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1. Introduction

In 1992, Nanda and Kar [1] firstly introduced and discussed the concepts of convex fuzzy

mapping and strictly convex fuzzy mapping, obtained the criteria for convex fuzzy mapping, and

considered several applications to convex fuzzy optimizations. Subsequently, some authors have

investigated various aspects of theory and application of convex fuzzy mappings [2–5]. Especially,

in 2003, Wang and Wu [4] studied the applications to convex fuzzy programming by establishing

the fuzzy subdifferential of fuzzy mapping.

Motivated both by earlier works of [1–6] and by the importance of the concept of semistrict

convexity in classical convex analysis, we propose and the consider semistrict convexity of fuzzy

mappings in this paper. In particular, we get that a local minimum of a semistrictly convex fuzzy

mapping is also a global minimum, also discuss the relations among convexity, strict convexity

and semistrict convexity of fuzzy mapping, and infer several sufficient conditions for convexity

and semitrict convexity.

Received June 6, 2008; Accepted July 7, 2008

Supported by the National Natural Science Foundation of China (Grant No. 10271035) and the Scientific Research

Foundation Project of Inner Mongolian Education Department (Grant No.NJ06088).
* Corresponding author

E-mail address: byebed@163.com (Y. E. Bao)



572 Y. E. BAO and C. X. WU

2. Preliminaries

Let Rn be the n-dimensional Euclidean space. The family of fuzzy numbers for R1 will be

denoted by F0. Since each r ∈ R1 can be considered as a fuzzy number r̃ defined by

r̃(t) =

{
1, if t = r,

0, if t 6= r.

It follows that R1 can be embedded in F0.

As is known in [7], the α-level set of a fuzzy number u ∈ F0 is a nonempty closed and bounded

interval

[u∗(α), u∗(α)] = [u]α =

{ {x ∈ R1|u(x) ≥ α}, if 0 < α ≤ 1,

cl(suppu), if α = 0.

Again from Lemma 2.2 of [7], we see that a fuzzy number u : R1 → [0, 1] is determined by the

end-points of the interval [u]α. Thus we can identify a fuzzy number u with the parameterized

triples

{(u∗(α), u∗(α), α)| 0 ≤ α ≤ 1},

where u∗(α) and u∗(α) denote the left-and right-hand endpoints of [u]α, respectively. We denote

it as u = {(u∗(α), u∗(α), α)| 0 ≤ α ≤ 1}.
For any u, v ∈ F0 represented by {(u∗(α), u∗(α), α)| 0 ≤ α ≤ 1} and {(v∗(α), v∗(α), α) 0 ≤

α ≤ 1}, respectively, and each nonnegative real number r, we define the addition u + v and

‘scalar’ multiplication ru as follows:

u + v = {(u∗(α) + v∗(α), u∗(α) + v∗(α), α)|0 ≤ α ≤ 1}
= {(u∗(α), u∗(α), α)|0 ≤ α ≤ 1} + {(v∗(α), v∗(α), α)| 0 ≤ α ≤ 1},

ru = {(ru∗(α), ru∗(α), α)| 0 ≤ α ≤ 1}.

Then u + v ∈ F0, ru ∈ F0 and

[u+v]∗(α) = u∗(α)+v∗(α), [u+v]∗(α) = u∗(α)+v∗(α); [ru]∗(α) = ru∗(α), [ru]∗(α) = ru∗(α).

Definition 2.1 For u, v ∈ F0,

(a) we say that u ≤ v if for every α ∈ [0, 1], u∗(α) ≤ v∗(α) and u∗(α) ≤ v∗(α);

(b) we say that u < v, if u ≤ v and there exists α0 ∈ [0, 1] such that

u∗(α0) < v∗(α0) or u∗(α0) < v∗(α0);

(c) we say that u = v, if u ≤ v and v ≤ u,

where u = {(u∗(α), u∗(α), α)|0 ≤ α ≤ 1}, v = {(v∗(α), v∗(α), α)|0 ≤ α ≤ 1}.
In the following, we recall the concept of convex fuzzy mappings. Throughout this paper, let

C be a nonempty convex subset of Rn.

Definition 2.2 ([1]) A fuzzy mapping F : C → F0 is said to be convex if

F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y),
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for every x, y ∈ C and λ ∈ [0, 1].

Definition 2.3 ([1]) A fuzzy mapping F : C → F0 is said to be strictly convex if

F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y),

for every x, y ∈ C, x 6= y and λ ∈ [0, 1].

Definition 2.4 A fuzzy mapping F : C → F0 is said to be lower semicontinuous at a point

x0 ∈ C, if for any ε > 0, there exists a δ > 0 such that

F (x0) ≤ F (x) + ε̃,

for all x ∈ C and ||x − x0|| < δ. F is said to be lower semicontinuous on C if it is lower

semicontinuous at each point of C.

3. Semistrictly convex fuzzy mappings

In this section, we introduce the concept of a new class of fuzzy mapping termed semistrictly

convex fuzzy mapping, and discuss its properties. In particular, the following Theorem 3.1 shows

that a local minimum of a semistrictly convex fuzzy mapping over a convex set is also a global

minimum.

Definition 3.1 A fuzzy mapping F : C → F0 is said to be semistrictly convex if

F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y),

for every x, y ∈ C, F (x) 6= F (y) and λ ∈ (0, 1).

The following example illustrates that a semistrictly convex fuzzy mapping is not a convex

fuzzy mapping.

Example 3.1 Let

F (x) =

{ {(1, 1, r)| 0 ≤ r ≤ 1}, x = 1,

{(−
√

1 − r,
√

1 − r, r)| 0 ≤ r ≤ 1}, x 6= 1 and x ∈ [0, 3].

Then F : [0, 3] → F0 is a semistrictly convex fuzzy mapping, but is not a convex fuzzy mapping.

Therefore, F is not strictly convex fuzzy mapping either.

Proof Clearly, every x, y ∈ [0, 3], F (x) 6= F (y) iff x = 1, y ∈ [0, 1) ∪ (1, 3] or y = 1, x ∈
[0, 1) ∪ (1, 3], and for 0 < λ < 1 we have λx + (1 − λ)y ∈ [0, 1) ∪ (1, 3].

Without loss of generality, we assume that x = 1 and y ∈ [0, 1) ∪ (1, 3]. Then

F (λx + (1 − λ)y) = {(−
√

1 − r,
√

1 − r, r)|0 ≤ r ≤ 1},
λF (x) + (1 − λ)F (y) = λ{(1, 1, r)|0 ≤ r ≤ 1} + (1 − λ){(−

√
1 − r,

√
1 − r, r)|0 ≤ r ≤ 1}

= {(λ − (1 − λ)
√

1 − r, λ + (1 − λ)
√

1 − r, r)|0 ≤ r ≤ 1},

which implies that F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y). It follows that F is a semistrictly

convex fuzzy mapping.
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Let x = 2, y = 1
2 , λ = 1

3 . Then

F (λx + (1 − λ)y) = F (1) = {(1, 1, r)|0 ≤ r ≤ 1},

λF (x) + (1 − λ)F (y) =
1

3
{(−

√
1 − r,

√
1 − r, r)|0 ≤ r ≤ 1} +

2

3
{(−

√
1 − r,

√
1 − r, r)|0 ≤ r ≤ 1}

= {(−
√

1 − r,
√

1 − r, r)|0 ≤ r ≤ 1},

which implies that F (λx + (1 − λ)y) > λF (x) + (1 − λ)F (y). It follows that F is not a convex

fuzzy mapping.

Theorem 3.1 Let F : C → F0 be a semistrictly convex fuzzy mapping. If x ∈ C is a local

optimal solution to the problem of minimizing F (x) subject to x ∈ C, then x is a global minimum.

Proof Suppose that x ∈ C is a local minimum. Then there is a neighborhood N(x) such that

F (x) ≤ F (x), ∀x ∈ C ∩ N(x). (1)

If x is not a global minimum of F , then there exists a y ∈ C such that F (y) 6≥ F (x). Hence

there exists r0 ∈ [0, 1] such that

F (y)∗(r0) < F (x)∗(r0) or F (y)∗(r0) < F (x)∗(r0).

So that by the semistrict convexity of F , for every λ ∈ (0, 1) we have

F (λy + (1 − λ)x) < λF (y) + (1 − λ)F (x),

which implies that

F (λy + (1 − λ)x)∗(r0) ≤ λF (y)∗(r0) + (1 − λ)F (x)∗(r0) < F (x)∗(r0),

or

F (λy + (1 − λ)x)∗(r0) ≤ λF (y)∗(r0) + (1 − λ)F (x)∗(r0) < F (x)∗(r0).

Therefore, we have F (λy + (1− λ)x) 6≥ F (x), for all 0 < λ < 1. For a sufficiently small λ > 0, it

follows that λy + (1 − λ)x ∈ C ∩ N(x), which is a contradiction to (1).

Remark 3.1 From Example 3.1 and Theorem 3.1, we can conclude that the class of semistrictly

convex fuzzy mapping constitutes an important new class of convex fuzzy mapping in fuzzy

programming.

Theorem 3.2 Let F : C → F0 be a semistrictly convex fuzzy mapping, and let G : F0 → F0 be

a convex and strictly increasing mapping. Then the composite mapping G(F ) is a semistrictly

convex fuzzy mapping on C.

Proof For any x, y ∈ C, λ ∈ (0, 1), if G(F (x)) 6= G(F (y)), then F (x) 6= F (y). Since F is a

semistrictly convex fuzzy mapping, we have F (λx + (1 − λ)y) < λF (x) + (1− λ)F (y). From the

convexity and strictly increasing property of G, we obtain

G(F (λx + (1 − λ)y) < G(λF (x) + (1 − λ)F (y)) ≤ λG(F (x)) + (1 − λ)G(F (y)).



Semistrictly convex fuzzy mappings 575

Hence, G(F ) is a semistrictly convex fuzzy mapping on C.

Naturally, we can get the following result.

Theorem 3.3 Let F : C → F0 be a semistrictly convex fuzzy mapping, and let G : F0 → F0 be

a strictly convex and increasing mapping. Then the composite mapping G(F ) is a semistrictly

convex fuzzy mapping on C.

4. The sufficient conditions for convex and strictly convex fuzzy map-

ping

We know that semistrict convexity cannot imply convexity and strict convexity. Nevertheless,

we have the following interesting results.

Theorem 4.1 Let F : C → F0 be a semistrictly convex fuzzy mapping. If there exists α ∈ (0, 1)

such that

F (αx + (1 − α)y) ≤ αF (x) + (1 − α)F (y), ∀x, y ∈ C.

Then F is a convex fuzzy mapping on C.

Proof Suppose that there exist x, y ∈ C and λ ∈ (0, 1) such that

F (λx + (1 − λ)y) 6≤ λF (x) + (1 − λ)F (y).

Then there exists r0 ∈ (0, 1) such that

F (λx + (1 − λ)y)∗(r0) > λF (x)∗(r0) + (1 − λ)F (y)∗(r0) (2)

or

F (λx + (1 − λ)y)∗(r0) > λF (x)∗(r0) + (1 − λ)F (y)∗(r0).

Without loss of generality, we assume that (2) holds true.

(I) If F (x) 6= F (y), then by semistrict convexity of F , for any λ ∈ (0, 1) we have

F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y),

which is a contradiction to (2).

(II) If F (x) = F (y), let zλ = λx + (1 − λ)y, then (2) implies that

F (zλ)∗(r0) = F (λx + (1 − λ)y)∗(r0) > λF (x)∗(r0) + (1 − λ)F (y)∗(r0)

= F (x)∗(r0) = F (y)∗(r0). (3)

(i) If 0 < α < λ ≤ 1, let µ = (λ − α)/(1 − α), then 0 < µ < λ ≤ 1 and

zλ = λx + (1 − λ)y = (µ(1 − α) + α)x + (1 − (µ(1 − α) + α))y

= αx + (1 − α)µx + (1 − α)y − µ(1 − α)y

= αx + ((1 − α)µx + (1 − α)(1 − µ)y) = αx + (1 − α)zµ.

Hence by the hypothesis of the theorem and (3), we have

F (zλ)∗(r0) = F (αx + (1 − α)zµ)∗(r0)
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≤ αF (x)∗(r0) + (1 − α)F (zµ)∗(r0) < αF (zλ)∗(r0) + (1 − α)F (zµ)∗(r0),

which implies that (1 − α)F (zλ)∗(r0) < (1 − α)F (zµ)∗(r0). Therefore, we get

F (zλ)∗(r0) < F (zµ)∗(r0). (4)

On the other hand, let θ = (λ − µ)/λ. Then 0 < θ < 1 and by the same method we can get

that zµ = θy + (1 − θ)zλ. Hence by the hypothesis of the theorem and (3), we have

F (zµ)∗(r0) = F (θy + (1 − θ)zλ)∗(r0) ≤ θF (y)∗(r0) + (1 − θ)F (zλ)∗(r0) < F (zλ)∗(r0),

which is a contradiction to (4).

(ii) If 0 < λ < α < 1, let µ = λ/α. Then 0 < µ < 1 and we can get that zλ = αx+(1−α)zµ.

Hence by the hypothesis of the theorem and (2), we have

F (zλ)∗(r0) ≤ αF (y)∗(r0) + (1 − α)F (zµ)∗(r0) < F (zµ)∗(r0). (5)

On the other hand, let θ = (µ − λ)/(1 − λ). Then 0 < θ < 1 and we can obtain that zµ =

θx + (1 − θ)zλ. Therefore, by the semistrict convexity of F and (3), we have

F (zµ)∗(r0) = F (θx + (1 − θ)zλ)∗(r0) ≤ θF (x)∗(r0) + (1 − θ)F (zλ)∗(r0) < F (zλ)∗(r0),

which is a contradiction to (5). This completes the proof. 2

Theorem 4.2 Let F : C → F0 be a semistrictly convex fuzzy mapping. If there exists α ∈ (0, 1)

such that for any x, y ∈ C and x 6= y

F (αx + (1 − α)y) < αF (x) + (1 − α)F (y),

then F is a strictly convex fuzzy mapping on C.

Proof Since F is semistrictly convex, we only need to show that if F (x) = F (y) and x 6= y,

then

F (λx + (1 − λ)y) < λF (x) + (1 − λ)F (y) = F (x) = F (y), ∀λ ∈ (0, 1).

By the hypothesis of the theorem and for any x, y ∈ C, x 6= y and F (x) = F (y), we have

F (αx + (1 − α)y) < αF (x) + (1 − α)F (y) = F (x) = F (y).

Let z = αx + (1 − α)y. For each λ ∈ (0, 1), if λ > α, then taking µ = (λ − α)/(1 − α) ∈ (0, 1),

we have

µx + (1 − µ)z = ((λ − α)/(1 − α))x + (1 − (λ − α)/(1 − α))(αx + (1 − α)y)

= ((λ − α)/(1 − α) + α(1 − λ)/(1 − α))x + ((1 − λ)(1 − α)/(1 − α))y

= λx + (1 − λ)y.

Hence by the semistrict convexity of F and F (z) < F (x), we have

F (λx + (1 − λ)y) = F (µx + (1 − µ)z) < µF (x) + (1 − µ)F (z) < F (x).

If λ < α, then taking θ = λ/α ∈ (0, 1), we have

θz + (1 − θ)y = (λ/α)(αx + (1 − α)y) + (1 − λ/α)y = λx + (1 − λ)y.



Semistrictly convex fuzzy mappings 577

Again by the semistrict convexity of F and F (z) < F (y), we have

F (λx + (1 − λ)y) = F (θz + (1 − θ)y) < θF (z) + (1 − θ)F (y) < F (y).

This completes the proof. 2

5. The sufficient conditions for semistrictly convex fuzzy mappings

We know that convexity can not imply semistrict convexity. Nevertheless, we have the

following interesting results.

Theorem 5.1 Let F : C → F0 be a convex fuzzy mapping. If there exists α ∈ (0, 1) such that

for any x, y ∈ C, F (x) 6= F (y)

F (αx + (1 − α)y) < αF (x) + (1 − α)F (y),

then F is a semistrictly convex fuzzy mapping on C.

Proof Suppose that there exist x, y ∈ C and λ ∈ (0, 1) such that

F (x) 6= F (y) and F (λx + (1 − λ)y) 6< λF (x) + (1 − λ)F (y).

Then F (λx + (1 − λ)y) 6≤ λF (x) + (1 − λ)F (y) or F (λx + (1 − λ)y) ≥ λF (x) + (1 − λ)F (y).

(I) If F (λx + (1 − λ)y) 6≤ λF (x) + (1 − λ)F (y), then it contradicts the convexity of F .

(II) If F (λx + (1− λ)y) ≥ λF (x) + (1− λ)F (y), then by F (x) 6= F (y) we have F (x) 6≤ F (y)

or F (x) 6≥ F (y). Hence there exists r0 ∈ [0, 1] such that

F (x)∗(r0) > F (y)∗(r0) or F (x)∗(r0) > F (y)∗(r0) or F (x)∗(r0) < F (y)∗(r0) or F (x)∗(r0) <

F (y)∗(r0). Without loss of generality, suppose that F (x)∗(r0) < F (y)∗(r0) and let z = λx+(1−
λ)y. Then

F (z)∗(r0) ≥ λF (x)∗(r0) + (1 − λ)F (y)∗(r0) > F (x)∗(r0). (6)

Hence by the convexity of F and (6) we have

F (αx + (1 − α)z)∗(r0) ≤ αF (x)∗(r0) + (1 − α)F (z)∗(r0) < F (z)∗(r0),

F (α2x + (1 − α2)z)∗(r0) = F (α(αx + (1 − α)z) + (1 − α)z)∗(r0) < F (z)∗(r0),

· · ·

F (αkx+(1−αk)z)∗(r0) = F (α(αk−1x+(1−αk−1)z)+(1−α)z)∗(r0) < F (z)∗(r0), ∀k ∈ N. (7)

From z = λx + (1 − λ)y, we have

αkx + (1 − αk)z = αkx + (1 − αk)(λx + (1 − λ)y) = (λ − αkλ + αk)x + (1 − λ − αk + αkλ)y.

Take k1 ∈ N such that αk1/(1 − α) < λ/(1 − λ), and let

β1 = λ+αk1 (1−λ), β2 = λ− (αk1+1/(1−α))(1−λ); x = β1x+(1−β1)y, y = β2x+(1−β2)y.

Then

β1, β2 ∈ (0, 1) and αk1x + (1 − αk1)z = β1x + (1 − β1)y = x. (8)
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Hence by (7) and (8), we have

F (x)∗(r0) = F (β1x + (1 − β1)y)∗(r0) = F (αk1x + (1 − αk1)z)∗(r0) < F (z)∗(r0). (9)

(i) If F (x)∗(r0) ≥ F (y)∗(r0), then from z = λx+(1−λ)y = αx+(1−α)y and the convexity

of F , we obtain that

F (z)∗(r0) ≤ αF (x)∗(r0) + (1 − α)F (y)∗(r0) ≤ F (x)∗(r0),

which contradicts inequality (9).

(ii) If F (x)∗(r0) < F (y)∗(r0), then from z = αx+(1−α)y and the hypothesis of the theorem,

we get that

F (z) < αF (x) + (1 − α)F (y) ≤ α(β1F (x) + (1 − β1)F (y)) + (1 − α)(β2F (x) + (1 − β2)F (y))

= (αβ1 + (1 − α)β2)F (x) + (α(1 − β1) + (1 − α)(1 − β2))F (y) = λF (x) + (1 − λ)F (y),

which contradicts inequality (6). This completes the proof. 2

Theorem 5.2 Let C be a closed set, and let F : C → F0 be a lower semicontinuous fuzzy

mapping. If there exists α ∈ (0, 1) such that for any x, y ∈ C, F (x) 6= F (y) we have

F (αx + (1 − α)y) < αF (x) + (1 − α)F (y),

then F is a semistrictly convex fuzzy mapping on C.

Proof (I) At first, we show that for any x, y ∈ C there exists λ ∈ (0, 1) such that

F (λx + (1 − λ)y) ≤ λF (x) + (1 − λ)F (y).

Suppose that there exist x, y ∈ C such that ∀λ ∈ (0, 1)

F (λx + (1 − λ)y) 6≤ λF (x) + (1 − λ)F (y). (10)

If F (x) 6= F (y), then by the hypothesis of the theorem, there exists α ∈ (0, 1) such that

F (αx + (1 − α)y) < αF (x) + (1 − α)F (y),

which is a contradiction to (10).

If F (x) = F (y), then for given λ ∈ (0, 1), by (10) we know that F (λx + (1 − λ)y) 6= F (x) =

F (y) and there exists rλ ∈ [0, 1] such that

F (λx + (1 − λ)y)∗(rλ) > λF (x)∗(rλ) + (1 − λ)F (y)∗(rλ) = F (x)∗(rλ) = F (y)∗(rλ) (11)

or

F (λx + (1 − λ)y)∗(rλ) > λF (x)∗(rλ) + (1 − λ)F (y)∗(rλ) = F (x)∗(rλ) = F (y)∗(rλ).

Without loss of generality, we assume that (11) holds true. Then by the hypothesis of the

theorem and (11), we have

F (x)∗(r1−α(1−λ)) = F (y)∗(r1−α(1−λ)) < F ((1 − α(1 − λ))x + α(1 − λ)y)∗(r1−α(1−λ))

= F (α(λx + (1 − λ)y) + (1 − α)x)∗(r1−α(1−λ))
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≤ αF (λx + (1 − λ)y)∗(r1−α(1−λ)) + (1 − α)F (x)∗(r1−α(1−λ)),

which implies that αF (x)∗(r1−α(1−λ)) < αF (λx + (1 − λ)y)∗(r1−α(1−λ)). Hence we have

F (y)∗(r1−α(1−λ)) = F (x)∗(r1−α(1−λ)) < F (λx + (1 − λ)y)∗(r1−α(1−λ)).

Therefore, we obtain

F (x)∗(r1−α(1−λ)) = F (y)∗(r1−α(1−λ))

< F ((1 − α(1 − λ))x + α(1 − λ)y)∗(r1−α(1−λ)) < F (λx + (1 − λ)y)∗(r1−α(1−λ)).

Again by the hypothesis of the theorem and the above inequality, we have

F (α((1 − α(1 − λ))x + α(1 − λ)y) + (1 − α)y)∗(r1−α(1−λ))

≤ αF ((1 − α(1 − λ))x + α(1 − λ)y)∗(r1−α(1−λ)) + (1 − α)F (y)∗(r1−α(1−λ))

< F ((1 − α(1 − λ))x + α(1 − λ)y)∗(r1−α(1−λ))

< F (λx + (1 − λ)y)∗(r1−α(1−λ)).

Let λ = α/(1 + α) ∈ (0, 1). Then the above inequality implies that

F
( α

1 + α
x +

1

1 + α
y
)
∗
( 1

1 + α

)
< F

( α

1 + α
x +

1

1 + α
y
)
∗
( 1

1 + α

)
,

which is a contradiction.

(II) Secondly, we show that F is a convex fuzzy mapping on C. By the lower semicontinuity

of F on C, we know that for any r ∈ [0, 1], both F (x)∗(r) and F (x)∗(r) are lower semicontinuous

real valued functions. It follows from the closeness of C, we can easily check that the epigraphs

of F (x)∗(r) and F (x)∗(r):

epi(F (·)∗(r)) = {(x, a)|x ∈ C and F (x)∗(r) ≤ a},

epi(F (·)∗(r)) = {(x, a)| x ∈ C and F (x)∗(r) ≤ a}

both are closed in Rn+1. Since by (I) there exists λ ∈ (0, 1) such that

F (λx + (1 − λ)y)(r) ≤ λF (x) + (1 − λ)F (y),

for any r ∈ [0, 1] we get

F (λx + (1 − λ)y)∗(r) ≤ λF (x)∗(r) + (1 − λ)F (y)∗(r),

F (λx + (1 − λ)y)∗(r) ≤ λF (x)∗(r) + (1 − λ)F (y)∗(r).

It follows that for any u, v ∈ epi(F (·)∗(r))(u, v ∈ epi(F (·)∗(r))), there exists λ ∈ (0, 1) such that

λu + (1 − λ)v ∈ epi(F (·)∗(r))(λu + (1 − λ)v ∈ epi(F (·)∗(r))). (12)

Otherwise, suppose that F is not a convex mapping on C. Then there exist distinct x, y ∈ C

and α ∈ (0, 1) such that

F (αx + (1 − α)y) 6≤ αF (x) + (1 − α)F (y).
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Hence there exists r0 ∈ [0, 1] such that

F (αx + (1 − α)y)∗(r0) > αF (x)∗(r0) + (1 − α)F (y)∗(r0)

or

F (αx + (1 − α)y)∗(r0) > αF (x)∗(r0) + (1 − α)F (y)∗(r0).

Without loss of generality, we assume that

F (αx + (1 − α)y)∗(r0) > αF (x)∗(r0) + (1 − α)F (y)∗(r0).

Then for u = (x, F (x)∗(r0)) ∈ epi(F ·)∗(r0)), v = (y, F (y)∗(r0)) ∈ epi(F (·)∗(r0)), we have

ω = αu + (1 − α)v = (αx + (1 − α)y, αF (x)∗(r0) + (1 − α)F (y)∗(r0))∈epi(F (·)∗(r0)).

Let ut = tu + (1 − t)ω, r = inf{t ∈ [0, 1]| ut ∈ epi(F (·)∗(r0))}. Then there exists a sequence of

points {tn} ⊂ [0, 1] such that

utn
∈ epi(F (·)∗(r0)) and tn → r (n → ∞).

From the continuity of ut at r and the closednees of epi(F (·)∗(r0)), we have ur ∈ epi(F (·)∗(r0)).

Since u0 = ω∈epi(F (·)∗(r0)), r > 0, by the definition of r, we have

ut∈epi(F (·)∗(r0)) for any t ∈ [0, r).

Similarly, let vt = tv + (1 − t)ω, s = inf{t ∈ (0, 1]| vt ∈ epi(F (·)∗(r0))}. Then s > 0, vs ∈
epi(F (·)∗(r0)) and vt∈epi(F (·)∗(r0)) for all t ∈ [0, s). Hence for any λ ∈ (0, 1) we have

λur + (1 − λ)vs∈epi(F (·)∗(r0)),

which is a contradiction to (12).

(III) Finally, by the hypothesis of the theorem, the conclusion of (II), and Theorem 5.1, we

obtain that F is a semistrictly convex fuzzy mapping on C. 2
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