A Note on the Paper "Some Determinantal Inequalities on Complex Positive Definite Matrices"

Gan Tong HE
Department of Mathematics, Guizhou University, Guizhou 550025, P. R. China

Abstract

By presenting a counterexample, the author of paper (ZHAO Li-feng. J. Math. Res. Exposition, 2007, 27(4): 949-954) declared that some assertions in papers of LÜ Yun-xia, ZHANG Shu-qing (J. Math. Res. Exposition, 1999, 19(3): 598-600), HE Gan-tong (J. Math. Res. Exposition, 2002, 22(1): 79-82) and YUAN Hui-ping (J. Math. Res. Exposition, 2001, $21(3): 464-468)$ are wrong. In this note, we point out that the counterexample is wrong. Further discussion on these assertions and some related results are also given.

Keywords positive semi-definite matrix; determinantal inequality; Hermitian part.
Document code A
MR(2000) Subject Classification 15A45
Chinese Library Classification O151.21
Let $R^{n \times n}$ and $C^{n \times n}$ denote the sets of $n \times n$ real matrices and complex matrices, respectively. For a matrix $A \in C^{n \times n}$, let A^{*} denote the conjugate transpose of A, and define $H(A)=$ $\frac{1}{2}\left(A+A^{*}\right)$, the Hermitian part of $A, S(A)=\frac{1}{2}\left(A-A^{*}\right)$, the skew-Hermitian part of A. For $n \times n$ Hermitian matrices A and $B, A \geq B(A>B)$ will mean that $A-B$ is positive semi-definite (positive definite).

First we quote several theorems which the author of [1] took to be wrong.
Theorem 1 ([2, Theorem 3]) Let $A, B \in R^{n \times n}, n \geq 2$. If $H(A) \geq 0, B>0$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{k} \geq|\operatorname{det} A|^{k}+(\operatorname{det} B)^{k}, \tag{1}
\end{equation*}
$$

where k is a real number such that $k(n+t) \geq 2, t$ is the number of real eigenvalues of $A B^{-1}$.
Theorem 2 ([3, Theorem 2]) Let $A, B \in C^{n \times n}, n \geq 2$. If $H(A) \geq 0, B>0$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{\frac{2}{2 n-s}} \geq|\operatorname{det} A|^{\frac{2}{2 n-s}}+(\operatorname{det} B)^{\frac{2}{2 n-s}}, \tag{2}
\end{equation*}
$$

where s is the number of nonreal eigenvalues of $A B^{-1}$.
Theorem 3 ([4, Theorem 1]) Let $A, B \in C^{n \times n}, n \geq 2$. If $H(A)>0, B>0$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{\frac{1}{n-m}}>|\operatorname{det} A|^{\frac{1}{n-m}}+(\operatorname{det} B)^{\frac{1}{n-m}}, \tag{3}
\end{equation*}
$$

Received February 21, 2009; Accepted September 15, 2009
Supported by the Natural Science Foundation of Science and Technology Office of Guizhou Province (Grant No. J[2006]2002).
E-mail address: sci.gthe@gzu.edu.cn
where m is the number of conjugate pairs of $A B^{-1}$'s nonreal eigenvalues.
Here is the counterexample in [1]:
Example Let $A=\left(\begin{array}{cc}21 / 5 & 0 \\ -11 / 5 & 21 / 5\end{array}\right)$ and $B=\left(\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right)$. Then $H(A) \geq 0, B>0$, and $A B^{-1}=\left(\begin{array}{cc}14 / 5 & 7 / 5 \\ -1 / 15 & 31 / 15\end{array}\right)$. The characteristic polynomial $\operatorname{det}\left(\lambda I-A B^{-1}\right)=\lambda^{2}-(73 / 15) \lambda+$ $(441 / 75)$ has two real roots. For these A, B, the three inequalities in Theorems 1,2 and 3 are equal to

$$
|\operatorname{det}(A+B)|^{\frac{1}{2}} \geq|\operatorname{det} A|^{\frac{1}{2}}+(\operatorname{det} B)^{\frac{1}{2}}
$$

(In the case of Theorem 3, we take $m=0$). The calculating results presented in [1] are

$$
|\operatorname{det}(A+B)|^{\frac{1}{2}}=\sqrt{35.4}<4.2+\sqrt{3}=|\operatorname{det} A|^{\frac{1}{2}}+(\operatorname{det} B)^{\frac{1}{2}}
$$

So the author of [1] concluded that the Theorems 1, 2, 3 and their corollaries are wrong.
It is obvious that the above inequality should turn backward in direction. As a matter of fact, $\left.\operatorname{det}(A+B)\right|^{\frac{1}{2}}$ equals $\sqrt{35.24}$, less than $\sqrt{35.4}$, and even so, one should have

$$
\begin{aligned}
|\operatorname{det}(A+B)|^{\frac{1}{2}} & =\sqrt{35.24}=5.93632883 \cdots \\
& >4.2+\sqrt{3}=5.93205080 \cdots \\
& =|\operatorname{det} A|^{\frac{1}{2}}+(\operatorname{det} B)^{\frac{1}{2}}
\end{aligned}
$$

Thus the corresponding theorems cannot be negated according to this counterexample.
The above three theorems discuss the same thing, to establish a determinantal inequality

$$
|\operatorname{det}(A+B)|^{s} \geq|\operatorname{det} A|^{s}+(\operatorname{det} B)^{s}
$$

for some positive real number s.
The authors of [2] did not say clearly that the matrices in their paper were real or complex. It seems that they deal with only real matrices since they made use of a condition in their proof that the nonreal eigenvalues of $A B^{-1}$ occur in conjugate pairs. So Theorem 2 is the generalization of Theorem 1 that the matrices in Theorem 2 may be taken to be complex. Explicitly, if t and s are the numbers of real eigenvalues and nonreal eigenvalues of $A B^{-1}$ respectively, then $s+t=n$ and $n+t=2 n-s$. Hence the inequalities (1) (when $k=2 /(n+t)$) and (2) are just the same. It is obvious that if $a^{l} \geq b^{l}+c^{l}$ for some positive real number a, b, c, l, one has $a^{k} \geq b^{k}+c^{k}$ for all $k \geq l$. So if the inequality (1) holds for $k=2 /(n+t)$, Theorem 1 will hold.

There is something to be questioned for Theorem 3 indeed. Under the conditions of Theorem 3, the nonreal eigenvalues of $A B^{-1}$ need not occur in conjugate pairs. If so, what does the m mean?

For example, let

$$
A=\left(\begin{array}{ccc}
1 & i & i \\
i & 1 & i \\
i & i & 1
\end{array}\right)
$$

and $B=I$, where $i=\sqrt{-1}$, then $H(A)=I>0$ and $B>0$. The eigenvalues of $A B^{-1}$ are $1+2 i$, $1-i, 1-i$. The nonreal eigenvalues of $A B^{-1}$ do not occur in conjugate pairs. If we take $m=0$ in this case, the determinantal inequality is

$$
\begin{aligned}
|\operatorname{det}(A+B)|^{\frac{1}{3}} & =\sqrt[6]{200}=2.418271175 \cdots \\
& <\sqrt[6]{20}+1=2.647548927 \cdots \\
& =|\operatorname{det} A|^{\frac{1}{3}}+(\operatorname{det} B)^{\frac{1}{3}}
\end{aligned}
$$

The inequality in Theorem 3 does not hold for these A and B.
Examining the proof of Theorem 3 carefully, we find the author made use of a condition that the nonreal eigenvalues of $A B^{-1}$ occur in conjugate pairs. This is not always true when $H(A) \geq 0$ and $B>0$ unless A, B are real.

We conclude that Theorems 1 and 2 are faultless while Theorem 3 is not true unless A and B are restricted to be real matrices.

In resent yeas, a lot of results on the Minkowski type determinantal inequalities have appeared in literatures. For example, one can see [6-10]. Here we will give a brief discussion about the results in [6]. The author of [6] dealt with only real matrices and established the following theorem.

Theorem $4\left(\left[6\right.\right.$, Theorem 1]) Let $A, B \in R^{n \times n}, n \geq 2$, and $H(A)>0, B>0$.
(a) If $k \geq \frac{1}{n}$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{k} \geq 2^{-k m}\left(|\operatorname{det} A|^{k}+(\operatorname{det} B)^{k}\right) \tag{4}
\end{equation*}
$$

(b) If $k \geq \frac{1}{n-m}$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{k} \geq|\operatorname{det} A|^{k}+(\operatorname{det} B)^{k} \tag{5}
\end{equation*}
$$

where $2 m$ is the number of nonreal eigenvalues of $A B^{-1}$.
And two more theorems were also given in [6] to discuss the same inequalities as (4) and (5), of course, under different conditions that A and B satisfied [6, Theorem 2, Theorem 5]. Thus the analogous Minkowski type determinantal inequalities recently appearing in literatures were collected in the paper and were discussed by similar method.

Examining Theorems 1, 2, 4 carefully, we point out that Theorem 1 and the part (b) of Theorem 4 are the same, since here $t+2 m=n$ and then $1 /(n-m)=2 /(n+t)$. And inequality (4) is a special case of inequality (6) in Theorem 5 below. In fact, when A, B are restricted to be real matrices and $H(A)>0,(6)$ is turned into (4) for $k=1 / n$ in (4), since here $s=2 m$.

Theorem 5 ([3, Theorem 3]) Let $A, B \in C^{n \times n}, n \geq 2$. If $H(A) \geq 0, B>0$, then

$$
\begin{equation*}
|\operatorname{det}(A+B)|^{\frac{1}{n}} \geq 2^{-\frac{s}{2 n}}\left(|\operatorname{det} A|^{\frac{1}{n}}+(\operatorname{det} B)^{\frac{1}{n}}\right) \tag{6}
\end{equation*}
$$

where s is the number of nonreal eigenvalues of $A B^{-1}$.

References

[1] ZHAO Lifeng. Some determinantal inequalities on complex positive definite matrices [J]. J. Math. Res. Exposition, 2007, 27(4): 949-954. (in Chinese)
[2] LÜ Yunxia, ZHANG Shuqing. A note for "The mistakes on 'Theory of sub-positive definite matrix'" [J]. J. Math. Res. Exposition, 1999, 19(3): 598-600. (in Chinese)
[3] HE Gantong. Several determinant inequalities of positive definite Hermitian matrices [J]. J. Math. Res. Exposition, 2002, 22(1): 79-82. (in Chinese)
[4] YUAN Huiping. Minkowski inequality over complex positive definete matrix [J]. J. Math. Res. Exposition, 2001, 21(3): 464-468. (in Chinese)
[5] TU Boxun. Theory of meta-positive definite matrice (II) [J]. Acta. Math. Sinica, 1991, 34(1): 91-102. (in Chinese)
[6] YUE Rong. Revision of a generalized Minkowski inequality [J]. Math. Pract. Theory, 2008, 38(3): 135-141. (in Chinese)
[7] SHEN Shuqian, HUANG Tingzhu. Further researches on generalized positive definite matrices [J]. Math. Practice Theory, 2006, 36(10): 210-214. (in Chinese)
[8] CUI Runqing, ZHENG Yumin. Determinantal inequalities for totally principle positive matrices [J]. Math. Practice Theory, 2006, 36(7): 320-323. (in Chinese)
[9] YUAN Huiping, GUO Wei. Determinantal inequalities for almost positive definite matrices [J]. J. Math. (Wuhan), 2008, 28(5): 514-518. (in Chinese)
[10] YANG Hu, SHAO Hua. A further study on universal positive definite matrices [J]. Math. Practice Theory, 2008, 38(3): 114-122. (in Chinese)
[11] HORN R A, JOHNSON C R. Matrix Analysis [M]. Cambridge University Press, Cambridge, 1985.

