The New Upper Bounds of Some Ruzsa Numbers R_{m}

Min TANG ${ }^{1, *}$, Yong Gao CHEN ${ }^{2}$
1. Department of Mathematics, Anhui Normal University, Anhui 241000, P. R. China;
2. Department of Mathematics, Nanjing Normal University, Jiangsu 210097, P. R. China

Abstract

For $A \subseteq \mathbf{Z}_{m}$ and $n \in \mathbf{Z}_{m}$, let $\sigma_{A}(n)$ be the number of solutions of equation $n=$ $x+y, x, y \in A$. Given a positive integer m, let R_{m} be the least positive integer r such that there exists a set $A \subseteq \mathbf{Z}_{m}$ with $A+A=\mathbf{Z}_{m}$ and $\sigma_{A}(n) \leq r$. Recently, Chen Yonggao proved that all $R_{m} \leq 288$. In this paper, we obtain new upper bounds of some special type $R_{k p^{2}}$.

Keywords Erdős-Turán conjecture; additive bases; Ruzsa numbers.
Document code A
MR(2000) Subject Classification 11B13; 11B34
Chinese Library Classification O156.1

1. Introduction

Given a set $A \subset \mathbf{N}$, let $\sigma_{A}(n)$ be the number of ordered pairs $\left(a, a^{\prime}\right) \in A \times A$ such that $a+a^{\prime}=n$. Erdős and Turán [4] conjectured that if $\sigma_{A}(n) \geq 1$ for all $n \geq n_{0}$, then $\sigma_{A}(n)$ must be unbounded. This conjecture has attracted much attention since 1941. To our regret, no serious advance has been made. Erdős-Turán conjecture seems to be extremely difficult. While this famous conjecture is still an unsolved problem, a natural related question which has been raised is: in which abelian groups or semigroups is the analogue of this conjecture valid? Pǔs [6] first established that the analogue of Erdős-Turán conjecture fails to hold in some abelian groups. For related problems, see $[2,3,5]$.

For $A, B \subseteq \mathbf{Z}_{m}$ and $n \in \mathbf{Z}_{m}$, let $\sigma_{A, B}(n)$ be the number of solutions of equation $n=x+y$, $x \in A, y \in B$. Let $\sigma_{A}(n)=\sigma_{A, A}(n)$. For each positive integer m, let Ruzsa number R_{m} be the least positive integer r such that there exists a set $A \subseteq \mathbf{Z}_{m}$ with $A+A=\mathbf{Z}_{m}$ and $\sigma_{A}(n) \leq r$. Based on Ruzsa's method [7], Tang and Chen [8] showed that the analogue of Erdős-Turán conjecture fails to hold in $\left(\mathbf{Z}_{m},+\right)$, namely, for any sufficiently large integer $m, R_{m} \leq 768$. In [9], Tang and Chen showed that $R_{m} \leq 5120$ for any natural number m. Recently, Chen [1] improved the previous upper bounds to $R_{m} \leq 288$ for any positive integer m and $R_{2 p^{2}} \leq 48$ for any prime p.

In this paper, the following results are proved.

[^0]Theorem Let k be a positive integer, $p \geq 7$ be a prime, and let $T \subseteq \mathbf{Z}$ such that $T+T$ contains at least $k+1$ consecutive integers. Then

$$
R_{k p^{2}} \leq 16 \cdot \max _{0 \leq m \leq k-1} \sum_{w=-\infty}^{+\infty} \max \left\{\sigma_{T}(k w+m-1), \sigma_{T}(k w+m)\right\}
$$

Corollary 1 Let $k \geq 2$ be a positive integer, $p \geq 7$ be a prime, and let $T \subseteq\{0,1,2, \ldots, k-1\}$ such that $T+T$ contains at least $k+1$ consecutive integers. Then

$$
R_{k p^{2}} \leq 16 \cdot \max _{0 \leq m \leq k-1}\left(\max \left\{\sigma_{T}(m-1), \sigma_{T}(m)\right\}+\max \left\{\sigma_{T}(k+m-1), \sigma_{T}(k+m)\right\}\right)
$$

Corollary 2 Let p be a prime. Then $R_{p^{2}} \leq 96, R_{4 p^{2}} \leq 48$ and $R_{k p^{2}} \leq 64$ for $k=3,5,6,7,8,9,10$.
Remark 1 The method used here is based on Chen's method as in the proof of Theorem 1 [1]. By employing Corollary 1, we can find the new upper bounds of $R_{k p^{2}}$ for some $k \geq 11$.

2. Proofs

For an integer k, let

$$
Q_{k}=\left\{\left(u, k u^{2}\right): u \in \mathbf{Z}_{p}\right\} \subseteq \mathbf{Z}_{p}^{2}
$$

Lemma ([1]) Let p be an odd prime and m be a quadratic nonresidue of p with $m+1 \not \equiv 0(\bmod p)$, $3 m+1 \not \equiv 0(\bmod p), m+3 \not \equiv 0(\bmod p)$. Put $B=Q_{m+1} \cup Q_{m(m+1)} \cup Q_{2 m}$. Then for any $(c, d) \in \mathbf{Z}_{p}^{2}$ we have $1 \leq \sigma_{B}(c, d) \leq 16$, where $\sigma_{B}(c, d)$ is the number of solutions of the equation $(c, d)=x+y, x, y \in B$.

Remark 2 By simple observation, we see that if $p=3,5$, there does not exist the corresponding m satisfying the above conditions. If $p=7$, we can choose $m=3$ or $m=5$. Since the number of quadratic nonresidue of modulo p is $(p-1) / 2 \geq 5$ for $p \geq 11$, there exists a quadratic nonresidue m such that $m+1 \not \equiv 0(\bmod p), 3 m+1 \not \equiv 0(\bmod p), m+3 \not \equiv 0(\bmod p)$.

Proof of Theorem Assume that

$$
\{l, l+1, \ldots, l+k\} \subseteq T+T
$$

In the following proofs, for $(u, v) \in B$ we always assume that $0 \leq u \leq p-1,0 \leq v \leq p-1$.
For $n \in \mathbf{Z}_{k p^{2}}, 0 \leq n \leq k p^{2}-1$, write $n=c+k p d,(l+1) p \leq c \leq(l+1+k) p-1, c, d \in \mathbf{Z}$.
By the lemma there exist $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in B$ such that

$$
c \equiv u_{1}+u_{2}(\bmod p), \quad d \equiv v_{1}+v_{2}(\bmod p)
$$

Put

$$
c=u_{1}+u_{2}+s p, d=v_{1}+v_{2}+t p, \quad s, t \in \mathbf{Z}
$$

By $(l+1) p \leq c \leq(l+1+k) p-1$ and $0 \leq u_{1}+u_{2} \leq 2 p-2$, we have

$$
(l-1) p+2 \leq s p \leq(l+1+k) p-1
$$

So $l \leq s \leq l+k$. Since

$$
\{l, l+1, \ldots, l+k\} \subseteq T+T
$$

there exist $t_{1}, t_{2} \in T$ such that $s=t_{1}+t_{2}$. Thus

$$
\begin{aligned}
n & =c+k p d \equiv u_{1}+u_{2}+s p+k p v_{1}+k p v_{2} \\
& \equiv\left(u_{1}+k p v_{1}+t_{1} p\right)+\left(u_{2}+k p v_{2}+t_{2} p\right)\left(\bmod k p^{2}\right)
\end{aligned}
$$

Let

$$
A_{1}=\{u+k p v \mid(u, v) \in B\}, \quad A=\bigcup_{t \in T}\left(A_{1}+t p\right)
$$

where

$$
A_{1}+t p=\left\{a+t p \mid a \in A_{1}\right\}
$$

Then $\sigma_{A}(n) \geq 1$.
For $n \in \mathbf{Z}_{k p^{2}}$, by the definition of A, we have

$$
\begin{aligned}
\sigma_{A}(n) & \leq \sum_{t_{1}, t_{2} \in T} \sigma_{A_{1}+t_{1} p, A_{1}+t_{2} p}(n)=\sum_{t_{1}, t_{2} \in T} \sigma_{A_{1}}\left(n-\left(t_{1}+t_{2}\right) p\right) \\
& =\sum_{t=-\infty}^{+\infty} \sigma_{T}(t) \sigma_{A_{1}}(n-t p)
\end{aligned}
$$

Write $n=c^{\prime}+k p d^{\prime}, 0 \leq c^{\prime} \leq k p-1,0 \leq d^{\prime} \leq p-1, c^{\prime}, d^{\prime} \in \mathbf{Z}$. Let $c^{\prime}=m p+r, 0 \leq r \leq p-1$, $m, r \in \mathbf{Z}$. Then $0 \leq m \leq k-1$.

Assume that $\sigma_{A_{1}}(n-t p) \geq 1$. Then there exist $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right) \in B$ such that

$$
n-t p \equiv u_{1}+k p v_{1}+u_{2}+k p v_{2}\left(\bmod k p^{2}\right)
$$

That is,

$$
\begin{equation*}
m p+r+k p d^{\prime}-t p \equiv u_{1}+k p v_{1}+u_{2}+k p v_{2}\left(\bmod k p^{2}\right) \tag{1}
\end{equation*}
$$

Thus

$$
r \equiv u_{1}+u_{2}(\bmod p)
$$

Since $0 \leq r, u_{1}, u_{2} \leq p-1$, we have $r=u_{1}+u_{2}$ or $r=u_{1}+u_{2}-p$. If $r=u_{1}+u_{2}$, then by (1) we have

$$
\begin{equation*}
m+k d^{\prime}-t \equiv k v_{1}+k v_{2}(\bmod k p) \tag{2}
\end{equation*}
$$

Then $k \mid m-t$. Let $m-t=k w$. By (2) we have

$$
d^{\prime}+w \equiv v_{1}+v_{2}(\bmod p)
$$

If $r=u_{1}+u_{2}-p$, then by (1) we have

$$
\begin{equation*}
m-1+k d^{\prime}-t \equiv k v_{1}+k v_{2}(\bmod k p) \tag{3}
\end{equation*}
$$

Then $k \mid m-1-t$. Let $m-1-t=k w^{\prime}$. By (3) we have

$$
d^{\prime}+w^{\prime} \equiv v_{1}+v_{2}(\bmod p)
$$

Hence, by the lemma we have

$$
\sigma_{A}(n) \leq \sum_{w=-\infty}^{+\infty} \sigma_{T}(m-k w) \cdot \#\left\{r=u_{1}+u_{2}, d^{\prime}+w \equiv v_{1}+v_{2}(\bmod p)\right\}+
$$

$$
\begin{aligned}
& \sum_{w^{\prime}=-\infty}^{+\infty} \sigma_{T}\left(m-1-k w^{\prime}\right) \cdot \#\left\{r=u_{1}+u_{2}-p, d^{\prime}+w^{\prime} \equiv v_{1}+v_{2}(\bmod p)\right\} \\
= & \sum_{w=-\infty}^{+\infty} \sigma_{T}(m-k w) \cdot \#\left\{r=u_{1}+u_{2}, d^{\prime}+w \equiv v_{1}+v_{2}(\bmod p)\right\}+ \\
& \sum_{w=-\infty}^{+\infty} \sigma_{T}(m-1-k w) \cdot \#\left\{r=u_{1}+u_{2}-p, d^{\prime}+w \equiv v_{1}+v_{2}(\bmod p)\right\} \\
\leq & \sum_{w=-\infty}^{+\infty} \max \left\{\sigma_{T}(m-k w), \sigma_{T}(m-1-k w)\right\} \sigma_{B}\left(r, d^{\prime}+w\right) \\
\leq & 16 \sum_{w=-\infty}^{+\infty} \max \left\{\sigma_{T}(m-k w), \sigma_{T}(m-1-k w)\right\} \\
\leq & 16 \cdot \max _{0 \leq m \leq k-1} \sum_{w=-\infty}^{+\infty} \max \left\{\sigma_{T}(k w+m-1), \sigma_{T}(k w+m)\right\} .
\end{aligned}
$$

This completes the proof of the Theorem.
Proof of Corollary 1 For any $t_{1}, t_{2} \in T$ we have $0 \leq t_{1}+t_{2} \leq 2 k-2$. So $\sigma_{T}(t)=0$ for $t<0$ or $t>2 k-2$. Now Corollary 1 follows from Theorem immediately.

Proof of Corollary 2 If $k=1$, it is easy to verify $R_{p^{2}} \leq 96$ holds for $p=2,3,5$. As for $3 \leq k \leq 10$, if $p=2,3,5$, let

$$
A=\{0,1,2, \ldots, p, 2 p, 3 p, \ldots,(k p-1) p\}
$$

We have $1 \leq \sigma_{A}(n) \leq(k+1) p-1$ for all $n \in \mathbf{Z}_{k p^{2}}$. Then $\sigma_{A}(n) \leq 48$ for $k \leq 8$ and $p=2,3,5$, and $\sigma_{A}(n) \leq 64$ for $k=9,10$ and $p=2,3,5$.

Now we assume that $p \geq 7$.
$k=1$.
Let $T=\{0,1\}$. Then $T+T=\{0,1,2\}$ and $\sigma_{T}(0)=1, \sigma_{T}(1)=2, \sigma_{T}(2)=1$. By Theorem we have $R_{p^{2}} \leq 96$.
$k=3,4$.
Let $T=\{0,1,2\}$. Then $T+T=\{0,1,2,3,4\}$ and $\sigma_{T}(0)=1, \sigma_{T}(1)=2, \sigma_{T}(2)=3$, $\sigma_{T}(3)=2, \sigma_{T}(4)=1$. By Corollary 1 we have $R_{3 p^{2}} \leq 64$ and $R_{4 p^{2}} \leq 48$.
$k=5,6$.
Let $T=\{0,1,2,3\}$. Then $T+T=\{0,1,2,3,4,5,6\}$ and $\sigma_{T}(0)=1, \sigma_{T}(1)=2, \sigma_{T}(2)=3$, $\sigma_{T}(3)=4, \sigma_{T}(4)=3, \sigma_{T}(5)=2, \sigma_{T}(6)=1$. By Corollary 1 we have $R_{k p^{2}} \leq 64(k=5,6)$.
$k=7,8$.
Let $T=\{0,1,3,4\}$. Then $T+T=\{0,1,2,3,4,5,6,7,8\}$ and $\sigma_{T}(0)=1, \sigma_{T}(1)=2, \sigma_{T}(2)=1$, $\sigma_{T}(3)=2, \sigma_{T}(4)=4, \sigma_{T}(5)=2, \sigma_{T}(6)=1, \sigma_{T}(7)=2, \sigma_{T}(8)=1$. By Corollary 1 we have $R_{k p^{2}} \leq 64(k=7,8)$.
$k=9,10$.
Let $T=\{0,1,3,4,5\}$. Then $T+T=\{0,1,2,3,4,5,6,7,8,9,10\}$ and $\sigma_{T}(0)=1, \sigma_{T}(1)=2$,
$\sigma_{T}(2)=1, \sigma_{T}(3)=2, \sigma_{T}(4)=4, \sigma_{T}(5)=4, \sigma_{T}(6)=3, \sigma_{T}(7)=2, \sigma_{T}(8)=3, \sigma_{T}(9)=2$, $\sigma_{T}(10)=1$. By Corollary 1 we have $R_{k p^{2}} \leq 64(k=9,10)$.

This completes the proof of Corollary 2.

References

[1] CHEN Yonggao. The analogue of Erdös-Turán conjecture in Z_{m} [J]. J. Number Theory, 2008, 128(9): 2573-2581.
[2] CHEN Yonggao. A problem on unique representation bases [J]. European J. Combin., 2007, 28(1): 33-35.
[3] ERDÖS P. On the multiplicative representation of integers [J]. Israel J. Math., 1964, 2: 251-261.
[4] ERDÖS P, TURÁN P. On a problem of Sidon in additive number theory, and on some related problems [J]. J. London Math. Soc., 1941, 16: 212-215.
[5] NATHANSON M B. Unique representation bases for the integers [J]. Acta Arith., 2003, 108(1): 1-8.
[6] PUŠ V. On multiplicative bases in abelian groups [J]. Czechoslovak Math. J., 1991, 41(2): 282-287.
[7] RUZSA I Z. A just basis [J]. Monatsh. Math., 1990, 109(2): 145-151.
[8] TANG Min, CHEN Yonggao. A basis of \mathbf{Z}_{m} [J]. Colloq. Math., 2006, 104(1): 99-103.
[9] TANG Min, CHEN Yonggao. A basis of \mathbf{Z}_{m} (II) [J]. Colloq. Math., 2007, 108(1): 141-145.

[^0]: Received November 5, 2008; Accepted May 16, 2009
 Supported by the National Natural Science Foundation of China (Grant Nos. 10901002; 10771103).

 * Corresponding author

 E-mail address: tmzzz2000@163.com (M. TANG); ygchen@njnu.edu.cn (Y. G. CHEN)

