} l>\varepsilon_{0} d_{0} \\
& =(d+1) \cdot \max \left\{\frac{1-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}, \frac{\left(1-a_{0} \xi_{0}^{2}\right)^{2}}{4\left(1-a_{0} \xi_{0}\right)^{2}}\right\} \\
& \geq(d+1) \cdot \frac{1-a_{0} \xi_{0}^{2}}{1-a_{0} \xi_{0}}>d+1>d,
\end{aligned}
$$

for all $u \in P(\gamma, \alpha ; d, R)$ with $\theta(T u)>l$. Thus, the condition $\left(\mathrm{S}_{2}\right)$ of Lemma 1 is satisfied.
Finally, we show that $\left(\mathrm{S}_{3}\right)$ of Lemma 1 also holds. Clearly, as $\psi(0)=0<c$, there holds that $0 \notin Q(\gamma, \psi ; c, R)$. Suppose that $u \in Q(\gamma, \psi ; c, R)$ with $\psi(u)=c$, then $0 \leq u(t) \leq c,\left|u^{\prime}(t)\right| \leq R$ for $0 \leq t \leq 1$. Then, by the definition of the operator T, Lemma 3 and the assumption $\left(H_{3}\right)$, we have

$$
\begin{aligned}
\psi(T u) & =\max _{0 \leq t \leq 1}(T u)(t)=\max _{0 \leq t \leq 1} \int_{0}^{1} k(t, s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
& \leq \int_{0}^{1} \Phi(s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s<\frac{c}{N} \int_{0}^{1} \Phi(s) q(s) \mathrm{d} s=\frac{c}{N} \cdot N=c
\end{aligned}
$$

So $\left(\mathrm{S}_{3}\right)$ of Lemma 1 is satisfied. Therefore, an application of Lemma 1 implies that the problem (1.1) with (1.2) has at least three positive solutions u_{1}, u_{2}, and u_{3} satisfying (3.2). The proof is completed.

Now we deal with the problem (1.1) with m-point boundary-value condition (1.3). The method is just similar to what we have done above.

Define the cone $P_{1} \subset X=C^{1}[0,1]$ by

$$
P_{1}=\left\{\begin{array}{l|l}
u \in X & \begin{array}{l}
u(t) \geq 0, u^{\prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime}\left(\xi_{i}\right), u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right) \\
u(t) \text { is concave on }[0,1]
\end{array}
\end{array}\right\}
$$

Lemma 4 ([8]) Under the assumption $\left(A_{2}\right)$, if $u \in P_{1}$, then $u(t)$ is non-increasing on $[0,1]$ and satisfies $\min _{0 \leq t \leq 1} u(t) \geq \eta_{0} \cdot \max _{0 \leq t \leq 1} u(t)$, where

$$
\eta_{0}=\frac{\sum_{i=1}^{m-2} a_{i}\left(1-\xi_{i}\right)}{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}
$$

Lemma $5([8])$ Under the assumption $\left(A_{2}\right)$, then for $y \in C[0,1]$ with $y(t) \geq 0$ for $t \in[0,1]$, the
problem

$$
\begin{gathered}
u^{\prime \prime}+y(t)=0, \quad 0<t<1 \\
u^{\prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime}\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right)
\end{gathered}
$$

has a unique solution $u \in P_{1}$. Moreover,

$$
u(t)=-\int_{0}^{t}(t-s) y(s) \mathrm{d} s+A t+B
$$

where

$$
\begin{aligned}
A= & \frac{\sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} y(s) \mathrm{d} s}{\sum_{i=1}^{m-2} b_{i}-1} \\
B= & \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\int_{0}^{1}(1-s) y(s) \mathrm{d} s-\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) y(s) \mathrm{d} s-\right. \\
& \left.\frac{\sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} y(s) \mathrm{d} s}{\sum_{i=1}^{m-2} b_{i}-1}\left(1-\sum_{i=1}^{m-2} a_{i} \xi_{i}\right)\right) .
\end{aligned}
$$

Let the nonnegative continuous concave functional α_{1}, the nonnegative continuous convex functional θ_{1}, γ_{1}, and the nonnegative continuous functional ψ_{1} be defined on the cone P_{1} respectively by

$$
\begin{gathered}
\alpha_{1}(u)=\min _{0 \leq t \leq 1}|u(t)|=u(1), \quad \theta_{1}(u)=\psi_{1}(u)=\max _{0 \leq t \leq 1}|u(t)|=u(0), \\
\gamma_{1}(u)=\max \left\{\max _{0 \leq t \leq 1}|u(t)|, \max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right|\right\}=\max \left\{u(0),\left|u^{\prime}(1)\right|\right\}
\end{gathered}
$$

for $u \in P_{1}$. By Lemma 4 , the functionals defined above satisfy

$$
\begin{equation*}
\eta_{0} \theta_{1}(u) \leq \alpha_{1}(u) \leq \theta_{1}(u)=\psi_{1}(u), \quad\|u\|=\gamma_{1}(u) \tag{3.3}
\end{equation*}
$$

for all $u \in P_{1}$. Therefore, the condition (2.1) is satisfied.
Let

$$
\begin{aligned}
M_{1}= & \max \left\{\frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\int_{0}^{1}(1-s) q(s) \mathrm{d} s+\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) \mathrm{d} s\right),\right. \\
& \left.\int_{0}^{1} q(t) \mathrm{d} s+\frac{1}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) \mathrm{d} s\right\} \\
N_{1}= & \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\int_{0}^{1}(1-s) q(s) \mathrm{d} s+\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) \mathrm{d} s\right) .
\end{aligned}
$$

Choose $\delta_{1}>0, d_{1}>0, d^{*}>0$, such that

$$
\begin{aligned}
& 0<\delta_{1}<\eta_{0} \sum_{i=1}^{m-2} a_{i}\left(\int_{0}^{\xi_{i}}\left(1-\xi_{i}\right) q(s) \mathrm{d} s+\int_{\xi_{i}}^{1}(1-s) q(s) \mathrm{d} s\right) \\
& \left(d_{1}+1\right) w(0)>d_{1}, \quad d^{*}=\frac{d_{1}+1}{\eta_{0}} \max \left\{w(0),\left|w^{\prime}(1)\right|\right\}
\end{aligned}
$$

where $w(t)$ is the unique solution of the problem

$$
\begin{gather*}
u^{\prime \prime}+1=0, \quad 0<t<1 \tag{3.4}\\
u^{\prime}(0)=\sum_{i=1}^{m-2} b_{i} u^{\prime}\left(\xi_{i}\right), \quad u(1)=\sum_{i=1}^{m-2} a_{i} u\left(\xi_{i}\right), \tag{3.5}
\end{gather*}
$$

i.e.,

$$
\begin{align*}
w(t)= & -\frac{1}{2} t^{2}-\frac{\sum_{i=1}^{m-2} b_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} t+ \\
& \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\frac{1}{2}\left(1-\sum_{i=1}^{m-2} a_{i} \xi_{i}^{2}\right)+\frac{\sum_{i=1}^{m-2} b_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}}\left(1-\sum_{i=1}^{m-2} a_{i} \xi_{i}\right)\right), \tag{3.6}\\
w(0)= & \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\frac{1}{2}\left(1-\sum_{i=1}^{m-2} a_{i} \xi_{i}^{2}\right)+\frac{\sum_{i=1}^{m-2} b_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}}\left(1-\sum_{i=1}^{m-2} a_{i} \xi_{i}\right)\right), \\
\left|w^{\prime}(1)\right|= & 1+\frac{\sum_{i=1}^{m-2} b_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} .
\end{align*}
$$

Suppose that there exist constants $c_{1}>0, l_{1}>0, R_{1}>0$ with $0<c_{1}<d_{1}<d^{*}<l_{1}<R_{1}$, $\frac{R_{1}}{M_{1}}>\frac{d_{1}}{\delta_{1}}$, such that
$\left(\mathrm{H}_{4}\right) \quad f(t, u, v) \leq \frac{R_{1}}{M_{1}}$, for $(t, u, v) \in[0,1] \times\left[0, R_{1}\right] \times\left[-R_{1}, R_{1}\right] ;$
$\left(\mathrm{H}_{5}\right) f(t, u, v) \geq \frac{d_{1}}{\delta_{1}}$, for $(t, u, v) \in[0,1] \times\left[d_{1}, l_{1}\right] \times\left[-R_{1}, R_{1}\right]$;
$\left(\mathrm{H}_{3}\right) f(t, u, v)<\frac{c_{1}}{N_{1}}$, for $(t, u, v) \in[0,1] \times\left[0, c_{1}\right] \times\left[-R_{1}, R_{1}\right]$.
Theorem 2 Assume that $\left(A_{2}\right),\left(A_{3}\right),\left(A_{4}^{\prime}\right)$ and $\left(H_{4}\right)-\left(H_{6}\right)$ hold. Then the problem (1.1) with (1.3) has at least three positive solutions u_{1}, u_{2} and u_{3} satisfying

$$
\begin{align*}
& \max \left\{\max _{0 \leq t \leq 1} u_{i}(t), \quad \max _{0 \leq t \leq 1}\left|u_{i}^{\prime}(t)\right|\right\} \leq R_{1}, \text { for } i=1,2,3 ; \\
& \min _{0 \leq t \leq 1} u_{1}(t)>d_{1} ; \tag{3.7}\\
& c_{1}<\max _{0 \leq t \leq 1} u_{2}(t) \text { with } \min _{0 \leq t \leq 1} u_{2}(t)<d_{1} ; \\
& \max _{0 \leq t \leq 1} u_{3}(t)<c_{1} .
\end{align*}
$$

Proof It comes from Lemma 5 that the problem (1.1) with (1.3) is equivalent to the integral equation

$$
\begin{aligned}
u(t)= & -\int_{0}^{t}(t-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \frac{t}{\sum_{i=1}^{m-2} b_{i}-1} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
\frac{1}{1-\sum_{i=1}^{m-2} a_{i}}[& \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s- \\
& \sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-
\end{aligned}
$$

$$
\begin{aligned}
& \left.\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{\sum_{i=1}^{m-2} b_{i}-1} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s\right] \\
& \stackrel{\text { def }}{=} T_{1} u(t),
\end{aligned}
$$

and the operator $T_{1}: P_{1} \rightarrow P_{1}$ is completely continuous. Now we show that all the conditions of Lemma 1 are satisfied.

If $u \in \overline{P_{1}\left(\gamma_{1}, R_{1}\right)}$, then

$$
\gamma_{1}(u)=\max \left\{\max _{0 \leq t \leq 1}|u(t)|, \max _{0 \leq t \leq 1}\left|u^{\prime}(t)\right|\right\}=\max \left\{u(0),\left|u^{\prime}(1)\right|\right\} \leq R_{1}
$$

so $0 \leq u(t) \leq R_{1},\left|u^{\prime}(t)\right| \leq R_{1}$ for $0 \leq t \leq 1$, and the assumption $\left(\mathrm{H}_{4}\right)$ implies $f\left(t, u(t), u^{\prime}(t)\right) \leq$ $\frac{R_{1}}{M_{1}}$ for $0 \leq t \leq 1$. On the other hand, for $u \in P_{1}$, then $T_{1} u \in P_{1}$ and

$$
\gamma_{1}\left(T_{1} u\right)=\max \left\{\left(T_{1} u\right)(0),\left|\left(T_{1} u\right)^{\prime}(1)\right|\right\}
$$

where

$$
\begin{aligned}
\left(T_{1} u\right)(0)= & \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left[\int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-\right. \\
& \sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
& \left.\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s\right] \\
\leq & \frac{R_{1}}{M_{1}} \cdot \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\int_{0}^{1}(1-s) q(s) \mathrm{d} s+\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) \mathrm{d} s\right) \\
\leq & \frac{R_{1}}{M_{1}} \cdot M_{1}=R_{1}, \\
& \frac{1}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s \\
= & \int_{0}^{1} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
\leq & \frac{R_{1}}{M_{1}}\left(\int_{0}^{1} q(s) \mathrm{d} s+\frac{1}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) \mathrm{d} s\right) \\
\leq & \frac{R_{1}}{M_{1}} \cdot M_{1}=R_{1} .
\end{aligned}
$$

Therefore, $\gamma_{1}\left(T_{1} u\right) \leq R_{1}$, i.e., $T_{1}: \overline{P_{1}\left(\gamma_{1}, R_{1}\right)} \rightarrow \overline{P_{1}\left(\gamma_{1}, R_{1}\right)}$.
We choose $u_{0}(t)=\frac{d_{1}+1}{\eta_{0}} w(t)$, where $w(t)$ is the unique solution of the problem (3.4), (3.5), i.e., $w(t)$ is given by (3.6). Then $u_{0} \in P_{1}$. From (3.3), and the choice of d^{*}, d_{1}, l_{1} and R_{1}, we have

$$
\begin{aligned}
& \theta_{1}\left(u_{0}\right)=u_{0}(0)=\frac{d_{1}+1}{\eta_{0}} w(0) \leq d^{*}<l_{1} \\
& \gamma_{1}\left(u_{0}\right)=\frac{d_{1}+1}{\eta_{0}} \gamma_{1}(w)=\frac{d_{1}+1}{\eta_{0}} \max \left\{w(0),\left|w^{\prime}(1)\right|\right\}=d^{*}<R_{1}
\end{aligned}
$$

$$
\alpha_{1}\left(u_{0}\right) \geq \eta_{0} \theta_{1}\left(u_{0}\right)=\left(d_{1}+1\right) w(0)>d_{1}
$$

So $u_{0} \in P_{1}\left(\gamma_{1}, \theta_{1}, \alpha_{1} ; d_{1}, l_{1}, R_{1}\right)$ and $\alpha_{1}\left(u_{0}\right)>d_{1}$, hence $\left\{u \in P_{1}\left(\gamma_{1}, \theta_{1}, \alpha_{1} ; d_{1}, l_{1}, R_{1}\right) \mid \alpha_{1}(u)>\right.$ $\left.d_{1}\right\} \neq \emptyset$. If $u \in P_{1}\left(\gamma_{1}, \theta_{1}, \alpha_{1} ; d_{1}, l_{1}, R_{1}\right)$, then $d_{1} \leq u(t) \leq l_{1},\left|u^{\prime}(t)\right| \leq R_{1}$ for $0 \leq t \leq 1$. From the assumption $\left(\mathrm{H}_{5}\right)$, we have $f\left(t, u(t), u^{\prime}(t)\right) \geq \frac{d_{1}}{\delta_{1}}$ for $0 \leq t \leq 1$. Hence, by $T_{1} u \in P_{1},(3.3)$ and $\left(\mathrm{A}_{2}\right)$, we have

$$
\begin{aligned}
& \alpha_{1}\left(T_{1} u\right) \geq \eta_{0} \theta_{1}\left(T_{1} u\right)=\eta_{0}\left(T_{1} u\right)(0) \\
&= \eta_{0} \cdot \frac{1}{1-\sum_{i=1}^{m-2} a_{i}}\left(\int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-\right. \\
& \sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+ \\
&\left.\frac{1-\sum_{i=1}^{m-2} a_{i} \xi_{i}}{1-\sum_{i=1}^{m-2} b_{i}} \sum_{i=1}^{m-2} b_{i} \int_{0}^{\xi_{i}} q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s\right) \\
& \geq \eta_{0}\left(\sum_{i=1}^{m-2} a_{i} \int_{0}^{1}(1-s) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s-\right. \\
&\left.\sum_{i=1}^{m-2} a_{i} \int_{0}^{\xi_{i}}\left(\xi_{i}-s\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s\right) \\
&= \eta_{0} \sum_{i=1}^{m-2} a_{i}\left(\int_{0}^{\xi_{i}}\left(1-\xi_{i}\right) q(s) f\left(s, u(s), u^{\prime}(s)\right) \mathrm{d} s+\right. \\
& \geq \frac{d_{1}}{\delta_{1}} \cdot \eta_{0} \sum_{i=1}^{m-2} a_{i}\left(\int_{0}^{\xi_{i}}\left(1-\xi_{i}\right) q(s) \mathrm{d} s+\int_{\xi_{i}}^{1}(1-s) q(s) \mathrm{d} s\right) \\
&> \frac{d_{1}}{\delta_{1}} \cdot \delta_{1}=d_{1} .
\end{aligned}
$$

So,

$$
\alpha_{1}\left(T_{1} u\right)>d_{1} \text { for all } u \in P_{1}\left(\gamma_{1}, \theta_{1}, \alpha_{1} ; d_{1}, l_{1}, R_{1}\right)
$$

This shows that the condition $\left(\mathrm{S}_{1}\right)$ of Lemma 1 is satisfied.
Secondly, from the choice of $d^{*}, d_{1}, l_{1}, R_{1}$ and N_{1}, by the assumption $\left(\mathrm{H}_{6}\right)$ it is easy to check that the conditions $\left(\mathrm{S}_{2}\right)$ and $\left(\mathrm{S}_{3}\right)$ of Lemma 1 are satisfied, and hence we omit it. Therefore, by Lemma 1, the problem (1.1) with (1.3) has at least three positive solutions u_{1}, u_{2} and u_{3} satisfying (3.7). This completes the proof.

Example Consider the three-point boundary-value problem

$$
\begin{gather*}
u^{\prime \prime}(t)+f\left(t, u(t), u^{\prime}(t)\right)=0, \quad 0<t<1, \tag{3.8}\\
u(0)=0, \quad \frac{3}{2} u\left(\frac{1}{2}\right)=u(1) \tag{3.9}
\end{gather*}
$$

where

$$
f(t, u, v)= \begin{cases}\frac{1}{16} e^{t}+\frac{1}{2} u^{5}+\left(\frac{v}{4\left(18^{5}+1\right)}\right)^{4}, & \text { for } 0 \leq u \leq 16 \\ \frac{1}{16} e^{t}+\frac{1}{2}(17-u) u^{5}+\left(\frac{v}{4\left(18^{5}+1\right)}\right)^{4}, & \text { for } 16<u \leq 17 \\ \frac{1}{16} e^{t}+\frac{1}{2}(u-17) u^{5}+\left(\frac{v}{4\left(18^{5}+1\right.}\right)^{4}, & \text { for } 17<u \leq 18 \\ \frac{1}{16} e^{t}+\frac{18^{5}}{2}+\left(\frac{v}{4\left(18^{5}+1\right)}\right)^{4}, & \text { for } u>18\end{cases}
$$

Clearly, $\xi_{0}=\frac{1}{2}, a_{0}=\frac{3}{2}, 0<a_{0} \xi_{0}=\frac{3}{4}<1, q(t) \equiv 1$, and $\left(\mathrm{A}_{1}\right),\left(\mathrm{A}_{3}\right)$ and $\left(\mathrm{A}_{4}\right)$ hold. Choose $c=1, d=2, l=16, R=2\left(18^{5}+1\right), \delta=\frac{1}{8}$. We note $M=\frac{15}{4}, N=1$. Consequently, $f(t, u, v)$ satisfies

$$
\begin{aligned}
& f(t, u, v) \leq \frac{R}{M}=\frac{8}{15}\left(18^{5}+1\right) \\
& \quad \text { for } 0 \leq t \leq 1, \quad 0 \leq u \leq 2\left(18^{5}+1\right), \quad-2\left(18^{5}+1\right) \leq v \leq 2\left(18^{5}+1\right) \\
& f(t, u, v) \geq \frac{d}{\delta}=16, \quad \text { for } \frac{1}{2} \leq t \leq 1, \quad 2 \leq u \leq 16,-2\left(18^{5}+1\right) \leq v \leq 2\left(18^{5}+1\right) \\
& f(t, u, v) \leq \frac{c}{N}=1, \quad \text { for } 0 \leq t \leq 1, \quad 0 \leq u \leq 1, \quad-2\left(18^{5}+1\right) \leq v \leq 2\left(18^{5}+1\right)
\end{aligned}
$$

Then all conditions of Theorem 1 hold. Thus, with Theorem 1, the problem (3.8) with (3.9) has at least three positive solutions u_{1}, u_{2}, u_{3} such that

$$
\begin{gathered}
\max _{0 \leq t \leq 1}\left|u_{i}^{\prime}(t)\right| \leq 2\left(18^{5}+1\right), \text { for } i=1,2,3 ; \quad 2<\min _{\frac{1}{2} \leq t \leq 1} u_{1}(t) \\
1<\max _{0 \leq t \leq 1} u_{2}(t), \text { with } \min _{\frac{1}{2} \leq t \leq 1} u_{2}(t)<2, \quad \max _{0 \leq t \leq 1} u_{3}(t)<1
\end{gathered}
$$

References

[1] IL'IN V A, MOISEEV E I. A nonlocal boundary value problem of the second kind for the Sturm-Liouville operator [J]. Differentsial'nye Uravneniya, 1987, 23(8): 1422-1431, 1471. (in Russian)
[2] FENG W, WEBB J R L. Solvability of three point boundary value problems at resonance [J]. Nonlinear Anal., 1997, 30(6): 3227-3238
[3] FENG W, WEBB J R L. Solvability of m-point boundary value problems with nonlinear growth [J]. J. Math. Anal. Appl., 1997, 212(2): 467-480.
[4] GUPTA C P. A generalized multi-point boundary value problem for second order ordinary differential equations [J]. Appl. Math. Comput., 1998, 89(1-3): 133-146.
[5] WEBB J R L. Positive solutions of some three point boundary value problems via fixed point index theory [J]. Nonlinear Anal., 2001, 47(7): 4319-4332.
[6] MA Ruyun. Positive solutions of a nonlinear three-point boundary-value problem [J]. Electron. J. Differential Equations, 1999, 34: 1-8.
[7] CAO Daomin, MA Ruyun. Positive solutions to a second order multi-point boundary-value problem [J]. Electron. J. Differential Equations, 2000, 65: 1-8.
[8] MA Ruyun, MA Qiaozhen. Positive solutions for semipositone m-point boundary-value problems [J]. Acta Math. Sin. (Engl. Ser.), 2004, 20(2): 273-282.
[9] GUO Dajun, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones [M]. Academic Press, Inc., Boston, MA, 1988.
[10] AVERY R I, PETERSON A C. Three positive fixed points of nonlinear operators on ordered Banach spaces [J]. Comput. Math. Appl., 2001, 42(3-5): 313-322.

[^0]: Received April 15, 2008; Accepted January 5, 2009
 Supported by the "Qing-Lan" Project of Jiangsu Education Committee and the Natural Science Foundation of Jiangsu Education Committee (Grant No. 02KJD460011).

 * Corresponding author

 E-mail address: ymzhou@jstu.edu.cn (Y. M. ZHOU)

