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Abstract By presenting a counterexample, the author of paper (ZHAO Li-feng. J. Math.

Res. Exposition, 2007, 27(4): 949–954) declared that some assertions in papers of LÜ Yun-xia,

ZHANG Shu-qing (J. Math. Res. Exposition, 1999, 19(3): 598–600), HE Gan-tong (J. Math.

Res. Exposition, 2002, 22(1): 79–82) and YUAN Hui-ping (J. Math. Res. Exposition, 2001,

21(3): 464–468) are wrong. In this note, we point out that the counterexample is wrong. Further

discussion on these assertions and some related results are also given.
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Let Rn×n and Cn×n denote the sets of n×n real matrices and complex matrices, respectively.

For a matrix A ∈ Cn×n, let A∗ denote the conjugate transpose of A, and define H(A) =
1

2
(A+A∗), the Hermitian part of A, S(A) = 1

2
(A−A∗), the skew-Hermitian part of A. For n×n

Hermitian matrices A and B, A ≥ B (A > B) will mean that A − B is positive semi-definite

(positive definite).

First we quote several theorems which the author of [1] took to be wrong.

Theorem 1 ([2, Theorem 3]) Let A, B ∈ Rn×n, n ≥ 2. If H(A) ≥ 0, B > 0, then

|det(A + B)|k ≥ |detA|k + (detB)k, (1)

where k is a real number such that k(n + t) ≥ 2, t is the number of real eigenvalues of AB−1.

Theorem 2 ([3, Theorem 2]) Let A, B ∈ Cn×n, n ≥ 2. If H(A) ≥ 0, B > 0, then

|det(A + B)| 2

2n−s ≥| detA| 2

2n−s + (detB)
2

2n−s , (2)

where s is the number of nonreal eigenvalues of AB−1.

Theorem 3 ([4, Theorem 1]) Let A, B ∈ Cn×n, n ≥ 2. If H(A) > 0, B > 0, then

|det(A + B)| 1

n−m > |detA | 1

n−m +(detB)
1

n−m , (3)
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where m is the number of conjugate pairs of AB−1’s nonreal eigenvalues.

Here is the counterexample in [1]:

Example Let A =

(

21/5 0

−11/5 21/5

)

and B =

(

2 −1

−1 2

)

. Then H(A) ≥ 0, B > 0, and

AB−1 =

(

14/5 7/5

−1/15 31/15

)

. The characteristic polynomial det(λI−AB−1) = λ2− (73/15)λ+

(441/75) has two real roots. For these A, B, the three inequalities in Theorems 1, 2 and 3 are

equal to

|det(A + B)| 12 ≥ |detA | 12 +(detB)
1

2 .

(In the case of Theorem 3, we take m = 0). The calculating results presented in [1] are

|det(A + B)| 12 =
√

35.4 < 4.2 +
√

3 = |detA| 12 + (detB)
1

2 .

So the author of [1] concluded that the Theorems 1, 2, 3 and their corollaries are wrong.

It is obvious that the above inequality should turn backward in direction. As a matter of

fact, det(A + B)| 12 equals
√

35.24, less than
√

35.4, and even so, one should have

|det(A + B)| 12 =
√

35.24 = 5.93632883 · · ·
> 4.2 +

√
3 = 5.93205080 · · ·

= |detA| 12 + (detB)
1

2 .

Thus the corresponding theorems cannot be negated according to this counterexample.

The above three theorems discuss the same thing, to establish a determinantal inequality

|det(A + B)|s ≥ |detA|s + (detB)s

for some positive real number s.

The authors of [2] did not say clearly that the matrices in their paper were real or complex. It

seems that they deal with only real matrices since they made use of a condition in their proof that

the nonreal eigenvalues of AB−1 occur in conjugate pairs. So Theorem 2 is the generalization of

Theorem 1 that the matrices in Theorem 2 may be taken to be complex. Explicitly, if t and s

are the numbers of real eigenvalues and nonreal eigenvalues of AB−1 respectively, then s+ t = n

and n + t = 2n − s. Hence the inequalities (1) (when k = 2/(n + t)) and (2) are just the same.

It is obvious that if al ≥ bl + cl for some positive real number a, b, c, l, one has ak ≥ bk + ck for

all k ≥ l. So if the inequality (1) holds for k = 2/(n + t), Theorem 1 will hold.

There is something to be questioned for Theorem 3 indeed. Under the conditions of Theorem

3, the nonreal eigenvalues of AB−1 need not occur in conjugate pairs. If so, what does the m

mean?

For example, let

A =







1 i i

i 1 i

i i 1
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and B = I, where i =
√
−1, then H(A) = I > 0 and B > 0. The eigenvalues of AB−1 are 1+2i,

1− i, 1− i. The nonreal eigenvalues of AB−1 do not occur in conjugate pairs. If we take m = 0

in this case, the determinantal inequality is

|det(A + B)| 13 =
6
√

200 = 2.418271175 · · ·
<

6
√

20 + 1 = 2.647548927 · · ·
= |detA| 13 + (detB)

1

3 .

The inequality in Theorem 3 does not hold for these A and B.

Examining the proof of Theorem 3 carefully, we find the author made use of a condition

that the nonreal eigenvalues of AB−1 occur in conjugate pairs. This is not always true when

H(A) ≥ 0 and B > 0 unless A, B are real.

We conclude that Theorems 1 and 2 are faultless while Theorem 3 is not true unless A and

B are restricted to be real matrices.

In resent yeas, a lot of results on the Minkowski type determinantal inequalities have appeared

in literatures. For example, one can see [6–10]. Here we will give a brief discussion about the

results in [6]. The author of [6] dealt with only real matrices and established the following

theorem.

Theorem 4 ([6, Theorem 1]) Let A, B ∈ Rn×n, n ≥ 2, and H(A) > 0, B > 0.

(a) If k ≥ 1

n
, then

|det(A + B)|k ≥ 2−km(|detA|k + (detB)k); (4)

(b) If k ≥ 1

n−m
, then

|det(A + B)|k ≥ |detA|k + (detB)k, (5)

where 2m is the number of nonreal eigenvalues of AB−1.

And two more theorems were also given in [6] to discuss the same inequalities as (4) and (5),

of course, under different conditions that A and B satisfied [6, Theorem 2, Theorem 5]. Thus

the analogous Minkowski type determinantal inequalities recently appearing in literatures were

collected in the paper and were discussed by similar method.

Examining Theorems 1, 2, 4 carefully, we point out that Theorem 1 and the part (b) of

Theorem 4 are the same, since here t + 2m = n and then 1/(n−m) = 2/(n + t). And inequality

(4) is a special case of inequality (6) in Theorem 5 below. In fact, when A, B are restricted to

be real matrices and H(A) > 0, (6) is turned into (4) for k = 1/n in (4), since here s = 2m.

Theorem 5 ([3, Theorem 3]) Let A, B ∈ Cn×n, n ≥ 2. If H(A) ≥ 0, B > 0, then

|det(A + B)| 1

n ≥ 2−
s

2n (|detA| 1

n + (detB)
1

n ), (6)

where s is the number of nonreal eigenvalues of AB−1.
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