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Abstract In this paper, we construct a kind of Weingarten surfaces in E3 and study its geometric

properties. We first derive an explicit differential relationship between the principal curvatures

of them. Then we prove an existence theorem of this kind of surfaces with prescribed principal

curvatures. At last, we present two examples involving the rotation surfaces as the special case,

and present several figures to the second example.
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1. Introduction

A surface S in the 3 dimensional Euclidean space E3 is called the Weingarten surface (briefly

W-surface) if there exists a relationship φ(k1, k2) = 0 between the principal curvatures k1 and

k2 of S. There are many consequences on the study of W-surfaces in E3 or in the 3-dimensional

Minkowski space [2–7].

A rotational surface is an important W-surface. Let f(s) and g(s) be the principal curvatures

of a rotation surface S where s is the arc-length parameter of the Meridian of S. Huang [1] proved

the following results:

(1) f(s) and g(s) satisfy

(2f ′ − g′)f ′ = (f − g){f ′′ − fg(f − g)}, (1.1)

where f ′, g′ and g′′ denote the first and second derivatives of f and g;

(2) Let f(s) and g(s) be two smooth functions satisfying (1.1). Then there exist a family of

rotational surfaces around the Oz axis taking f and g as the principal curvatures.

The purpose of this paper is to construct a new kind of W-surfaces whose principal curva-

tures satisfy the differential relationship similar to (1.1). We first discuss the theory of curves
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in SO(3). Then we construct W-surfaces and derive the differential relationship between the

principal curvatures of them. Furthermore, we study the existence of this kind of W-surfaces

with prescribed principal curvatures satisfying the given differential relationship. At last, we give

two examples. We find that the rotational surfaces are just special cases of the first example.

The second example is a new kind of W-surfaces satisfying the given differential relationship but

different from the rotational surfaces. So our result generalizes that in paper [1].

2. The theory of curves in SO(3)

Let SO(3) =
{

A ∈ GL(3, R)|AAT = I, detA = 1
}

, where GL(3, R) is the general linear group

and so(3) =
{

A|A + AT = 0, A ∈ gl(3, R)
}

, be the Lie algebra of SO(3). For any A, B ∈ so(3),

the inner product and the exterior product of A and B are defined respectively by

〈A, B〉 =
1

2
tr(ABT), A ∧ B = AB − BA.

Let

A =





0 x1 y1

−x1 0 z1

−y1 −z1 0



 , B =





0 x2 y2

−x2 0 z2

−y2 −z2 0



 .

Then it follows that

〈A, B〉 = x1x2 + y1y2 + z1z2,

and

A ∧ B =





0 y2z1 − y1z2 x1z2 − x2z1

−(y2z1 − y1z2) 0 x2y1 − x1y2

−(x1z2 − x2z1) −(x2y1 − x1y2) 0



 .

Let C : A = A(s) (s ∈ [0, L]) be a regular curve in SO(3) parameterized by arc-length s and

B = dA
ds

AT. Then B is an anti-symmetric matrix and

dA

ds
= BA, B =





0 a b

−a 0 c

−b −c 0



 , (2.1)

where a, b and c are smooth functions with a2 + b2 + c2 = 1.

Let e1(s) = B(s)A(s). Then e1(s) is the unit tangent vector of C at A(s), which is also the

covariant derivative DA/ds of C in TA(s)SO(3).

In order to obtain the covariant derivative of e1(s), we take the usual derivative

d

ds
(
DA

ds
) =

d

ds
(BA) = B′A + B2A.

Since 〈B′A, B2A〉 = 0 and B′ ∈ so(3), B2 ∈ so(3)⊥, we obtain that

D2A

ds2
= B′A. (2.2)

It follows from (2.2) that (B′ ∧ B)A ∈ TA(s)SO(3), |(B′ ∧ B)A| = |B′A| and

〈(B′ ∧ B)A, BA〉 = 〈(B′ ∧ B)A, B′A〉 = 0,

which means that (B′ ∧ B)A is normal to DA
ds

and D2A
ds2 in TA(s)SO(3).
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Definition 2.1 Let C : A = A(s) (s ∈ [0, L]) be a regular curve in SO(3) parameterized by arc-

length s. k(s) = |D2A(s)/ds2| is called the interior curvature of C in SO(3). e2(s) = B′A/k(s)

and e3(s) = [B′, B]A/k(s) are respectively called the normal and bi-normal vectors of C in

SO(3). The function τ(s) = −〈De3/ds, e2〉 is called the interior torsion of C in SO(3).

Remark 2.1 The regular curve C in SO(3) with k(s) ≡ 0 (s ∈ [0, L]) is a one parameter

subgroup of SO(3). In the rest of this paper, we consider only the regular curves in SO(3) with

k(s) 6= 0 for all s ∈ [0, L].

Remark 2.2 It is easy to see that 〈ei, ej〉 = δij for any 1 ≤ i, j ≤ 3 and

k(s) =
√

(a′)2 + (b′)2 + (c′)2. (2.3)

And the moving frame {A(s); e1(s), e2(s), e3(s)} along C satisfies

De1

ds
= ke2,

De2

ds
= −ke1 + τe3,

De3

ds
= −τe2. (2.4)

3. Geometry of a kind of W-surfaces

3.1 Construction of a kind of W-surfaces

Let C1 be a smooth regular plane curve with arc-length parameter s defined by

C1 : r = r(s) = (x(s), 0, z(s)), x(s) > 0, (ẋ)2 + (ż)2 = 1, s ∈ [0, L]. (3.1)

Let C2 : A = A(t) (t ∈ [0, T ]) be a smooth regular curve in SO(3) defined by

dA(t)

dt
= B(t)A(t), A(0) = I, B(t) =





0 a(t) b(t)

−a(t) 0 c(t)

−b(t) −c(t) 0



 , (3.2)

where a2 + b2 + c2 > 0 for all t ∈ [0, T ]. Consider surface S defined by

S : X(t, s) = r(s)A(t), s ∈ [0, L], t ∈ [0, T ]. (3.3)

Take the unit normal vector of S at X(s, t) to be n = Xt × Xs/|Xt × Xs|. After direct compu-

tation, we obtain that

E = b2(x2 + z2) + (ax − cz)2, F = b(xż − ẋz), G = 1,

where E = Xt · Xt, F = Xt · Xs and G = Xs · Xs. Let λ =
√

EG − F 2. Then

L =
1

λ
Xt × Xs · Xtt, M =

1

λ
Xt × Xs · Xts, N =

1

λ
Xt × Xs · Xss.

If xż − ẋz = 0 for all s ∈ [0, L], we can see that ṙ is parallel to r. It follows that C1 is a part

of straight line. In this case, S becomes a ruled surface.

From now on, we assume that b = 0 for all t ∈ [0, T ], which implies F = 0. In this case, the

principal curvatures of S are

f =
ε(cẋ + aż)

cz − ax
; g = ε(ẍż − ẋz̈). (3.4)
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Remark 3.1 Without loss of generality, we assume that ε = 1. Then g(s) is nothing but the

relative curvature of C1.

Remark 3.2 Let a = 1 and b = c = 0. Then the surface S defined by (3.3) is the rotational

surface around Oz axis.

We consider the relationship between the principal curvatures f and g. We will prove the

following:

Theorem 3.1 Let S be a surface defined by (3.1)–(3.3). Then the principal curvatures f(t, s)

and g(s) of S satisfy the following differential relationship

{fss − fg(f − g)}(f − g) − fs(2fs − ġ) = 0, (3.5)

αfs(t, 0) + {f(t, 0)− g(0)}{1 − βf(t, 0)} = 0, (3.6)

where α = x(0)ẋ(0) + z(0)ż(0), β = ẋ(0)z(0) − x(0)ż(0).

Proof It follows from (3.1) that there exists a smooth function θ(s) on [0, L] such that

ẋ(s) = cos θ(s), ż(s) = sin θ(s). (3.7)

Thus we have

ẍ(s) = −θ̇(s) sin θ(s), z̈(s) = θ̇(s) cos θ(s). (3.8)

Substituting (3.7) and (3.8) into (3.4), we obtain

θ̇(s) = −g(s). (3.9)

From (3.7), (3.8) and (3.9) we have

ẍ = żg, z̈ = −ẋg;
...
x = −ẋg2 + żġ,

...
z = −żg2 − ẋġ. (3.10)

Denote γ(t) = a(t)/c(t). Then it follows from (3.4) with ε = 1 that

γ(t) =
fz − ẋ

fx + ż
. (3.11)

Taking partial derivatives two times about s on both sides of (3.11) and applying (3.10), we

obtain
(

0

0

)

=

(

fs f − g

fss + fg2 − f2g 2fs − ġ

) (

xẋ + zż

1 + (xż − zẋ)f

)

, (3.12)

where fs = ∂f/∂s, fss = ∂2f/∂s2, ġ = dg/ds.

If xẋ + zż 6= 0 for all s ∈ [0, L], then (3.12) has nonzero solutions, which implies

fs (2fs − ġ) − {fss − fg(f − g)} (f − g) =

∣

∣

∣

∣

fs f − g

fss + fg2 − f2g 2fs − ġ

∣

∣

∣

∣

= 0. (3.13)

If xẋ + zż = 0 for all s ∈ [0, L], then x2 + z2 = ρ2 = const. It follows that
{

x = ρ cosϕ(s), ẋ = −ρϕ̇ sin ϕ(s),

z = ρ sinϕ(s), ż = +ρϕ̇ cosϕ(s),
(ρϕ̇)2 = 1. (3.14)

Substituting (3.14) into (3.4), we obtain f = g = ±ρ−1. In this case, (3.13) also holds. (3.5)

follows from (3.13). (3.6) follows from (3.12) with s = 0. 2
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3.2 The existence of the kind of W-surfaces

In this section, we proceed to prove the following:

Theorem 3.2 Let f(t, s) and g(s) be two smooth functions such that f(t, s) 6= g(s) for all

(t, s) ∈ [0, T ]× [0, L]. Suppose that f(t, s) and g(s) satisfy

{fss − fg(f − g)} (f − g) − fs (2fs − ġ) = 0, (3.15)

αfs(t, 0) + {f(t, 0)− g(0)}{1 − βf(t, 0)} = 0, (3.16)

where α and β are constants. Then there exists a W-surface in R3 defined by (3.1)–(3.3) with

principal curvatures f(t, s) and g(s) such that s is the arc-length parameter of the generating

curve.

Proof Let

θ(s) = θ0 −
∫ s

0

g(u)du, x(s) =

∫ s

0

cos θ(u)du + x0, z(s) =

∫ s

0

sin θ(u)du + z0,

where θ0, x0 and z0 are integral constants to be determined. Let

F (t, s) = sin θ + h(t) cos θ + f {x − h(t)z} , (3.17)

where h(t) (t ∈ [0, T ]) is a function to be determined.

Differentiating (3.17) about s two times and applying (3.15), we obtain

Fs = fs(x − hz) + (f − g)(cos θ − h sin θ), (3.18)

0 = (f − g)Fss − (2fs − ġ)Fs − Fg(f − g)2. (3.19)

(3.19) is a second-order linear ODE of F (t, s) about s.

Denote f0 = f(t, 0), f0
s = fs(t, 0) and g0 = g(0) and put

F (t, 0) = 0, Fs(t, 0) = 0, t ∈ [0, T ]. (3.20)

Then it is easy to check that
(

0

0

)

=

(

sin θ0 + x0f
0 cos θ0 − z0f

0

−x0f
0
s − (f0 − g0) cos θ0 z0f

0
s + (f0 − g0) sin θ0

) (

1

h(t)

)

. (3.21)

Equations (3.21) have non-zero solutions if and only if

(x0 cos θ0 + z0 sin θ0)f
0
s + (f0 − g0){1 − f0(z0 cos θ0 − x0 sin θ0)} = 0. (3.22)

We choose θ0, x0 and z0 so that
(

cos θ0 sin θ0

− sin θ0 cos θ0

) (

x0

z0

)

=

(

α

β

)

. (3.23)

From (3.16) and (3.23) we can see that (3.22) holds. It follows from (3.21) that

h(t) =
x0f

0 + sin θ0

z0f0 − cos θ0
=

αf0 cos θ0 + (1 − βf0) sin θ0

αf0 sin θ0 − (1 − βf0) cos θ0
.
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From the existence and uniqueness theorem on ordinary differential equations we have that

the Cauchy problem (3.19) and (3.20) has only trivial solution F (t, s) = 0 for all t ∈ [0, T ] and

s ∈ [0, L], which implies that

f(t, s) =
ż + h(t)ẋ

h(t)z − x
. (3.24)

Let C1 : r(s) = (x(s), 0, z(s)) (s ∈ [0, L]) be a smooth plane curve. Let C2 : A = A(t),

(t ∈ [0, T ]) be a smooth curve in SO(3). Here A(t) is the unique solution of (3.2) with

B(t) = a(t)





0 1 0

−1 0 h(t)

0 −h(t) 0



 , (3.25)

where a(t) is a nonzero smooth function in t for all t ∈ [0, T ]. Consider the W-surface S :

X(t, s) = r(s)A(t) defined by (3.3).

It follows from (3.4) and (3.25) that the principal curvatures of S are

k1(t, s) =
ż(s) + h(t)ẋ(s)

h(t)z(s) − x(s)
= f(t, s), k2(t, s) = ẍ(s)ż(s) − ẋ(s)z̈(s) = g(s),

which implies that S is the desired surface. The theorem is proved. 2

Remark 3.3 The generating curve C1 is uniquely determined by {α, β, θ0} and C2 in SO(3) is

uniquely determined by {α, β, θ0, f0}. Therefore the W-surfaces given in Theorem 3.2 are one

parameter family of W-surfaces Sθ0
.

3.3 Examples of the kind of W-surfaces

We proceed to give some explicit examples of W-surfaces defined by (3.1)–(3.3). Figures 1

and 2 represent some graphics of W-surfaces defined in Example 2.

Example 1 Let a(t) be a smooth function over [0, T ] and λ be a constant. Let

Bλ(t) = a(t)





0 1 0

−1 0 λ

0 −λ 0



 , (3.26)

and a(t) be a nonzero smooth function over [0, T ]. Solving the Cauchy problem:

dAλ(t)

dt
= Bλ(t)Aλ(t), Aλ(0) = I, (3.27)

we obtain that

Aλ(t) =
1

ρ2







λ2 + cos γ(t) ρ sin γ(t) λ − λ cos γ(t)

−ρ sin γ(t) ρ2 cos γ(t) ρλ sin γ(t)

λ − λ cos γ(t) −ρλ sinγ(t) 1 + λ2 cos γ(t)






(3.28)

where

ρ =
√

1 + λ2, γ(t) = ρ

∫ t

0

a(u)du.

It is easy to check that the curve

Cλ
2 : Aλ = Aλ(t), t ∈ [0, T ],
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lies in SO(3), with interior curvature k(t) ≡ 0 (cf. (2.4)).

Take w =
∫ t

0 a(t)dt. Then (3.27) becomes

dAλ(w)

dw
= Bλ(w)Aλ(w), Aλ(0) = I, Bλ(w) =





0 1 0

−1 0 λ

0 −λ 0



 . (3.29)

And the solution to (3.29) becomes

Aλ(w) =
1

ρ2







λ2 + cos ρw ρ sinρw λ − λ cos ρw

−ρ sin ρw ρ2 cos ρw ρλ sin ρw

λ − λ cos ρw −ρλ sinρw 1 + λ2 cos ρw






.

The W-surface with generating curve C1 defined by (3.1) is defined to be

Sλ : X(w, s) = r(s)Aλ(w), w ∈ [0, W ], s ∈ [0, L]. (3.30)

Let

Uλ =





ρ−1 0 λρ−1

0 1 0

−λρ−1 0 ρ−1



 , M =







cos ρw sin ρw 0

− sin ρw cos ρw 0

0 0 1






.

Then it is easy to check that

Aλ(w) = UλMUT
λ ,

where UT
λ is the transpose of Uλ. It follows that Sλ constructed in (3.30) is a rotational surface

in the coordinates determined by the frame

e1 = (ρ−1, 0,−λρ−1), e2 = (0, 1, 0), e3 = (λρ−1, 0, ρ−1).

Remark 3.4 Let λ = 0, a(t) ≡ 1. Then the surface S0 is nothing but the rotational surface

mentioned in paper [1].

Example 2 Let C2 be a regular curve in SO(3) defined by (3.2) with b(t) ≡ 0, where t is the

arc-length parameter of C2. Suppose that the interior curvature k(t) of C2 is equal to 1. Then

it follows from (2.2) and (2.4) that

a(t)2 + c(t)2 = 1, [a′(t)]2 + [c′(t)]2 = 1. (3.31)

By (3.31), we may assume that

a(t) = cos t, c(t) = sin t.

Solving the Cauchy problem (3.2), we obtain

A2(t) =
1

2





α sin t + (β − γ) cos t γ sin t + α cos t β sin t − α cos t

−α β γ

α cos t − (β − γ) sin t γ cos t − α sin t β cos t + α sin t



 , (3.32)

where α(t) =
√

2 sin(
√

2t), β(t) = 1 + cos(
√

2t), γ(t) = 1 − cos(
√

2t).
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Figure 1 W-surfaces generated by (4 + cos s, 0, sin s) (left) and (s, 0, s2) (right).

It is easy to check that A2(t) = ΦV , where

Φ =







cos t 0 sin t

0 1 0

− sin t 0 cos t






V =

1

2







α′ γ′ β′

−α β γ

α γ β






.

It follows that the W-surface S2 constructed in (3.3) with A2(t) defined by (3.32) is derived via a

prescribed rotation around e2-axis in the coordinates determined by the moving frame [e1, e2, e3],

where

e1 = (α′, γ′, β′), e2 = (−α, β, γ), e3 = (α, γ, β).

−202−1−0.500.511.52
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Figure 2 W-surfaces generated by (1 + 2s, 0, s) (left) and (1 + s2, 0, s) (right).
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