The New Upper Bounds of Some Ruzsa Numbers R_m

Min TANG^{1,*}, Yong Gao CHEN²

1. Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China;

2. Department of Mathematics, Nanjing Normal University, Jiangsu 210097, P. R. China

Abstract For $A \subseteq \mathbf{Z}_m$ and $n \in \mathbf{Z}_m$, let $\sigma_A(n)$ be the number of solutions of equation $n = x + y, x, y \in A$. Given a positive integer m, let R_m be the least positive integer r such that there exists a set $A \subseteq \mathbf{Z}_m$ with $A + A = \mathbf{Z}_m$ and $\sigma_A(n) \leq r$. Recently, Chen Yonggao proved that all $R_m \leq 288$. In this paper, we obtain new upper bounds of some special type R_{kp^2} .

Keywords Erdős-Turán conjecture; additive bases; Ruzsa numbers.

Document code A MR(2000) Subject Classification 11B13; 11B34 Chinese Library Classification 0156.1

1. Introduction

Given a set $A \subset \mathbf{N}$, let $\sigma_A(n)$ be the number of ordered pairs $(a, a') \in A \times A$ such that a+a'=n. Erdős and Turán [4] conjectured that if $\sigma_A(n) \ge 1$ for all $n \ge n_0$, then $\sigma_A(n)$ must be unbounded. This conjecture has attracted much attention since 1941. To our regret, no serious advance has been made. Erdős-Turán conjecture seems to be extremely difficult. While this famous conjecture is still an unsolved problem, a natural related question which has been raised is: in which abelian groups or semigroups is the analogue of this conjecture valid? Pús [6] first established that the analogue of Erdős-Turán conjecture fails to hold in some abelian groups. For related problems, see [2, 3, 5].

For $A, B \subseteq \mathbf{Z}_m$ and $n \in \mathbf{Z}_m$, let $\sigma_{A,B}(n)$ be the number of solutions of equation n = x + y, $x \in A, y \in B$. Let $\sigma_A(n) = \sigma_{A,A}(n)$. For each positive integer m, let Ruzsa number R_m be the least positive integer r such that there exists a set $A \subseteq \mathbf{Z}_m$ with $A + A = \mathbf{Z}_m$ and $\sigma_A(n) \leq r$. Based on Ruzsa's method [7], Tang and Chen [8] showed that the analogue of Erdős-Turán conjecture fails to hold in $(\mathbf{Z}_m, +)$, namely, for any sufficiently large integer $m, R_m \leq 768$. In [9], Tang and Chen showed that $R_m \leq 5120$ for any natural number m. Recently, Chen [1] improved the previous upper bounds to $R_m \leq 288$ for any positive integer m and $R_{2p^2} \leq 48$ for any prime p.

In this paper, the following results are proved.

Received November 5, 2008; Accepted May 16, 2009

Supported by the National Natural Science Foundation of China (Grant Nos. 10901002; 10771103). * Corresponding author

E-mail address: tmzzz2000@163.com (M. TANG); ygchen@njnu.edu.cn (Y. G. CHEN)

Theorem Let k be a positive integer, $p \ge 7$ be a prime, and let $T \subseteq \mathbf{Z}$ such that T + T contains at least k + 1 consecutive integers. Then

$$R_{kp^2} \le 16 \cdot \max_{0 \le m \le k-1} \sum_{w=-\infty}^{+\infty} \max\{\sigma_T(kw+m-1), \sigma_T(kw+m)\}.$$

Corollary 1 Let $k \ge 2$ be a positive integer, $p \ge 7$ be a prime, and let $T \subseteq \{0, 1, 2, ..., k-1\}$ such that T + T contains at least k + 1 consecutive integers. Then

$$R_{kp^2} \le 16 \cdot \max_{0 \le m \le k-1} (\max\{\sigma_T(m-1), \sigma_T(m)\} + \max\{\sigma_T(k+m-1), \sigma_T(k+m)\}).$$

Corollary 2 Let p be a prime. Then $R_{p^2} \leq 96$, $R_{4p^2} \leq 48$ and $R_{kp^2} \leq 64$ for k = 3, 5, 6, 7, 8, 9, 10.

Remark 1 The method used here is based on Chen's method as in the proof of Theorem 1 [1]. By employing Corollary 1, we can find the new upper bounds of R_{kp^2} for some $k \ge 11$.

2. Proofs

For an integer k, let

$$Q_k = \{(u, ku^2) : u \in \mathbf{Z}_p\} \subseteq \mathbf{Z}_p^2.$$

Lemma ([1]) Let p be an odd prime and m be a quadratic nonresidue of p with $m+1 \not\equiv 0 \pmod{p}$, $3m+1 \not\equiv 0 \pmod{p}$, $m+3 \not\equiv 0 \pmod{p}$. Put $B = Q_{m+1} \cup Q_{m(m+1)} \cup Q_{2m}$. Then for any $(c,d) \in \mathbf{Z}_p^2$ we have $1 \leq \sigma_B(c,d) \leq 16$, where $\sigma_B(c,d)$ is the number of solutions of the equation $(c,d) = x + y, x, y \in B$.

Remark 2 By simple observation, we see that if p = 3, 5, there does not exist the corresponding m satisfying the above conditions. If p = 7, we can choose m = 3 or m = 5. Since the number of quadratic nonresidue of modulo p is $(p-1)/2 \ge 5$ for $p \ge 11$, there exists a quadratic nonresidue m such that $m + 1 \not\equiv 0 \pmod{p}$, $3m + 1 \not\equiv 0 \pmod{p}$, $m + 3 \not\equiv 0 \pmod{p}$.

Proof of Theorem Assume that

$$\{l, l+1, \dots, l+k\} \subseteq T+T.$$

In the following proofs, for $(u, v) \in B$ we always assume that $0 \le u \le p - 1, 0 \le v \le p - 1$.

For $n \in \mathbb{Z}_{kp^2}$, $0 \le n \le kp^2 - 1$, write n = c + kpd, $(l+1)p \le c \le (l+1+k)p - 1$, $c, d \in \mathbb{Z}$. By the lemma there exist $(u_1, v_1), (u_2, v_2) \in B$ such that

$$c \equiv u_1 + u_2 \pmod{p}, \quad d \equiv v_1 + v_2 \pmod{p}.$$

Put

$$c = u_1 + u_2 + sp, \ d = v_1 + v_2 + tp, \ s, t \in \mathbf{Z}$$

By $(l+1)p \le c \le (l+1+k)p - 1$ and $0 \le u_1 + u_2 \le 2p - 2$, we have

$$(l-1)p + 2 \le sp \le (l+1+k)p - 1.$$

So $l \leq s \leq l + k$. Since

$$\{l, l+1, \dots, l+k\} \subseteq T+T,$$

there exist $t_1, t_2 \in T$ such that $s = t_1 + t_2$. Thus

$$n = c + kpd \equiv u_1 + u_2 + sp + kpv_1 + kpv_2$$
$$\equiv (u_1 + kpv_1 + t_1p) + (u_2 + kpv_2 + t_2p) \pmod{kp^2}.$$

Let

$$A_1 = \{u + kpv \mid (u, v) \in B\}, \quad A = \bigcup_{t \in T} (A_1 + tp),$$

where

$$A_1 + tp = \{a + tp \,|\, a \in A_1\}.$$

Then $\sigma_A(n) \ge 1$.

For $n \in \mathbf{Z}_{kp^2}$, by the definition of A, we have

$$\sigma_A(n) \le \sum_{t_1, t_2 \in T} \sigma_{A_1 + t_1 p, A_1 + t_2 p}(n) = \sum_{t_1, t_2 \in T} \sigma_{A_1}(n - (t_1 + t_2)p)$$
$$= \sum_{t_1 = -\infty}^{+\infty} \sigma_T(t) \sigma_{A_1}(n - tp).$$

Write n = c' + kpd', $0 \le c' \le kp - 1$, $0 \le d' \le p - 1$, $c', d' \in \mathbb{Z}$. Let c' = mp + r, $0 \le r \le p - 1$, $m, r \in \mathbb{Z}$. Then $0 \le m \le k - 1$.

Assume that $\sigma_{A_1}(n-tp) \geq 1$. Then there exist $(u_1, v_1), (u_2, v_2) \in B$ such that

$$n - tp \equiv u_1 + kpv_1 + u_2 + kpv_2 \pmod{kp^2}.$$

That is,

$$mp + r + kpd' - tp \equiv u_1 + kpv_1 + u_2 + kpv_2 \pmod{kp^2}.$$
 (1)

Thus

$$r \equiv u_1 + u_2 \pmod{p}.$$

Since $0 \le r$, $u_1, u_2 \le p - 1$, we have $r = u_1 + u_2$ or $r = u_1 + u_2 - p$. If $r = u_1 + u_2$, then by (1) we have

$$m + kd' - t \equiv kv_1 + kv_2 \pmod{kp}.$$
(2)

Then k|m-t. Let m-t = kw. By (2) we have

$$d' + w \equiv v_1 + v_2 \pmod{p}.$$

If $r = u_1 + u_2 - p$, then by (1) we have

$$m - 1 + kd' - t \equiv kv_1 + kv_2 \pmod{kp}.$$
 (3)

Then k|m-1-t. Let m-1-t = kw'. By (3) we have

$$d' + w' \equiv v_1 + v_2 \pmod{p}.$$

Hence, by the lemma we have

$$\sigma_A(n) \le \sum_{w=-\infty}^{+\infty} \sigma_T(m-kw) \cdot \#\{r = u_1 + u_2, d' + w \equiv v_1 + v_2 \pmod{p}\} +$$

$$\sum_{w'=-\infty}^{+\infty} \sigma_T(m-1-kw') \cdot \#\{r = u_1 + u_2 - p, d' + w' \equiv v_1 + v_2 \pmod{p}\}$$

$$= \sum_{w=-\infty}^{+\infty} \sigma_T(m-kw) \cdot \#\{r = u_1 + u_2, d' + w \equiv v_1 + v_2 \pmod{p}\} + \sum_{w=-\infty}^{+\infty} \sigma_T(m-1-kw) \cdot \#\{r = u_1 + u_2 - p, d' + w \equiv v_1 + v_2 \pmod{p}\}$$

$$\leq \sum_{w=-\infty}^{+\infty} \max\{\sigma_T(m-kw), \sigma_T(m-1-kw)\} \sigma_B(r, d' + w)$$

$$\leq 16 \sum_{w=-\infty}^{+\infty} \max\{\sigma_T(m-kw), \sigma_T(m-1-kw)\}$$

$$\leq 16 \cdot \max_{0 \leq m \leq k-1} \sum_{w=-\infty}^{+\infty} \max\{\sigma_T(kw + m - 1), \sigma_T(kw + m)\}.$$

This completes the proof of the Theorem. \Box

Proof of Corollary 1 For any $t_1, t_2 \in T$ we have $0 \le t_1 + t_2 \le 2k - 2$. So $\sigma_T(t) = 0$ for t < 0 or t > 2k - 2. Now Corollary 1 follows from Theorem immediately.

Proof of Corollary 2 If k = 1, it is easy to verify $R_{p^2} \leq 96$ holds for p = 2, 3, 5. As for $3 \leq k \leq 10$, if p = 2, 3, 5, let

$$A = \{0, 1, 2, \dots, p, 2p, 3p, \dots, (kp-1)p\}.$$

We have $1 \le \sigma_A(n) \le (k+1)p - 1$ for all $n \in \mathbb{Z}_{kp^2}$. Then $\sigma_A(n) \le 48$ for $k \le 8$ and p = 2, 3, 5, and $\sigma_A(n) \le 64$ for k = 9, 10 and p = 2, 3, 5.

Now we assume that $p \ge 7$.

k = 1.

Let $T = \{0, 1\}$. Then $T + T = \{0, 1, 2\}$ and $\sigma_T(0) = 1$, $\sigma_T(1) = 2$, $\sigma_T(2) = 1$. By Theorem we have $R_{p^2} \leq 96$.

k = 3, 4.

Let $T = \{0, 1, 2\}$. Then $T + T = \{0, 1, 2, 3, 4\}$ and $\sigma_T(0) = 1$, $\sigma_T(1) = 2$, $\sigma_T(2) = 3$, $\sigma_T(3) = 2$, $\sigma_T(4) = 1$. By Corollary 1 we have $R_{3p^2} \le 64$ and $R_{4p^2} \le 48$.

k = 5, 6.

Let $T = \{0, 1, 2, 3\}$. Then $T + T = \{0, 1, 2, 3, 4, 5, 6\}$ and $\sigma_T(0) = 1$, $\sigma_T(1) = 2$, $\sigma_T(2) = 3$, $\sigma_T(3) = 4$, $\sigma_T(4) = 3$, $\sigma_T(5) = 2$, $\sigma_T(6) = 1$. By Corollary 1 we have $R_{kp^2} \le 64$ (k = 5, 6). k = 7, 8.

Let $T = \{0, 1, 3, 4\}$. Then $T+T = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ and $\sigma_T(0) = 1$, $\sigma_T(1) = 2$, $\sigma_T(2) = 1$, $\sigma_T(3) = 2$, $\sigma_T(4) = 4$, $\sigma_T(5) = 2$, $\sigma_T(6) = 1$, $\sigma_T(7) = 2$, $\sigma_T(8) = 1$. By Corollary 1 we have $R_{kp^2} \le 64$ (k = 7, 8).

k = 9, 10.

Let $T = \{0, 1, 3, 4, 5\}$. Then $T + T = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ and $\sigma_T(0) = 1$, $\sigma_T(1) = 2$,

 $\sigma_T(2) = 1, \ \sigma_T(3) = 2, \ \sigma_T(4) = 4, \ \sigma_T(5) = 4, \ \sigma_T(6) = 3, \ \sigma_T(7) = 2, \ \sigma_T(8) = 3, \ \sigma_T(9) = 2, \ \sigma_T(10) = 1.$ By Corollary 1 we have $R_{kp^2} \le 64 \ (k = 9, 10).$

This completes the proof of Corollary 2. \Box

References

- [1] CHEN Yonggao. The analogue of Erdös-Turán conjecture in Z_m [J]. J. Number Theory, 2008, **128**(9): 2573–2581.
- [2] CHEN Yonggao. A problem on unique representation bases [J]. European J. Combin., 2007, 28(1): 33-35.
- [3] ERDÖS P. On the multiplicative representation of integers [J]. Israel J. Math., 1964, 2: 251–261.
- [4] ERDÖS P, TURÁN P. On a problem of Sidon in additive number theory, and on some related problems [J].
 J. London Math. Soc., 1941, 16: 212–215.
- [5] NATHANSON M B. Unique representation bases for the integers [J]. Acta Arith., 2003, 108(1): 1-8.
- [6] PUŠ V. On multiplicative bases in abelian groups [J]. Czechoslovak Math. J., 1991, 41(2): 282–287.
- [7] RUZSA I Z. A just basis [J]. Monatsh. Math., 1990, 109(2): 145–151.
- [8] TANG Min, CHEN Yonggao. A basis of \mathbf{Z}_m [J]. Colloq. Math., 2006, $\mathbf{104}(1)$: 99–103.
- [9] TANG Min, CHEN Yonggao. A basis of \mathbf{Z}_m (II) [J]. Colloq. Math., 2007, 108(1): 141–145.