A Note on the w-Global Transform of Mori Domains

Fang Gui WANG
Institute of Mathematics and Software Science, Sichuan Normal University, Sichuan 610068, P. R. China

Abstract

Let R be a domain and let $R^{w g}$ be the w-global transform of R. In this note it is shown that if R is a Mori domain, then the t-dimension formula t - $\operatorname{dim}\left(R^{w g}\right)=t$ - $\operatorname{dim}(R)-1$ holds.

Keywords Mori domain; maximal w-ideal; the w-global transform.
Document code A
MR(2000) Subject Classification 13G05
Chinese Library Classification O154

Throughout this paper R denotes a domain with quotient field K. Matijevic in [6] had introduced the notion of the global transform of R, which is defined to be the set

$$
R^{g}=\left\{x \in K \mid M_{1} \cdots M_{n} x \subseteq R, \text { where } M_{i} \in \operatorname{Max}(R)\right\}
$$

and shown that if R is Noetherian, then any ring T such that $R \subseteq T \subseteq R^{g}$ is Noetherian. We have known that Mori domains have the ascending chain condition on divisorial ideals and strong Mori domains have the ascending chain condition on w-ideals. Every strong Mori domain is a Mori domain, but a Mori domain is not necessarily a strong Mori domain. Park [7] proved the w-analogue of Matijevic result, that is, if R is a strong Mori domain, then any w-overring T in the w-global transform $R^{w g}$ of R is also a strong Mori domain. In this note we give the relationship of t-dimension of R and $R^{w g}$ for a Mori domain R.

Let A be a fractional ideal of R. Define $A^{-1}=\{x \in K \mid x A \subseteq R\}$ and set $A_{v}=\left(A^{-1}\right)^{-1}$. If $A=A_{v}$, then A is called a v-fractional ideal. We also define $A_{t}=\bigcup B_{v}$, where B ranges over finitely generated fractional subideal of A. If $A_{t}=A$, then A is called a t-fractional ideal. Let J be a finitely generated ideal of R. J is called a $G V$-ideal, denoted by $J \in G V(R)$, if $J^{-1}=R$. Define

$$
A_{w}=\{x \in K \mid J x \subseteq A \text { for some } J \in G V(R)\}
$$

If $A_{w}=A$, then A is called a w-fractional ideal, equivalently, the condition $x \in K$ and $J \in G V(R)$ with $J x \subseteq A$ implies $x \in A$. For the discussion on t-ideals and w-ideals, readers can consult the

[^0]literature [5] and [10]. Let $R \subseteq T$ be an extension of domains. We say that T is an overring of R if $T \subseteq K$. Let T be an overring of R. Following [11] and [7], we call T a w-overring if T as an R-module is a w-module.

Let P be a prime t-ideal of R. We denote by t-ht P the supremum of the lengths n of all chains $0 \subset P_{n} \subset P_{n-1} \subset \cdots \subset P_{1}=P$, where $P_{1}, \ldots, P_{n-1}, P_{n}$ are prime t-ideals of R. Define t - $\operatorname{dim}(R)=\sup \{t$-ht $P\}$, where P ranges over all prime t-ideals of R.

Denote by $w-\operatorname{Max}(R)$ the set of maximal w-ideals of R. Following the notation of Park [7], we denote

$$
R^{w g}=\left\{x \in K \mid P_{1} \cdots P_{n} x \subseteq R \text { for some } P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)\right\}
$$

Then $R^{w g}$ is an overring of R contained in K and is called w-global transform of R.
Let B be a fractional ideal of R. Define similarly the w-global transform of B to be the set

$$
B^{w g}=\left\{x \in K \mid P_{1} \cdots P_{n} x \subseteq B \text { for some } P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)\right\}
$$

Lemma $1 R^{w g}$ is a w-overring of R.
Proof See [7, Corollary 1.7].
Lemma 2 (1) Let B_{1} and B_{2} be fractional ideals of R with $B_{1} \subseteq B_{2}$. Then $\left(B_{1}\right)^{w g} \subseteq\left(B_{2}\right)^{w g}$.
(2) Let B be a fractional ideal of R. Then $B^{w g}$ is a fractional ideal of $R^{w g}$.
(3) If B is an ideal of R, then $B^{w g}=R^{w g}$ if and only if there are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} \subseteq B$. Therefore, if Q is a prime ideal of R, then $Q^{w g}=R^{w g}$ if and only if $P \subseteq Q$ for some $P \in w-\operatorname{Max}(R)$.
(4) Let A be an ideal of $R^{w g}$ and let $B=A \bigcap R$. Then $A \subseteq B^{w g}$.

Proof It is straightforward.
Lemma 3 (1) Let Q be a prime ideal of R such that $P \nsubseteq Q$ for any $P \in w-\operatorname{Max}(R)$. Then $Q^{w g}$ is a prime ideal of $R^{w g}$ and $Q^{w g} \bigcap R=Q$.
(2) Let Q_{1} and Q_{2} be prime ideals of R with $P \nsubseteq Q_{1}, Q_{2}$ for any $P \in w-\operatorname{Max}(R)$. Then $\left(Q_{1}\right)^{w g}=\left(Q_{2}\right)^{w g}$ if and only if $Q_{1}=Q_{2}$.
(3) Let A be a prime ideal of $R^{w g}$ and let $Q=A \bigcap R$. If $P \nsubseteq Q$ for any $P \in w-\operatorname{Max}(R)$, then $A=Q^{w g}$.
(4) Let Q be a prime ideal of R such that $P \nsubseteq Q$ for any $P \in w-\operatorname{Max}(R)$. Then ht $Q^{w g}=\mathrm{ht} Q$.

Proof (1) By Lemma 2, $Q^{w g} \neq R^{w g}$. Let $x, y \in R^{w g}$ with $x y \in Q^{w g}$. Then there are $P_{1}, \ldots, P_{n}, P_{n+1}, \ldots, P_{m} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} x \subseteq R, P_{n+1} \cdots P_{m} y \subseteq R$ and $P_{1} \cdots P_{n}$ $P_{n+1} \cdots P_{m} x y \subseteq Q$. Hence $P_{1} \cdots P_{n} x \subseteq Q$ or $P_{n+1}, \ldots, P_{m} y \subseteq Q$, that is, $x \in Q^{w g}$ or $y \in Q^{w g}$. Then $Q^{w g}$ is a prime ideal of $R^{w g}$.

It is clear that $Q \subseteq Q^{w g} \bigcap R$. Conversely, let $a \in Q^{w g} \bigcap R$. Then $P_{1} \cdots P_{n} a \subseteq Q$ for $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$. Since $P_{i} \nsubseteq Q$, we have $a \in Q$. Hence $Q=Q^{w g} \bigcap R$.
(2) If $\left(Q_{1}\right)^{w g}=\left(Q_{2}\right)^{w g}$, then $Q_{1}=\left(Q_{1}\right)^{w g} \bigcap R=\left(Q_{2}\right)^{w g} \bigcap R=Q_{2}$.
(3) By Lemma 2, $A \subseteq Q^{w g}$. Let $x \in Q^{w g}$. Then $P_{1} \cdots P_{n} x \subseteq Q \subseteq A$ for some $P_{1}, \ldots, P_{n} \in$ $w-\operatorname{Max}(R)$. Because $P_{i} \nsubseteq A$ and A is prime, we have $x \in A$. Hence $A=Q^{w g}$.
(4) It is clear by (2) that ht $Q \leqslant \operatorname{ht} Q^{w g}$. Let $A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset Q^{w g}$ be a chain of prime ideals of $R^{w g}$. For each i, set $Q_{i}=A_{i} \cap R$. Then $Q_{1} \subset Q_{2} \subset \cdots \subset Q_{n} \subset Q$ is a chain of prime ideals of R by (3). Hence ht $Q^{w g}=\mathrm{ht} Q$.

Lemma 4 (1) Let B be a fractional ideal of R. Then, as fractional ideals of $R^{w g},\left(B^{-1}\right)^{w g} \subseteq$ $\left(B^{w g}\right)^{-1} \subseteq\left(B R^{w g}\right)^{-1}$.
(2) Let B be a t-finite type fractional ideal of R. Then $\left(B^{-1}\right)^{w g}=\left(B^{w g}\right)^{-1}=\left(B R^{w g}\right)^{-1}$.
(3) Let R be a Mori domain and let B be a fractional ideal of R. Then, as fractional ideals of $R^{w g},\left(B^{w g}\right)_{v}=\left(B R^{w g}\right)_{v}=\left(B_{v}\right)^{w g}$. Therefore, if B is a v-ideal of R, then $B^{w g}$ is a v-ideal of $R^{w g}$.
(4) Let R be a Mori domain and let A be an ideal of $R^{w g}$. Then $A_{v}=\left(B_{v}\right)^{w g}$, where $B=A \bigcap R$. Therefore, if A is a v-ideal of $R^{w g}$, then $B=A \bigcap R$ is a v-ideal of R and $A=B^{w g}=$ $\left(B R^{w g}\right)_{v}$.
(5) Let R be a Mori domain and let B be an ideal of R. Then $\left(B^{w g}\right)^{-1}=R^{w g}$ if and only if there are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} \subseteq B_{v}$. Therefore, $\left(P R^{w g}\right)^{-1}=R^{w g}$ for any $P \in w-\operatorname{Max}(R)$.
(6) Let R be a Mori domain and let A be an ideal of $R^{w g}$. Then $A_{v}=R^{w g}$ if and only if there are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} \subseteq B_{v}$, where $B=A \bigcap R$.

Proof (1) Let $x \in\left(B^{-1}\right)_{S}$. There are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} x \subseteq B^{-1}$. For any $y \in B^{w g}$, take $P_{n+1}, \ldots, P_{m} \in w-\operatorname{Max}(R)$ such that $P_{n+1} \cdots P_{m} y \subseteq B$. Thus $P_{1} \cdots P_{m} x y \subseteq$ $B^{-1} B \subseteq R$. Hence $x y \in R^{w g}$. Thus $x \in\left(B^{w g}\right)^{-1}$, whence, $\left(B^{-1}\right)^{w g} \subseteq\left(B^{w g}\right)^{-1}$. From $B R^{w g} \subseteq B^{w g}$, we have $\left(B^{w g}\right)^{-1} \subseteq\left(B R^{w g}\right)^{-1}$.
(2) It suffices by (1) to show that $\left(B R^{w g}\right)^{-1} \subseteq\left(B^{-1}\right)^{w g}$. Let $x \in\left(B R^{w g}\right)^{-1}$. Since B is of t-finite type, there is a finitely generated fractional subideal J of B such that $B_{v}=J_{v}$, therefore, $J^{-1}=B^{-1}$. Because $x J \subseteq x B \subseteq R^{w g}$ and J is finitely generated, there are $P_{1}, \ldots, P_{n} \in$ $w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} J x \subseteq R$. Then $P_{1} \cdots P_{n} x \in J^{-1}=B^{-1}$. Hence $x \in\left(B^{-1}\right)^{w g}$. Thus we have $\left(B R^{w g}\right)^{-1} \subseteq\left(B^{-1}\right)^{w g}$.
(3) This follows from (2) since B^{-1} is also of t-finite type in a Mori domain.
(4) Since $B R^{w g} \subseteq A \subseteq B^{w g}$ by Lemma 2 (4), we have $\left(B R^{w g}\right)_{v} \subseteq A_{v} \subseteq\left(B^{w g}\right)_{v}$. Hence $A=\left(B_{v}\right)^{w g}$ by (3).

Suppose A is a v-ideal of $R^{w g}$. Since $B R^{w g} \subseteq A \subseteq B^{w g}$, we have $\left(B R^{w g}\right)_{v} \subseteq A \subseteq\left(B_{v}\right)^{w g}$. Hence $A=\left(B R^{w g}\right)_{v}=\left(B_{v}\right)^{w g}$. Then $B_{v} \subseteq A \bigcap R=B$, that is, $B=B_{v}$. Hence $A=B^{w g}=$ $\left(B R^{w g}\right)_{v}$.
(5) From (3), $\left(B^{w g}\right)^{-1}=R^{w g}$ if and only if $\left(B_{v}\right)^{w g}=R^{w g}$, if and only if there are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} \subseteq B_{v}$ by Lemma 2.
(6) It is direct from (4) and (5).

Proposition 5 Let R be a Mori domain and let A be a w-ideal of $R^{w g}$. Then $B=A \bigcap R$ is a
w-ideal of R and $A=B^{w g}=\left(B R^{w g}\right)_{w}$.
Proof By [11, Lemma 3.1], B is a w-ideal of R. Since $B \subseteq A$, we have $B R^{w g} \subseteq A \subseteq B^{w g}$. Hence $\left(B R^{w g}\right)_{w} \subseteq A \subseteq B^{w g}$. Let $x \in B^{w g}$. Then there are $P_{1}, \ldots, P_{n} \in w-\operatorname{Max}(R)$ such that $P_{1} \cdots P_{n} x \subseteq B$. Let I_{i} be a finitely generated subideal of P_{i} such that $P_{i}=\left(I_{i}\right)_{v}$ for $i=1, \ldots, n$. Thus $I_{1} \cdots I_{n} x \subseteq B$. By Lemma $4, I_{i} R^{w g} \in G V\left(R^{w g}\right)$. Then $x \in\left(B R^{w g}\right)_{w}$, and hence $A=\left(B R^{w g}\right)_{w}=B^{w g}$.

Proposition 6 (1) Let R be a Mori domain. Then $R^{w g}$ is also a Mori domain.
(2) Let R be a strong Mori domain. Then $R^{w g}$ is also a strong Mori domain.

Proof (1) It follows from Lemma 4. Also see [8, Théorème 2].
(2) It follows from Proposition 5. Also see [7, Theorem $1.5 \&$ Corollary 1.7].

Theorem 7 Let R be a Mori domain. Let A be a maximal v-ideal of $R^{w g}$ and set $B=A \bigcap R$. Then, for any $P \in w-\operatorname{Max}(R), P \nsubseteq B$, and B is a maximal prime v-subideal of P for any maximal v-ideal P of R with $B \subseteq P$.

Proof For any $P \in w-\operatorname{Max}(R)$, then P is a v-ideal because R is a H-domain by [5]. Write $P=J_{v}$, where J is a finitely generated subideal of P. By Lemma $4(6), J R^{w g} \in G V\left(R^{w g}\right)$. Hence $P \nsubseteq B$.

By Lemma 4, B is a prime v-ideal of R and $A=B^{w g}$. Let P be a maximal w-ideal of R with $B \subseteq P$ and let Q be a prime v-ideal of R with $B \subseteq Q \subseteq P$. If $Q \neq P$, then $Q^{w g}$ is a prime v-ideal of $R^{w g}$ by Lemma 3 and Lemma 4. Hence $A=Q^{w g}$ by the maximality of A. Then $B=Q$ by Lemma 3 again.

Theorem 8 Let R be a Mori domain (but not a field). Then $t-\operatorname{dim}\left(R^{w g}\right)=t-\operatorname{dim}(R)-1$.
Proof Let $A_{n} \subset A_{n-1} \subset \cdots \subset A_{1} \subset A_{0}$ be a chain of prime v-ideals of $R^{w g}$. Set $B_{i}=A_{i} \bigcap R$ for $i=0,1, \ldots, n$. Then B_{i} is a prime v-ideal of R by Lemmas 3 and 4 , and $B_{n} \subset B_{n-1} \subset \cdots \subset$ $B_{1} \subset B_{0}$ be a chain of prime v-ideals of R. By Theorem $7, B_{0}$ is not a maximal t-ideal of R. Hence t - $\operatorname{dim}\left(R^{w g}\right) \leqslant t$ - $\operatorname{dim}(R)-1$. Conversely, let $B_{n} \subset B_{n-1} \subset \cdots \subset B_{1} \subset B_{0}$ be a chain of prime v-ideals of R such that B_{0} is not maximal v-ideal of R. By Lemma $3, B_{n}^{w g} \subset B_{n-1}^{w g} \subset$ $\cdots \subset B_{1}^{w g} \subset B_{0}^{w g}$ is a chain of prime v-ideals of $R^{w g}$. Hence t - $\operatorname{dim}\left(R^{w g}\right) \geqslant t$ - $\operatorname{dim}(R)-1$.

Corollary 9 Let R be a Mori domain. If $t-\operatorname{dim}(R)=1$, then $R^{w g}=K$.
Proof Since $t-\operatorname{dim}(R)=1$, we have $t-\operatorname{dim}\left(R^{w g}\right)=0$ by Theorem 8. Hence $R^{w g}$ is a field, that is, $R^{w g}=K$.

References

[1] ANDERSON D D, COOK S J. Two star-operations and their induced lattices [J]. Comm. Algebra, 2000, 28(5): 2461-2475.
[2] BARUCCI V, GABELLI S, ROITMAN M. On semi-Krull domains [J]. J. Algebra, 1992, 145(2): 306-328.
[3] GLAZ S, VASCONCELOS W V. Flat ideals (II) [J]. Manuscripta Math., 1977, 22(4): 325-341.
[4] HEINZER W, LANTZ D. When is an N-ring Noetherian? [J]. J. Pure Appl. Algebra, 1986, 39(1-2): 125-139.
[5] HOUSTON E, ZAFRULLAH M. Integral domains in which each t-ideal is divisorial [J]. Michigan Math. J., 1988, 35(2): 291-300.
[6] MATIJEVIC J R. Maximal ideal transforms of Noetherian rings [J]. Proc. Amer. Math. Soc., 1976, 54: 49-52.
[7] PARK M H. On overrings of strong Mori domains [J]. J. Pure Appl. Algebra, 2002, 172(1): 79-85.
[8] QUERRÉ J. Intersections d'anneaux intègres [J]. J. Algebra, 1976, 43(1): 55-60.
[9] WANG Fanggui. On induced operations and UMT-domains [J]. Sichuan Shifan Daxue Xuebao Ziran Kexue Ban, 2004, 27(1): 1-9.
[10] WANG Fanggui, MCCASLAND R L. On w-modules over strong Mori domains [J]. Comm. Algebra, 1997, 25(4): 1285-1306.
[11] WANG Fanggui, MCCASLAND R L. On strong Mori domains [J]. J. Pure Appl. Algebra, 1999, 135(2): 155-165.

[^0]: Received May 11, 2008; Accepted January 5, 2009
 Supported by the National Natural Science Foundation of China (Grant No. 10671137) and the Research Foundation for Doctor Programme (Grant No. 20060636001).
 E-mail address: wangfg2004@163.com

