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1. Introduction

All groups considered in this article are finite.

The relationship between the properties of maximal subgroups of a group G and the struc-

ture of G has been studied extensively. In this aspect, there have been two important results.

One states that a group G is nilpotent if and only if every maximal subgroup of G is normal in

G. Another due to Huppert asserts that a group G is supersolvable if and only if every max-

imal subgroup of G has prime index in G. In order to characterize the solvability of groups

analogously, many authors have investigated various properties of subgroups from different an-

gles. For example, Wang [1] defined the c-normality of subgroups and proved that a group G

is solvable if and only if every maximal subgroup of G is c-normal, whereas Guo and Shum [2]

also described the solvable groups in terms of cover-avoidance properties. The cover-avoidance

property has been introduced for a long time, and many authors such as Gaschütz [3], Gillam [4]

and Tomkinson [5] have studied it. However, the c-normality and the cover-avoidance property

do not cover each other (see Examples 4.1 and 4.2 in [6]). Recently, Fan et al. [6] introduced the

semi-cover-avoiding properties which cover not only the c-normality but also the cover-avoidance
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property, and they proved that a group G is solvable if and only if either every maximal sub-

group of G is semi-cover-avoiding in G, or every Sylow subgroup of G is semi-cover-avoiding in

G. Furthermore, the theorems for a group to be supersolvable obtained by Srinivasan [7] and

Buckley [8] are also generalized. The further research about the influence of semi-cover-avoiding

properties on solvability and p-nilpotency has been made in [9] and [10].

In this paper, in order to characterize the π-solvability of groups, we first define and inves-

tigate the semi π-cover-avoiding properties, and then show that a group G is π-solvable if and

only if every maximal subgroup of G is semi π-cover-avoiding in G, or every Sylow subgroup

of G is semi π-cover-avoiding in G. More attention is paid to minimizing the number of the

maximal subgroups needed to characterize the structure of G. Also we prove that a group with

every 2-maximal subgroup being semi π-cover-avoiding is π-solvable. Finally, we study groups

with the maximal or 2-maximal subgroups of its Sylow subgroups having semi-cover-avoiding

properties. Some known results are generalized.

For a group G, π(G) denotes the set of primes dividing the order of G; M < · G denotes M

is a maximal subgroup of G. π always denotes a set of some primes. The other terminology and

notations employed agree with standard usage.

2. Basic definitions and preliminaries

Let G be a group. If K and H are two normal subgroups of G with K ≤ H , then we call

H/K a normal factor of G. A normal factor H/K of G is called a π-normal factor if there exists

a prime p ∈ π such that p||H/K|. Clearly, each normal factor of G is either a π-normal factor

or a π′-group. It should be noted that a π-normal factor of G is not necessarily a π-group.

Sometimes, without causing confusion from the context, we also say “a π-factor” that actually

means “a π-normal factor”. When π = {p}, a π-normal factor of G is briefly called a p-normal

factor. We say that a chief factor of G is a π- chief factor if it is a π-normal factor.

Let H/K be a normal factor of a group G and L a subgroup of G. We say that L covers

H/K if LH = LK, while we say that L avoids H/K if L ∩ H = L ∩ K. It is easy to see that L

covers H/K if and only if LK/K ≥ H/K, while L avoids H/K if and only if LK/K ∩H/K = 1.

Moreover, if L covers (or avoids) H/K, then L covers (or avoids) any normal factor H1/K1 of

G with K ≤ K1 < H1 ≤ H .

Definition 2.1 Let L be a subgroup of a group G.

1) ([6, Definition 2.1]) If there is a chief series of G such that L covers or avoids every chief

factor of this series, then L is called a semi-cover-avoiding subgroup of G, or say that L has the

semi-cover-avoidance properties in G.

2) If there is a chief series of G such that L covers or avoids every π-chief factor of this

series, then L is called a semi π-cover-avoiding subgroup of G, or say that L has the semi

π-cover-avoidance properties in G.

Clearly, the semi π-cover-avoidance properties is a generalization of the semi-cover-avoidance

properties. If π = π(G), then a semi π-cover-avoiding subgroup of G is certainly a semi-cover-
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avoiding subgroup of G. By definition of cover-avoidance properties of subgroups, we can easily

prove the following two lemmas:

Lemma 2.2 Let L be a subgroup of a group G and N a normal subgroup of G with N ≤ L.

Then L is semi π-cover-avoiding in G if and only if L/N is semi π-cover-avoiding in G/N .

Lemma 2.3 Let L and M be subgroups of a group G such that L ≤ M . If L is semi π-cover-

avoiding in G, then L is also semi π-cover-avoiding in M .

Lemma 2.4 Suppose that L and M are subgroups of a group G with L ≤ M , and N is a normal

subgroup of G such that (|N |, |L|) = 1.

1) If L is a semi π-cover-avoiding subgroup of M , then L and LN both are semi π-cover-

avoiding subgroups of MN . Especially, LN/N is a semi π-cover-avoiding subgroup of MN/N .

2) Conversely, if LN/N is a semi π-cover-avoiding subgroup of MN/N , then L and LN both

are semi π-cover-avoiding subgroups of MN . Especially, L is a semi π-cover-avoiding subgroup

of M .

Proof 1) Let 1 = M0 < M1 < · · · < Mn = M be a chief series of M such that L covers or

avoids every π-factor of this series. Consider the normal series

1 ≤ N = M0N ≤ M1N ≤ · · · ≤ MnN = MN (1)

of MN . Suppose that MiN/Mi−1N is a π-factor, 1 ≤ i ≤ n. Since MiN/Mi−1N is a homomor-

phic image of Mi/Mi−1, Mi/Mi−1 is a π-factor, and so L covers or avoids Mi/Mi−1. If L covers

Mi/Mi−1, then LMi−1 ≥ Mi, and therefore L(Mi−1N) ≥ MiN , which means that both L and

LN cover MiN/Mi−1N . If L avoids Mi/Mi−1, then L∩Mi ≤ Mi−1. We claim that both L and

LN also avoid MiN/Mi−1N . In fact, let h ∈ L ∩ MiN . Then h = xy for some x ∈ Mi and

y ∈ N . Since (|L|, |N |) = 1, we may assume that h is a σ-element and y is a σ′-element, where σ

is a set of some primes. Decompose x as x = xσxσ′ , where xσ, xσ′ ∈ 〈x〉, and xσ is a σ-element

and xσ′ is a σ′-element. Let K = Mi ∩ N . Then K � M . Clearly, [Mi/K, (M ∩ N)/K] = 1.

Since y ∈ M ∩ N , we have [xσ′K, yK] = 1 = [xσK, yK], from which we deduce that xσ′yK is

still a σ′-element, and therefore o(hK) = o(xσK)o(xσ′yK). Note that hK is a σ-element, so

o(xσ′yK) = 1 and xσ′y ∈ K ≤ Mi. Thus h = xσ(xσ′y) ∈ Mi, and h ∈ L ∩ Mi ≤ Mi−1. This

shows that L ∩ MiN ≤ Mi−1 and LN ∩ MiN = (L ∩ MiN)N ≤ Mi−1N , and our claim is now

proved. Moreover, since L avoids N/1 and LN covers N/1, L and LN both cover or avoid any

π-factor of series (1). It follows that L and LN cover or avoid any π-factor of each chief series of

MN obtained by refining the series (1). Hence L and LN are semi π-cover-avoiding subgroups

of MN .

2) By Lemmas 2.2 and 2.3, we need only prove that L is a semi π-cover-avoiding subgroup

of MN . Without loss of generality, we assume that MN = G. This means that LN/N is semi

π-cover-avoiding in G/N . So G/N has a chief series 1 < G1/N < G2/N < · · · < Gm/N = G/N

such that LN/N covers or avoids every π-factor of this series. Since (|L|, |N |) = 1, it follows
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that L covers or avoids every π-factor of the normal series

1 ≤ N < G1 < · · · < Gm = G (2)

of G. Then L covers or avoids every π-factor of each chief series of G obtained by refining the

series (2). Hence L is semi π-cover-avoiding in G. The proof of the lemma is completed. 2

Combining Lemmas 2.2 and 2.4, we have

Lemma 2.5 Let L be a subgroup of a group G and N a normal subgroup of G such that either

L ≥ N or (|L|, |N |) = 1. Then L is a semi π-cover-avoiding subgroup of G if and only if LN/N

is a semi π-cover-avoiding subgroup of G/N . Especially, L is a semi-cover-avoiding subgroup of

G if and only if LN/N is a semi-cover-avoiding subgroup of G/N .

3. Main results

Let G be a group and p a prime. For convenience of statement, we give the following families

of maximal subgroups of G:

Fn(G) = {M | M < · G and M is non-nilpotent},

Fc(G) = {M | M < · G and |G : M | is composite },

Fp(G) = {M | M < · G and M ≥ NG(P ) for a Sylow p-subgroup P of G},

Fπ(G) =
⋃

p∈π Fp(G),

Fp(G) = {M | M < · G and M ≥ P for some Sylow p-subgroup P of G},

Fpcn(G) = Fp(G) ∩ Fc(G) ∩ Fn(G).

Theorem 3.1 A group G is π-solvable if and only if M is a semi π-cover-avoiding subgroup of

G for any M ∈ Fπ(G).

Proof “ ⇒ ”. Let M be a maximal subgroup of G and H/K a π-chief factor of G. Since any

chief factor of G is either a π′-group or a solvable group, we have that H/K is an elementary

abelian p-group for some prime p ∈ π. If MK/K � H/K, then K ≤ M , and M/K∩H/K�G/K.

It follows that M/K ∩ H/K = 1. Hence M is a semi π-cover-avoiding subgroup of G.

“ ⇐ ”. Assume the theorem is false and let G be a counterexample with the smallest order.

Let N be a minimal normal subgroup of G. By Lemma 2.2, the hypotheses of the theorem are

inherited by G/N , and therefore G/N is π-solvable. Since the class of π-solvable groups is a

formation, N is a unique minimal normal subgroup of G. Also N is neither a π′-group nor a

solvable group, and so p||N | for some p ∈ π. Choose P ∈ Sylp(N) and P ∗ ∈ Sylp(G) such that

P = N ∩ P ∗. Then P < N and there exists M < · G such that NG(P ∗) ≤ NG(P ) ≤ M , and by

Frattini argument, G = NM . It follows that M ∈ Fπ(G) and M covers or avoids N/1. However,

since 1 6= P ≤ N ∩ M , we have M ≥ N and hence G = NM ≤ M , a contradiction. 2

Corollary 3.2 A group G is π-solvable if and only if M is a semi π-cover-avoiding subgroup

of G for any M < · G. Especially, G is solvable if and only if for any M < · G, M is semi

cover-avoiding in G.
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Recall that a group of odd order is solvable, hence a group is solvable if and only if it is

2-solvable. By Theorem 3.1, we have:

Corollary 3.3 A group G is solvable if and only if M is a semi 2-cover-avoiding subgroup of

G for any M ∈ F2(G).

Lemma 3.4 ([11, IX, Lemma 1.11]) Let P be a Sylow p-subgroup of a group G, where p is

the largest prime dividing the order of G. Then either P � G or the maximal subgroups of G

containing NG(P ) have composite indices in G.

Theorem 3.5 A group G is π-solvable if and only if M is a semi π-cover-avoiding subgroup of

G for any M ∈ Fpcn(G), where p is the largest prime dividing the order of G.

Proof We only prove the sufficiency. Assume the theorem is false and let G be a counterexample

of minimal order. Choose N � G such that Ḡ = G/N is not π-solvable and N has the largest

possible order. Then Ḡ has a unique minimal normal subgroup Ū , and Ū is not π-solvable,

especially Ū is not a π′-group. Let Q̄ ∈ Sylq(Ū), where q is the largest prime dividing |Ū |.

Clearly, 2 < q ≤ p. The minimality of Ū implies that there exists a maximal subgroup M̄ = M/N

of Ḡ such that NḠ(Q̄) ≤ NḠ(Z(J(Q̄))) ≤ M̄ , where J(Q̄) is the Thompson subgroup of Q̄, and

by Frattini argument, Ḡ = ŪM̄ . If M̄ is nilpotent, then NŪ (Z(J(Q̄))) is nilpotent, and by

Glauberman-Thompson Theorem, Ū is q-nilpotent, which implies that Q̄ = Ū , a contradiction.

Thus M̄ is non-nilpotent. Also since |G : M | = |Ḡ : M̄ | = |Ū : Ū ∩ M̄ | and NŪ (Q̄) ≤ M̄ ∩ Ū ,

we have q ∤ |Ū : Ū ∩ M̄ |, and by Lemma 3.4, |G : M | is composite. Hence r < q for any prime r

dividing |G : M | and thus p ∤ |G : M |. These arguments show that M ∈ Fpcn(G). By Lemma

2.2, M̄ is semi π-cover-avoiding in Ḡ, and so M̄ covers or avoids Ū . Since 1 6= Q̄ ≤ Ū ∩ M̄ , it

follows that M̄ ≥ Ū and therefore Ḡ = ŪM̄ ≤ M̄ , the final contradiction. 2

Corollary 3.6 A group G is solvable if and only if M is a semi-cover-avoiding subgroup of G

for any M ∈ Fpcn(G), where p is the largest prime dividing the order of G.

Theorem 3.7 A group G is π-separable if and only if there exists a Hall π-subgroup H of G

such that H is semi π-cover-avoiding in G.

Proof “ ⇒ ”. By [12, Theorem 6.8], G has a Hall π-subgroup H . Let L/K be any π-chief

factor of G. Clearly, L/K is a π-group. Since HK/K is a Hall π-subgroup of G/K, it follows

that HK/K ≥ L/K, and therefore H is semi π-cover-avoiding in G.

“ ⇐ ”. Conversely, let H be a Hall π-subgroup of G such that H is semi π-cover-avoiding in

G. Then there exists a chief series

1 = G0 < G1 < · · · < Gn = G (3)

of G such that H covers or avoids every π-factor of this series. Let Gi/Gi−1 be a π-factor. If H

covers Gi/Gi−1, then Gi/Gi−1 is a π-group. If H avoids Gi/Gi−1, then HGi−1/Gi−1∩Gi/Gi−1 =

1. It follows that Gi/Gi−1 is a π′-group, a contradiction. Hence every chief factor of series (3) is
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either a π-group or a π′-group, and so G is π-separable. 2

Theorem 3.8 A group G is π-solvable if there exists a solvable Hall π-subgroup H of G such

that H is semi π-cover-avoiding in G.

Proof If G has a solvable Hall π-subgroup H such that H is semi π-cover-avoiding in G, then

there exists a chief series

1 = G0 < G1 < · · · < Gn = G (4)

of G such that H covers or avoids every π-factor of this series. From the proof of Theorem 3.7,

we see that each π-factor of series (4) is covered by H . It follows that every chief factor of series

(4) is either a π′-group or a solvable group, and so G is π-solvable. 2

Theorem 3.9 A group G is π-solvable if and only if every Sylow subgroup of G is semi π-cover-

avoiding in G.

Proof “ ⇒ ”. Let G be a π-solvable group and P a Sylow subgroup of G. If L/K is a π-chief

factor of G, then L/K is an elementary abelian q-group for some q ∈ π. Since PK/K is a Sylow

subgroup of G/K, it follows that either PK/K ≥ L/K or PK/K ∩ L/K = 1. Thus P is semi

π-cover-avoiding in G.

“ ⇐ ”. Conversely, if for any p ∈ π, there exists a Sylow p-subgroup P of G such that

P is semi π-cover-avoiding in G, then clearly P is semi p-cover-avoiding in G. It follows from

Theorem 3.8 that G is p-solvable. Consequently G is π-solvable. 2

Corollary 3.10 A group G is solvable if and only if every Sylow subgroup of G is semi-cover-

avoiding in G.

A subgroup L of a group G is called a 2-maximal subgroup of G if there exists a maximal

subgroup M of G such that L is maximal in M .

Theorem 3.11 Let G be a group. If every 2-maximal subgroup of G is semi π-cover-avoiding

in G, then G is π-solvable.

Proof Assume that the theorem is not true and let G be a counterexample of minimal order.

First, we claim that G is not simple. Otherwise, let M be a maximal subgroup of G. Since G

is not solvable, |G| is not a prime, and so M 6= 1. Let L be a maximal subgroup of M . Then L

is semi π-cover-avoiding in G. Noticing that G is not a π′-group and 1 < G is the unique chief

series of G, we have that L ∩ G = 1. This implies that L = 1 and M is of prime order. By [13,

IV, Theorem 7.4], G is solvable, a contradiction. Hence our claim holds.

Now let N be a minimal normal subgroup of G. Then N < G. If G/N is of prime order,

then G/N is solvable. If G/N is not of prime order, then any maximal subgroup of G/N is non-

trivial. It follows from Lemma 2.2 that the hypotheses of the theorem are inherited by G/N ,

and therefore G/N is π-solvable. Hence in any case, G/N is π-solvable. From which we obtain

that N is not π-solvable, especially N is not a π′-group. Also it is easy to see that N is a unique

minimal normal subgroup of G. Let P be a Sylow subgroup of N . Then 1 < P < N and by
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Frattini argument we have G = NM , where M is a maximal subgroup of G containing NG(P ).

If N ∩ M = M , then M ≤ N and G = NM ≤ N , a contradiction. So P ≤ N ∩ M < M . Let

L be a maximal subgroup of M such that L ≥ N ∩ M . Then L is semi π-cover-avoiding in G,

especially L covers or avoids the π-factor N/1. Since P ≤ L∩N , we have L ≥ N . Consequently

N ≤ M and therefore G = NM ≤ M , the final contradiction. The proof is completed. 2

The remainder of this section is devoted to the investigation of groups with the maximal

subgroups or 2-maximal subgroups of its Sylow subgroups having semi-cover-avoiding property.

Lemma 3.12 ([10, Theorem 3.2]) Let p be the smallest prime dividing the order of a group G

and P ∈ Sylp(G). If P is cyclic or every maximal subgroup of P is semi-cover-avoiding in G,

then G is p-nilpotent.

Lemma 3.13 ([14, Lemma 1]) Let U be a saturated formation containing the class of super-

solvable groups. If N is a cyclic normal subgroup of a group G such that G/N ∈ U , then G ∈ U .

Theorem 3.14 Suppose that U is a saturated formation containing the class of supersolvable

groups. Let H be a normal subgroup of a group G such that G/H ∈ U . If for any Sylow

subgroup S of H , either S is cyclic or every maximal subgroup of S is semi-cover-avoiding in G,

then G ∈ U .

Proof Assume the theorem is false and let G be a counterexample with minimal order. By

Lemmas 2.3 and 3.12, H is a group with Sylow tower of supersolvable type. Then P � G for the

Sylow p-subgroup P of H , where p is the largest prime dividing |H |. Let N be a minimal normal

subgroup of G contained in P . By Lemma 2.5, G/N satisfies the hypotheses of the theorem

with respect to H/N so that G/N ∈ U . Since U is a formation, N is a unique minimal normal

subgroup of G contained in P . Furthermore, by Lemma 3.13, N is not cyclic, and P is not cyclic

either. Note that Φ(P ) ≤ Φ(G), so if Φ(P ) 6= 1, then N ≤ Φ(P ), and therefore G/Φ(G) ∈ U , a

contradiction. Hence Φ(P ) = 1.

Now let P1 be any maximal subgroup of P . We claim that there must be P1 ≥ N or

P1 ∩ N = 1. In fact, by the assumption, G has a chief series 1 = G0 < G1 < · · · < Gn = G

such that P1 covers or avoids every chief factor of this series. Choose the integer k such that

P ∩Gk = 1 but P ∩Gk+1 6= 1. Clearly, N ≤ P ∩Gk+1. If P1 avoids Gk+1/Gk, then P1 ∩Gk+1 ≤

Gk ∩ P = 1 and so P1 ∩ N = 1. If P1 covers Gk+1/Gk, then P1Gk ≥ Gk+1, and therefore

Gk+1 = (Gk+1 ∩ P1)Gk ≤ (Gk+1 ∩ P )Gk ≤ Gk+1. It follows that Gk+1 ∩ P1 = Gk+1 ∩ P and

hance P1 ≥ N .

Finally, since Φ(P ) = 1, there exists a maximal subgroup P1 of P such that N � P1. It

follows from the above result that P1 ∩ N = 1 and consequently |N | = p, a contradiction. 2

Corollary 3.15 Let G be a group. If for any Sylow subgroup S of G, either S is cyclic or every

maximal subgroup of S is semi-cover-avoiding in G, then G is supersolvable.

Lemma 3.16 ([2, Lemma 3.12]) Let p be the smallest prime dividing the order of a group G.
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If G is A4-free and p3 ∤ |G|, then G is p-nilpotent.

Lemma 3.17 Let G be a group of even order and P ∈ Syl2(G). If G is A4-free and P has a

2-maximal subgroup P1 such that P1 is semi-cover-avoiding in G, then G is solvable.

Proof If |P | ≤ 2, then G is 2-nilpotent and so it is solvable. Now we assume that |P | ≥ 4.

By assumption, G has a chief series such that P1 covers or avoids every factor of the series. Let

H/K be any factor of this series. If P1 covers H/K, then H/K is a 2-group. If P1 avoids H/K,

then P1K/K ∩ H/K = 1. It follows that 23 ∤ |H/K| since |PK/K : P1K/K| ≤ 4. By Lemma

3.16, H/K is 2-nilpotent and it is solvable. Hence G has a chief series in which every factor is

solvable, which implies that G is solvable. The proof is completed. 2

Theorem 3.18 Let p be the smallest prime dividing the order of a group G and P ∈ Sylp(G).

If G is A4-free and every normal 2-maximal subgroup of P is semi-cover-avoiding in G, then G

is p-nilpotent.

Proof Since a group of odd order is solvable, it follows from Lemma 3.17 that G is solvable.

Now assume that the theorem is false and let G be a counterexample with minimal order. By

Lemma 2.5, G/Op′(G) satisfies the hypotheses of the theorem, and the minimality of G implies

that Op′ (G) = 1. Let N be a minimal normal subgroup of G. Then N is a p-group and N ≤ P .

It is easy to see that G/N also satisfies the hypotheses of the theorem and accordingly, G/N is

p-nilpotent. Noticing that the class of p-nilpotent groups is a saturated formation, we have N

is a unique minimal normal subgroup of G. Let T/N be the normal p-complement of G/N . If

|N | ≤ p2, then by Lemma 3.16, T is p-nilpotent and therefore G is p-nilpotent, a contradiction.

So |N | ≥ p3. Let P1 be any normal 2-maximal subgroup of P . Since P1 is semi-cover-avoiding

in G, P1 covers or avoids N/1. If P1 avoids N , then |P1N | = |P1||N | > |P |, a contradiction.

Hence P1 covers N and P1 ≥ N . It follows that N ≤ Φ(P ) since every maximal subgroup of P

contains a normal 2-maximal subgroup of P . Consequently by [13, III, Lemma 3.3], N ≤ Φ(G),

and G/Φ(G) is p-nilpotent, the final contradiction. 2

Corollary 3.19 Let G be a group. If G is A4-free and every normal 2-maximal subgroup of

each Sylow subgroup of G is semi-cover-avoiding in G, then G is a group with Sylow tower of

supersolvable type.

Remark 3.20 Lemma 3.17, Theorem 3.18 and Corollary 3.19 are not true if we remove the

condition “G is A4-free”. For example, see A5.

Remark 3.21 A group satisfying the conditions of Corollary 3.19 is not necessarily a super-

solvable group. For example, see Frobenius groups of order 36.

Lemma 3.22 ([2, Lemma 3.16]) Let T be the class of groups with Sylow tower of supersolvable

type and H a normal subgroup of a group G such that G/H ∈ T . If G is A4-free, and H is a

q-group for some prime q with |H | ≤ q2, then G ∈ T .
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Theorem 3.23 Suppose that T is the class of groups with Sylow tower of supersolvable type.

Let H be a normal subgroup of a group G such that G/H ∈ T . If G is A4-free, and every normal

2-maximal subgroup of each Sylow subgroup of H is semi-cover-avoiding in G, then G ∈ T .

Proof Assume the theorem is false and let G be a counterexample of minimal order. According

to Corollary 3.19, H ∈ T , and P � G for P ∈ Sylp(H), where p is the largest prime dividing

the order of H . By Lemma 2.5, G/P satisfies the hypotheses of the theorem with respect to

H/P , and so G/P ∈ T . It follows that G/Op′(G) satisfies the hypotheses of the theorem with

respect to POp′(G)/Op′(G). If Op′(G) 6= 1, then G/Op′(G) ∈ T , and therefore G ∈ T since

G = G/(P ∩ Op′(G)) . G/P × G/Op′(G), a contradiction. Hence Op′(G) = 1. Let N be a

minimal normal subgroup of G. Then N is a p-group. We claim that N ≤ P . Otherwise, if

N � P , then P 6∈ Sylp(G). If p is the largest in π(G), then from G/P ∈ T , we have G ∈ T , a con-

tradiction. Let q be the largest prime in π(G) and M/P ∈ Sylq(G/P ). Then q > p, M/P �G/P

and M < G. Clearly, M/P ∈ T and by Lemma 2.3, M satisfies the conditions of the theorem

with respect to P , and so M ∈ T . Let Q ∈ Sylq(M). Then Q � G and 1 6= Q ≤ Op′(G), a

contradiction. Hence our claim holds. By Lemma 2.5 once more, G/N satisfies the hypotheses

of the theorem with respect to P/N and G/N ∈ T . Since T is saturated, N is a unique minimal

normal subgroup of G. Also by Lemma 3.22, |N | ≥ p3. If Φ(P ) 6= 1, then N ≤ Φ(P ), and

therefore G/Φ(G) ∈ T , a contradiction. Thus Φ(P ) = 1, and P is elementary abelian. Choose

K ≤ P such that P = N × K. Let P1 be a 2-maximal subgroup of P such that P1 ≥ K. Then

P1 is semi-cover-avoiding in G, especially P1 covers or avoids N/1. Clearly, P1 � N , and so

P1 ∩ N = 1, from which we deduce that |N | ≤ p2, the final contradiction. 2
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