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Abstract For A ⊆ Zm and n ∈ Zm, let σA(n) be the number of solutions of equation n =

x+ y,x, y ∈ A. Given a positive integer m, let Rm be the least positive integer r such that there

exists a set A ⊆ Zm with A + A = Zm and σA(n) ≤ r. Recently, Chen Yonggao proved that all

Rm ≤ 288. In this paper, we obtain new upper bounds of some special type Rkp2 .
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1. Introduction

Given a set A ⊂ N, let σA(n) be the number of ordered pairs (a, a′) ∈ A × A such that

a+a′ = n. Erdős and Turán [4] conjectured that if σA(n) ≥ 1 for all n ≥ n0, then σA(n) must be

unbounded. This conjecture has attracted much attention since 1941. To our regret, no serious

advance has been made. Erdős-Turán conjecture seems to be extremely difficult. While this

famous conjecture is still an unsolved problem, a natural related question which has been raised

is: in which abelian groups or semigroups is the analogue of this conjecture valid? Pǔs [6] first

established that the analogue of Erdős-Turán conjecture fails to hold in some abelian groups.

For related problems, see [2, 3, 5].

For A, B ⊆ Zm and n ∈ Zm, let σA,B(n) be the number of solutions of equation n = x + y,

x ∈ A, y ∈ B. Let σA(n) = σA,A(n). For each positive integer m, let Ruzsa number Rm be the

least positive integer r such that there exists a set A ⊆ Zm with A + A = Zm and σA(n) ≤ r.

Based on Ruzsa’s method [7], Tang and Chen [8] showed that the analogue of Erdős-Turán

conjecture fails to hold in (Zm, +), namely, for any sufficiently large integer m, Rm ≤ 768. In [9],

Tang and Chen showed that Rm ≤ 5120 for any natural number m. Recently, Chen [1] improved

the previous upper bounds to Rm ≤ 288 for any positive integer m and R2p2 ≤ 48 for any prime

p.

In this paper, the following results are proved.

Received November 5, 2008; Accepted May 16, 2009

Supported by the National Natural Science Foundation of China (Grant Nos. 10901002; 10771103).
* Corresponding author

E-mail address: tmzzz2000@163.com (M. TANG); ygchen@njnu.edu.cn (Y. G. CHEN)



558 M. TANG and Y. G. CHEN

Theorem Let k be a positive integer, p ≥ 7 be a prime, and let T ⊆ Z such that T +T contains

at least k + 1 consecutive integers. Then

Rkp2 ≤ 16 · max
0≤m≤k−1

+∞∑

w=−∞

max{σT (kw + m − 1), σT (kw + m)}.

Corollary 1 Let k ≥ 2 be a positive integer, p ≥ 7 be a prime, and let T ⊆ {0, 1, 2, . . . , k − 1}

such that T + T contains at least k + 1 consecutive integers. Then

Rkp2 ≤ 16 · max
0≤m≤k−1

(max{σT (m − 1), σT (m)} + max{σT (k + m − 1), σT (k + m)}).

Corollary 2 Let p be a prime. Then Rp2 ≤ 96, R4p2 ≤ 48 and Rkp2 ≤ 64 for k = 3, 5, 6, 7, 8, 9, 10.

Remark 1 The method used here is based on Chen’s method as in the proof of Theorem 1 [1].

By employing Corollary 1, we can find the new upper bounds of Rkp2 for some k ≥ 11.

2. Proofs

For an integer k, let

Qk = {(u, ku2) : u ∈ Zp} ⊆ Z2
p.

Lemma ([1]) Let p be an odd prime and m be a quadratic nonresidue of p with m+1 6≡ 0 (mod p),

3m + 1 6≡ 0 (mod p), m + 3 6≡ 0 (mod p). Put B = Qm+1 ∪ Qm(m+1) ∪ Q2m. Then for any

(c, d) ∈ Z2
p we have 1 ≤ σB(c, d) ≤ 16, where σB(c, d) is the number of solutions of the equation

(c, d) = x + y, x, y ∈ B.

Remark 2 By simple observation, we see that if p = 3, 5, there does not exist the corresponding

m satisfying the above conditions. If p = 7, we can choose m = 3 or m = 5. Since the number of

quadratic nonresidue of modulo p is (p−1)/2 ≥ 5 for p ≥ 11, there exists a quadratic nonresidue

m such that m + 1 6≡ 0 (mod p), 3m + 1 6≡ 0 (mod p), m + 3 6≡ 0 (mod p).

Proof of Theorem Assume that

{l, l + 1, . . . , l + k} ⊆ T + T.

In the following proofs, for (u, v) ∈ B we always assume that 0 ≤ u ≤ p − 1, 0 ≤ v ≤ p − 1.

For n ∈ Zkp2 , 0 ≤ n ≤ kp2 − 1, write n = c + kpd, (l + 1)p ≤ c ≤ (l + 1 + k)p − 1, c, d ∈ Z.

By the lemma there exist (u1, v1), (u2, v2) ∈ B such that

c ≡ u1 + u2 (mod p), d ≡ v1 + v2 (mod p).

Put

c = u1 + u2 + sp, d = v1 + v2 + tp, s, t ∈ Z.

By (l + 1)p ≤ c ≤ (l + 1 + k)p − 1 and 0 ≤ u1 + u2 ≤ 2p − 2, we have

(l − 1)p + 2 ≤ sp ≤ (l + 1 + k)p − 1.

So l ≤ s ≤ l + k. Since

{l, l + 1, . . . , l + k} ⊆ T + T,
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there exist t1, t2 ∈ T such that s = t1 + t2. Thus

n = c + kpd ≡ u1 + u2 + sp + kpv1 + kpv2

≡ (u1 + kpv1 + t1p) + (u2 + kpv2 + t2p) (mod kp2).

Let

A1 = {u + kpv | (u, v) ∈ B}, A =
⋃

t∈T

(A1 + tp),

where

A1 + tp = {a + tp | a ∈ A1}.

Then σA(n) ≥ 1.

For n ∈ Zkp2 , by the definition of A, we have

σA(n) ≤
∑

t1,t2∈T

σA1+t1p,A1+t2p(n) =
∑

t1,t2∈T

σA1
(n − (t1 + t2)p)

=

+∞∑

t=−∞

σT (t)σA1
(n − tp).

Write n = c′ + kpd′, 0 ≤ c′ ≤ kp − 1, 0 ≤ d′ ≤ p − 1, c′, d′ ∈ Z. Let c′ = mp + r, 0 ≤ r ≤ p − 1,

m, r ∈ Z. Then 0 ≤ m ≤ k − 1.

Assume that σA1
(n − tp) ≥ 1. Then there exist (u1, v1), (u2, v2) ∈ B such that

n − tp ≡ u1 + kpv1 + u2 + kpv2 (mod kp2).

That is,

mp + r + kpd′ − tp ≡ u1 + kpv1 + u2 + kpv2 (mod kp2). (1)

Thus

r ≡ u1 + u2 (mod p).

Since 0 ≤ r, u1, u2 ≤ p− 1, we have r = u1 + u2 or r = u1 + u2 − p. If r = u1 + u2, then by (1)

we have

m + kd′ − t ≡ kv1 + kv2 (mod kp). (2)

Then k|m − t. Let m − t = kw. By (2) we have

d′ + w ≡ v1 + v2 (mod p).

If r = u1 + u2 − p, then by (1) we have

m − 1 + kd′ − t ≡ kv1 + kv2 (mod kp). (3)

Then k|m − 1 − t. Let m − 1 − t = kw′. By (3) we have

d′ + w′ ≡ v1 + v2 (mod p).

Hence, by the lemma we have

σA(n) ≤

+∞∑

w=−∞

σT (m − kw) · #{r = u1 + u2, d
′ + w ≡ v1 + v2 (mod p)}+
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+∞∑

w′=−∞

σT (m − 1 − kw′) · #{r = u1 + u2 − p, d′ + w′ ≡ v1 + v2 (mod p)}

=

+∞∑

w=−∞

σT (m − kw) · #{r = u1 + u2, d
′ + w ≡ v1 + v2 (mod p)}+

+∞∑

w=−∞

σT (m − 1 − kw) · #{r = u1 + u2 − p, d′ + w ≡ v1 + v2 (mod p)}

≤

+∞∑

w=−∞

max{σT (m − kw), σT (m − 1 − kw)}σB(r, d′ + w)

≤16

+∞∑

w=−∞

max{σT (m − kw), σT (m − 1 − kw)}

≤16 · max
0≤m≤k−1

+∞∑

w=−∞

max{σT (kw + m − 1), σT (kw + m)}.

This completes the proof of the Theorem. 2

Proof of Corollary 1 For any t1, t2 ∈ T we have 0 ≤ t1 + t2 ≤ 2k − 2. So σT (t) = 0 for t < 0

or t > 2k − 2. Now Corollary 1 follows from Theorem immediately.

Proof of Corollary 2 If k = 1, it is easy to verify Rp2 ≤ 96 holds for p = 2, 3, 5. As for

3 ≤ k ≤ 10, if p = 2, 3, 5, let

A = {0, 1, 2, . . . , p, 2p, 3p, . . . , (kp − 1)p}.

We have 1 ≤ σA(n) ≤ (k + 1)p − 1 for all n ∈ Zkp2 . Then σA(n) ≤ 48 for k ≤ 8 and p = 2, 3, 5,

and σA(n) ≤ 64 for k = 9, 10 and p = 2, 3, 5.

Now we assume that p ≥ 7.

k = 1.

Let T = {0, 1}. Then T + T = {0, 1, 2} and σT (0) = 1, σT (1) = 2, σT (2) = 1. By Theorem

we have Rp2 ≤ 96.

k = 3, 4.

Let T = {0, 1, 2}. Then T + T = {0, 1, 2, 3, 4} and σT (0) = 1, σT (1) = 2, σT (2) = 3,

σT (3) = 2, σT (4) = 1. By Corollary 1 we have R3p2 ≤ 64 and R4p2 ≤ 48.

k = 5, 6.

Let T = {0, 1, 2, 3}. Then T + T = {0, 1, 2, 3, 4, 5, 6} and σT (0) = 1, σT (1) = 2, σT (2) = 3,

σT (3) = 4, σT (4) = 3, σT (5) = 2, σT (6) = 1. By Corollary 1 we have Rkp2 ≤ 64 (k = 5, 6).

k = 7, 8.

Let T = {0, 1, 3, 4}. Then T+T = {0, 1, 2, 3, 4, 5, 6, 7, 8} and σT (0) = 1, σT (1) = 2, σT (2) = 1,

σT (3) = 2, σT (4) = 4, σT (5) = 2, σT (6) = 1, σT (7) = 2, σT (8) = 1. By Corollary 1 we have

Rkp2 ≤ 64 (k = 7, 8).

k = 9, 10.

Let T = {0, 1, 3, 4, 5}. Then T + T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and σT (0) = 1, σT (1) = 2,
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σT (2) = 1, σT (3) = 2, σT (4) = 4, σT (5) = 4, σT (6) = 3, σT (7) = 2, σT (8) = 3, σT (9) = 2,

σT (10) = 1. By Corollary 1 we have Rkp2 ≤ 64 (k = 9, 10).

This completes the proof of Corollary 2. 2
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