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1.

tial equations was initiated by II'in and Moiseev [1]. Since then nonlinear multi-point boundary-
value problems have been studied by several authors using the Leray-Schauder continuation,
Nonlinear Alternatives of Leray-Schauder, coincidence degree theory, and fixed point theorems in
cones. We refer the readers to [2-8] for some existence results of nonlinear multi-point boundary-

value problems. Recently, Ma [6] proved the existence of positive solutions for the three-point
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w(0) =0, u(1) = hu(7),

by the application of a fixed point theorem in cones. Cao and Ma [7] proved the existence of

positive solutions to the boundary-value problem

u’ + Xa(t)f(u,u') =0, 0<t<1,
m—2

u(0) =0, u(l)= Z hiu(r;),

i=1
by the use of the Leray-Schauder fixed point theorem. Ma [8] proved the existence of at least

two positive solutions to multi-point boundary-value problem

u + Af(t,u) =0, 0<t<l,

m—2 m—2
’U,I(O) = Z kiul(Ti), ’U,(l) = Z hzu(n)
i=1 =1

In this paper, we concentrate on getting three positive solutions for the second-order differ-

ential equation
W () + g(t) F(t,u(t), o' (1) =0, 0<t<1, (1.1)

subject to three-point boundary condition
u(0) =0, u(l) = aou(&) (1.2)

or to m-point boundary condition

u'(0) = 2 biu' (&), u(l)= i a;u(&;). (1.3)

In this article, we always assume that

(A1) & € (0,1),a0 € (0,00) satisfy 0 < ap& < 1.

(Ag) & € (0,1) with 0 < & < €9 < - < €m_a < 1, a;,b; € [0,00) satisfy 0 < 37" % a; < 1
and Y72 b; < 1.

(Ag) f:]0,1] x [0,00) x R — [0, 00) is continuous.

(A4) ¢:[0,1] — [0, 00) is continuous and there is ¢ty € [£o, 1] such that ¢(to) > 0.

(A}) ¢:[0,1] — [0, 00) is continuous and there is ¢t; € [0, 1] such that g(¢1) > 0.

By a positive solution of (1.1) with (1.2) or (1.1) with (1.3) we mean a function u(¢) which
satisfies the differential equation (1.1), the boundary condition (1.2) or (1.3) and wu(t) > 0,
t € 0,1].

Our main results will depend on an application of a fixed-point theorem due to Avery and
Peterson [10] which is a generalization of the fixed-point theorem of Leggett-Williams. The
emphasis here is that the nonlinear term f depends on the first-order derivative explicitly. To
the best of the authors’ knowledge, there are no results for triple positive solutions to the multi-

point boundary-value problems.
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2. Background materials and definitions

Definition 1 The map « is said to be a nonnegative continuous concave functional on a cone
P of a real Banach space E provided that o : P — [0, 00) is continuous and
alte + (1 - t)y) > ta(z) + (1 - Ha(y)

for all z,y € P and 0 <t < 1. Similarly, we say the map [3 is a nonnegative continuous convex

functional on a cone P of a real Banach space E provided that 3 : P — [0, 00) is continuous and

Btz + (1 —t)y) <tB(x) + (1 —1)B(y)
for all x,y € P and 0 <t < 1.

Let P be a cone in a real Banach space E, v and 6 be nonnegative continuous convex
functionals on P, o be a nonnegative continuous concave functional on P, and i be a nonnegative
continuous functional on P. Then for positive real numbers ¢, d, [ and R, we define the following

convex sets:
P(v;R) = {z € P|y(x) < R},
Py, a;d, R) = {z € P|ld < a(z),v(z) < R},
P(v,0,0;d,1l,R) = {x € Pld < a(x),0(z) <l,v(x) < R},
and a closed set
Q(v,¥5¢, R) ={z € Ple < ¢(x),7(x) < R}.

The following fixed-point theorem due to Avery and Peterson is fundamental in the proofs of our

main results.

Lemma 1 ([10]) Let P be a cone in a real Banach space E. Let v and 6 be nonnegative
continuous convex functionals on P, « be a nonnegative continuous concave functional on P,
and ¢ be a nonnegative continuous functional on P satisfying y(Az) < Mp(z) for 0 < A < 1,
such that for some positive numbers My and R

a(z) < ¢(z) and |z [[< Moy(z) (2.1)

for all x € P(,R). Suppose T : P(y,R) — P(v,R) is completely continuous and there exist

positive numbers ¢, d and | with ¢ < d such that
(S1) {z € P(v,0,a;d,l, R)|af(x) > d} # 0 and a(Tz) > d for all x € P(v,0,a;d,l, R);
(S2) a(Tx) > d for x € P(y,«a;d, R) with 0(Tx) > I;
(S3) 0¢ Q(v,¥;¢,R), and Y(Tx) < ¢ for z € Q(v,¢;¢, R) with ¥(z) = c.

Then T has at least three fixed points x1,x2,x3 € P(v, R), such that

v(z;) <R fori=1,2,3; d < a(x1);
¢ < P(x2) with a(zz) < d; ¥(z3) < c.
3. Existence of triple positive solutions

In this section, we impose growth conditions on f which allow us to apply Lemma 1 to
establish the existence of triple positive solutions of Problem (1.1), (1.2) and (1.1), (1.3).
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We first deal with the problem (1.1) with three-point boundary-value conditon (1.2). Let
X = C'0,1] be endowed with the maximum norm

— !/
llull = max{ max |u(t)], max |o'(t)}, ueX.

Define the cone P C X by
P ={ue X|u(t) > 0,u(0) = 0,u(l) = apu(&o), u(t) is concave on [0, 1]}.
Lemma 2 ([6]) Under the assumption (A1), if u € P, then ming,<¢<1 u(t) > €o - maxo<i<1 u(t),

where
. ao(1 — o)
€0 = min  aoo, ————,&o (-
1 —aopo
Let the nonnegative continuous concave functional «, the nonnegative continuous convex

functional 6, ~, and the nonnegative continuous functional ¢ be defined on the cone P by

o(u) = min u(t), Ou) = ¢(u) = max u(t), 7(u) = max |u'(t)]

By Lemma 2, the functionals defined above satisfy
g0f(u) < a(u) < 0(u) = P(u), |lul = max{O(u),y(u)} = y(u), (3.1)
for all w € P. Therefore, Condition (2.1) is satisfied.
Let k(t,s) : [0,1] x [0,1] — [0, 00) be defined by
t(l—s) aot(bo—s)
1 — aoo 1 —ao&o

(1=s)  aot(Eo—s)
k(t, s) 1 —aoéo 1 —apéo

(t—s), for0<s<t<1ands < &;

for 0 <t <s < &p;

M, for0<t<s<1land¢ <s;
1 —ao&o
t(1—s)
- for ég < s <t < 1.
1_04050 ( 8)7 Orgo—s— =
Lemma 3 ([5]) Under the assumption (A1), k(t,s) < ®(s), for (t,s) € [0,1] x [0, 1], where
s(1—s)
P(s) = 1 .
(9) = max{t.an} - S

Let

1 agp o 1 1
M = /O q(s)ds + 1_7%50/0 (o — s)q(s)ds + 1_7%50/0 (1= s)q(s)ds,

1
N = / D(s)g(s)ds.
0
Choose § > 0, d > 0 such that

1
0 < 6 < min{l,a0} - 15725 / (1 — 8)g(s)ds,
— aodo Jg,

(1 —ao&)®  aoko — ans
(d+1) .max{4(1_a020)2, 1-@0500} > d.
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Let
do

_ d+1 'max{l—a0587 (1—&058)2 }

€0 1 —apo” 4(1 — aoo)?

To present our main results, we assume that there exist constants ¢ > 0,1 > 0, R > 0
satisfying 0 < ¢ < d < dp <l < R and % > %, such that

(Hi) f(t,u,v) < 4%, for (t,u,v) € [0,1] x [0, R] x [-R, RJ;

(H2) f(t,u,v) > §, for (t,u,v) € [€,1] x [d,]] x [~ R, R];

(Hs) f(t,u,0) < % for (t,u,v) € [0,1] x [0,¢] x [~ R, R].

Theorem 1 Assume that (A1), (As), (A4) and (Hy)—(Hs) hold. Then the problem (1.1) with

(1.2) has at least three positive solutions uy, us and uz satisfying

max |u;(t)] < R, fori=1,2,3;

0<t<1
d< min uq(¢);

&o<t<1 (32)
¢ < max ug(t), with min wuq(t) < d;

0<t<1 fo<t<1

t .
Orgtagxl us(t) < c

Proof The problem (1.1) with (1.2) is equivalent to the integral equation

aot
1 —aopo

1
/0 (1 - 8)q(s) (s, u(s), o' ())ds

t o
u(t) = —/0 (t = s)a(s)f (s, u(s), u'(s))ds /0 (6o — s)a(s)f(s,u(s),u'(s))ds+

t
1 —apéo

— /0 k(t, $)q(s) f (s, u(s), u(s))ds & Tu(t).

For w € P, it is easy to check that (Tw)(0) = 0, (Tw)(1) = ao(Tu)(&) and (Tu)"(t) =
—q(t)f(t,u(t),u'(t)) < 0. Hence, Tu is concave on [0,1] and Tu € P. Moreover, it is well
known that this operator T' : P — P is completely continuous and fixed points of T" are solutions
of (1.1), (1.2). We now show that all conditions of Lemma 1 are satisfied.

If u € P(v, R), then v(u) = maxo<s<1 |t/ (t)| < R, so maxo<s<; u(t) < R and the assumption
(Hy) implies f(¢, u(t),u/(t)) < £. On the other hand, for u € P, we have T'u € P. Because of
the concavity of T'u on [0, 1], we have maxo<;<1 |(Tw)'(¢)| = max{|(Tw)’(0)|, |(Tw)' (1)|}, where
ag

(T O0)] =] - o

1 ! ,
e | 097 .6

(1—(172050 /ogo (o — s)q(s)ds + 1_71%50 /01(1 - S)Q(S)ds)
M=R,

o
/0 (50 - S)Q(S)f(S,u(S),ul(s))ds+

A
SERSNE

<

\(Tuy (1)) =| - / 4(5) (5, u(s), u/(5))ds—
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a0 o /
e [ 0= )0l (s u(s) () s

1 ! .
1-— 04050 /0 (1 B S)Q(S)f(s, u(s), u (S))ds

S%(/Ol g(s)ds + 7 —asogo /050 (€0 = s)g(s)ds + 1 _1%50 /01(1 - s)q(s)ds)
=—.M=R.

= =

So y(Tu) = maxo<¢<1 |(Tu)'(t)| < R. Hence, T : P(v,R) — P(v, R).
To check condition (S7) of Lemma 1, we choose ug(t) = ‘7lE—J;1(—lf2 + %t),t € [0,1]. It is
easy to see that up € P. By (3.1) and the choice of ug, d, I, R, we have

L2 (1 o 22
O(uo) = max |ug(t)| = d+1 -max{aogO aoy (L~ aoko) } <dp <1,

0<t<1 €0 1 —apé " 4(1 —apép)?
d+1 1—ap&l
= e . Y <dy<R
v(ug) Jax |ug ()] s T agl, ST

—ané2 o £2)2
a(uo) > €0f(uo) = (d + 1) - max { (10150_ afgjo ; 4((11 _a;fgo))z } > d.

So up € P(v,0,a;d,l, R) and a(ug) > d, ie., {u € P(y,0,a;d,l, R)|a(u) > d} # 0. If u €

P(v,0,a;d,l,R), then d < u(t) < I, |u/(t)] < R for § < t < 1. From the assumption (Hz) we
have f(t,u(t), v (t)) > % for £ <t <1, and by the definition of a and the cone P, we have to
distinguish two cases: (i) a(Tu) = (T'u)(&) and (ii) a(Tu) = (Tu)(1).

In case (i), by 0 < & < 1 we have

&o
(Tu) (&) = / (60 — 5)a(s) f (5, u(s), u'(5))ds—

o

2 [ 6 = s)a(o) s, ). (s

€o
1 —ao&o
1 —1ao§0 /050 sq(s)f (s, u(s), u'(s))ds+

€o
1 —ao&o

€o ! )

1 —apéo /0 sq(s)f (s, u(s), u'(s))ds

o £o ,
"1 aoko (/o sq(s)f(s,u(s), w/(s))ds+

1
/0 (1= 8)q(s) (s, u(s), o ())ds

/E a(5) (5, u(s), o (5))ds—

[ 615605, ) - / " sq(s) sy u(s) o (s))ds)

“ / (1= )q(s) (s, u(s), u/(s))ds

S 1—agdo Je
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d €o !

>2. S0 _

25 l—ao&)/&)(l s)q(s)ds
d

>S'5_d'

In case (ii), we have

d a0§0 / d
—_— 1- ds>—--6=d.
_6 1 —apéo ( S) (S)S>5
So, combining the cases (i) and (ii), we have a(Tu) > d, for all u € P(v,0, a;d, [, R). This shows
that the condition (S;) of Lemma 1 is satisfied.
Secondly, because of T(P) C P and (3.1), noting the choice of dy, d and I, we have

(Tu)(1) = ao(Tw)(é0) =

|a(Tu)| > €0f(Tu) > el > eody

_ —ap&h (1 —ao&3)?
= (d+1)-max { 1 —aobo’” 4(1 — apo)? J
2(d+1)-%>d+1>d,

for all u € P(v, a;d, R) with 8(Tu) > [. Thus, the condition (S2) of Lemma 1 is satisfied.

Finally, we show that (S3) of Lemma 1 also holds. Clearly, as ¢(0) = 0 < ¢, there holds that
0 ¢ Q(v,%; ¢, R). Suppose that u € Q(v,¥; ¢, R) with ¥(u) = ¢, then 0 < u(t) <e¢, [v'(t)| < R
for 0 <t < 1. Then, by the definition of the operator T', Lemma 3 and the assumption (Hz), we
have

Y(Tu) = max (Tu)(t) = max /0 k(t,s)q(s)f(s,u(s),u (s))ds

0<t<1 0<t<1

sfé@wv@wg ®<_/ s= < N=c

So (S3) of Lemma 1 is satisfied. Therefore, an application of Lemma 1 implies that the problem
(1.1) with (1.2) has at least three positive solutions w1, us, and ug satisfying (3.2). The proof is
completed. O

Now we deal with the problem (1.1) with m-point boundary-value condition (1.3). The
method is just similar to what we have done above.

Define the cone P, C X = C1[0,1] by

uwzmwm=z&%w@mmwﬁzlm@»}

P={ue X’
u(t) is concave on [0, 1].

Lemma 4 ([8]) Under the assumption (As), if u € Py, then u(t) is non-increasing on [0, 1] and
satisfies ming<;<1 u(t) > 1o - maxo<i<1 u(t), where

= Zitaill - &)

1=2m ek

Lemma 5 ([8]) Under the assumption (Az), then for y € C|0, 1] with y(t) > 0 for t € [0, 1], the
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problem

o +yt)=0, 0<t<l,

_ 2 b (&), u(l) = i aiu(&;)

has a unique solution u € P;. Moreover,

¢
u(t) = — / (t —s)y(s)ds + At + B,
0
where

4 i by y(s)ds
Y-
2

“ g ([ 0 dS‘Z‘”/: T

=1
S bi o y(s)ds _ ‘.
ST $a)

i=1

)

Let the nonnegative continuous concave functional «;, the nonnegative continuous convex
functional 61,7;, and the nonnegative continuous functional ¥ be defined on the cone P; re-

spectively by

ar(u) = min |u(t)] =u(l), 6i(u) =1(u) = max |u(t)| = u(0),

0<t<1 0<t<1

71(u) = max{ max, fu(t)|, max [ (8)]} = max{u(0), (1))}

for v € P;. By Lemma 4, the functionals defined above satisfy

nob (u) < on(u) < 01(u) =¢1(u), [ul =71(u) (3.3)
for all w € P;. Therefore, the condition (2.1) is satisfied.
Let
1 ! 1— % a; 5
M; =max{ ———— 1- ds + 11 ik /
1 {1_2?112&1_(/()( )a(s) Z
1
t)ds + ———— b; / s)ds
/0 q(t)ds + — Z }

1

Nl_m(/ol(l—ﬂ()dwl 11‘“512 /

Choose 01 > 0,d; > 0,d* > 0, such that

m—2 & 1
0< 0 <m X ai /0 (1 - &)q(s)ds + / (1 - s)q(s)ds),

i

di+1

(dp + Dw(0) > dy, d* = max{w(0), |w'(1)[},
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where w(t) is the unique solution of the problem

u+1=0, 0<t<]l, (3.4)
m—2 m—2
u'(0) = Z biu' (&), wu(l) = Z a;u(&;), (3.5)
i=1 i=1
ie.,
1 M2
wit) = — 2 - s G
2 1- Ei:l bi
m—2 m—2 m—2
1 1 Yo bi&
— (0= a)+ ==L (12 ), 3.6
1—22’112%(2( ; S g 2) 20
1 1 m—2 Zm72 bé' m—2
w0) =———— (21— S @) + ==L N gg)),
(0) 1_Z;,;Qai(z( g )+ 725 g &)
m—2
j— bz 7
/(1)) =1 + 2=V
1=>0" b

Suppose that there exist constants ¢; > 0,17 >0, Ry >0 with 0 < ¢y < dy < d* <l; < Ry,
A% > %, such that

(Hy) f(t,u,v) < R—ll, for (t,u,v) € [0,1] x [0, R1] x [-R1, R1];

(H5) f(t,u,v) > g_iv for (t,u,v) € [Oa 1] X [dlall] X [_Rlle];

(Hz) f(t,u,v) < &, for (t,u,v) €[0,1] x [0,¢1] X [-R1, R1].

Fl’
Theorem 2 Assume that (Asz), (As), (A}) and (Hy)—(Hg) hold. Then the problem (1.1) with
(1.3) has at least three positive solutions uy, ug and us satisfying
. ! < ) — .
Inax{orgtagq1 u;(t), Jnax lul()|} < Ry, for i=1,2,3,;

min uq(t) > dy;
0<t<1

c1 < max ug(t) with min ug(t) < di;
0<i<1 0<t<1

t .
L el <o

Proof It comes from Lemma 5 that the problem (1.1) with (1.3) is equivalent to the integral

equation

ult) = / (t = $)a(s) (s, uls), ' (s))ds+

t m—2 &i
W Z bi/O q(s)f (s, u(s),u'(s))ds+
=1 g i=1

1

1
Tyjai [/0 (1= 9)q(s)f(s,u(s),u'(s))ds—

m=2 &i
> ai [ (6= s)a)f(s.uls) ol (9)ds-
i=1

0
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1— 7_7172 & m—2 & /
% ; bi/o q(s)f(s,u(s),u'(s))ds
(),

and the operator T7 : P; — P; is completely continuous. Now we show that all the conditions of

Lemma 1 are satisfied.
Ifue Pl('}’l; Rl), then
/
= <
1(0) = max{ muax [u(t)], ma, o ()]} = max{u(0). [’ (1))} < B,
50 0 < w(t) < Ry, |u/(t)] < Ry for 0 <t <1, and the assumption (Hy) implies f(¢,u(t),u'(t)) <
ﬁ—ll for 0 <t < 1. On the other hand, for u € Py, then Tyu € P; and

M (Thu) = max{(T1u)(0), |(T1w)'(1)|},

where

1 ! '
T00) =1 [ 0= 9o o) ()5

Z a; /51' (& — 8)q(s)f(s,u(s),u(s))ds+
LI e Z S st o

S%.%(/Ol(l—s)()ds—i—l _E:I%&Zb/ ds)

1
(@ (] = [ a(6) s, us) 0 (5)) s+
m—2 i
1__m2bz/ s),u'(s))ds

i =1
R m—
S—l(/ q(s)ds+ b/ qsds)
M\ Jo bi i
Ry
<— M, = R;.

M,
Therefore, y1 (Thu) < Ry, ie., T1 : Pi(y1, R1) — Pi(m1, R1).
We choose ug(t) = %w(t), where w(t) is the unique solution of the problem (3.4), (3.5),
ie., w(t) is given by (3.6). Then ug € P;. From (3.3), and the choice of d*, di, I3 and Ry, we

have

Cdi+1

Mo
di+1 _di+1

w(0) < d* <1y,

max{w(0), |w’'(1)|} = d* < Ry,
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al(uo) > 7’]091 (UO) = (dl =+ 1)11)(0) > dl.

So Uy € P1(71,91,a1;d1,ll,R1) and al(uo) > dl, hence {u S Pl(”yl,Gl,al;dl,ll,Rlﬂal(u) >
dl} 75 0. Ifu e P1(71,91,a1;d1,11,R1), then d; < ’U,(t) < Iy, |’U,I(t)| < Ry for 0 <t < 1. From
the assumption (Hs), we have f(¢,u(t),u'(t)) > d—i for 0 <t¢ < 1. Hence, by Thu € Py, (3.3) and
(A2), we have
a1 (Tru) 2001 (Thu) = no(T1u)(0)
1

1
= g (O 90 ot )~

—2 &i
Z g /O (& — s)a(s)f (s, u(s),u'(s))ds+

11 _Zy:g_;;& ’”22 /fr u/(s))ds)

=1

>1o (gai /01(1 = 5)q(s)f (s, u(s), u'(s))ds—
. 2 &i

az/o ; — S) (s,u(s),u/(s))ds)

—m Z o / (1 = €)a(s) (5, u(s), u/(5))ds+

/1(1 - S)Q(s)f(S,u(s),u/(S))ds)

&
>3 7702@1(/ (1= &)als >d5+/_1<1_5>q<5)d5)
>Z—i <01 =dj.

So,
oq(Tlu) > dq for all u € P1(71,91,a1;d1,ll,R1).

This shows that the condition (S1) of Lemma 1 is satisfied.
Secondly, from the choice of d*, dy, I3, Ry and N7, by the assumption (Hg) it is easy to check

that the conditions (Sz) and (S3) of Lemma 1 are satisfied, and hence we omit it. Therefore,
by Lemma 1, the problem (1.1) with (1.3) has at least three positive solutions wui, us and ug
satisfying (3.7). This completes the proof. O

Example Consider the three-point boundary-value problem

u(t) + f(tu(t), /(1) =0, 0<t<]1, (3.8)
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where
1 v
t 5 4
2 for 0<u<16
6¢ T3 e orvsu=
Loy 5 v 4
—et+ (17— for 16 <u <17
e W (g ) for W <usIT
f(tvuav)_ 1 1
v
— —17)u® 4 for 17T<u<18
6 +2( Ju +(4(185+1))’ or 17 <wu <18,
1 18° v .
= f 18.
%t T ams ) or =
Clearly, & = 3, ap = 3, O<a0§o—%<1 q(t) = 1, and (A1), (Az) and (A4) hold. Choose
c=1,d=2,1=16, R=2(18%+1), 6 = .We note M = 1 , N = 1. Consequently, f(t,u,v)
satisfies
R 8, .
<—:
flt,u,v) < i 15(18 +1),
for0<t<1, 0<u<2(18%+1), —2(18° 4+ 1) <wv <2(18° +1);
d 1
ft,u,v) > 5—16, for §§t§1, 2<u<16,-2(18% +1) <v < 2(18° +1);
f(tuv)ﬁ%zl, for 0<t<1, 0<u<1, —2(18°+1)<v<2(18 +1).

Then all conditions of Theorem 1 hold. Thus, with Theorem 1, the problem (3.8) with (3.9) has

at least three positive solutions ui, ug, ug such that

max |u}(t)] <2(18° + 1), fori=1,2,3; 2< min wuy(t),
0<t<1 <<

1 < max ug(t), with min wug(t) <2, max us(t) < 1.
0<t<1 1<i<1 0<t<1
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