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Abstract In this paper we give a necessary and sufficient condition for the existence of positive

solutions for the one-dimensional singular p-Laplacian differential equation. The methods used

to show existence rely on upper-lower solutions method and compactness techniques, while the

methods used to prove nonexistence are based on monotone techniques and scaling arguments.
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1. Introduction and main results

In the paper we consider the differential equation:

(

Φp(u
′)
)′

+
λ

t
Φp(u

′) −
γ

u
|u′|p + f(t) = 0, 0 < t < 1, (1)

subject to the Dirichlet boundary condition:

u(1) = u(0) = 0, (2)

where Φp(s) = |s|p−2s with p > 1, λ > 0, γ > 0 and f ∈ C[0, 1]. We say that u ∈ C1[0, 1] with

|u′|p−2u′ ∈ C1(0, 1) is a solution to BVP (1) and (2) if it is positive in (0, 1) and satisfies (1) and

(2).

The interesting feature of (1) is that the nonlinear term both is singular at t = 0 and u = 0

and depends on the derivative explicitly.

This kind of equation arises in the study of a class of degenerate parabolic filtration-absorption

equations and in the theory of non-Newton fluids [1, 4–6, 19]. When p = 2, (1) with the boundary

value condition:

u(1) = u′(0) = 0

has been studied in [5] under the assumptions: λ = N − 1, γ > 0 and f ≡ 1 and in [21] under

the assumptions: λ > 0, γ > 1
2 (1 + λ) and f ∈ C[0, 1] with f > 0 on [0, 1], respectively. By

different methods, a decreasing solution was obtained in [5], while a solution u obtained in [21]

is not decreasing and satisfies (see Theorem 1 and (19) in [21])

C1t
2

6 u(t) 6 C2t
2, 0 6 t 6 1/4,
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where Ci (i = 1, 2) are positive constants, so it also satisfies (2). When p > 2 and λ = 0, by

regularization method, it was shown in [20] that if γ > p−1
p and f ∈ C[0, 1] with f > 0 on [0, 1],

then BVP (1) and (2) has a solution u satisfying (see Theorem 2 and (18) in [20])

C1t
2

6 u(t) 6 C2t
p

p−1 , 0 6 t 6 1/4, (3)

where Ci (i = 1, 2) are positive constants. It is easy to see that in the case where 1 < p < 2, any

solution to BVP (1) and (2) does not satisfy (3) since p/(p− 1) > 2.

Motivated by the above papers, we investigate the existence and nonexistence of solutions to

BVP (1) and (2) in the present paper. By considering an approximate problem and using the

upper and lower solutions method and compactness techniques, we first establish the following

existence theorem which in particular covers the case where 1 < p < 2.

Theorem 1 Let p > 1, λ > 0, γ > 0, and let f ∈ C[0, 1] with f > 0 on [0, 1]. If γ > p−1
p (1 +λ),

then BVP (1) and (2) has at least one solution in C, which is defined as

C = {v ∈ C[0, 1];C−1t
p

p−1 6 v(t) 6 Ct
p

p−1 , 0 6 t 6 τ,

for some constants τ ∈ (0, 1/4], C > 1} near t = 0 for p > 2.

Clearly, Theorem 1 is an extension to the existence results in [20] and [21] and an improvement

to (3).

Next we study the nonexistence of solutions in C. By monotone techniques and scaling

arguments, we obtain

Theorem 2 Assume that the hypotheses of Theorem 1 hold. If γ 6
p−1

p (1 + λ), then BVP (1)

and (2) has no solution in C.

As an immediate consequence of the above results, we have

Theorem 3 Under the hypotheses of Theorem 1, BVP (1) and (2) has one solution in C if and

only if γ > p−1
p (1 + λ).

Finally, let us remark that when F (t, u, v) does not depend on the derivative, some existence

results for boundary value problems to the following singular p-Laplacian have been obtained in

a large number of papers (see [2, 3, 8, 11, 14, 18] and references therein):

(

Φp(u
′)
)′

+ F (t, u, u′) = 0, 0 < t < 1. (4)

However, up to now, only a few papers deal with the case when F (t, u, v) has a derivative

dependence, see for example [9, 10, 12, 13, 15–17]. We point out that the case considered here,

namely, F (t, u, v) = λ
t Φp(v) −

γ
u |v|

p + f(t), is not contained in those papers mentioned above

since it does not satisfy some sufficient conditions imposed on F .

We will prove Theorems 1 and 2 in Sections 2 and 3, respectively. In addition, an example

is also given to illustrate our main result.
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2. Proof of Theorem 1

Let ǫ ∈ (0, 1), and define Hǫ(r, v, ξ) : (0, 1) × R × R → R by

Hǫ(r, v, ξ) = −
λ

t+ ǫ1/α
|ξ|p−2ξ + γ

|ξ|p

Iǫ(v)
− f(t),

where α = p
p−1 , and Iǫ(v) = v + ǫ2 if v > 0, Iǫ(v) = ǫ2 if v < 0. By the inequality: ap−1 6

ap + 1 (a > 0), we have

|Hǫ(t, v, ξ)| 6
λ

ǫ1/α
|ξ|p−1 +

γ

ǫ2
|ξ|p + max

[0,1]
f

6
λ

ǫ1/α
(1 + |ξ|p) +

γ

ǫ2
|ξ|p + max

[0,1]
f

6

( λ

ǫ1/α
+
γ

ǫ2
+ max

[0,1]
f
)

H(|ξ|) (5)

for all (t, v, ξ) ∈ (0, 1) × R × R, where H(s) = 1 + sp for s > 0. Denote M = {u ∈

C1(0, 1); |u′|p−2u′ ∈ C1(0, 1)} and define operator Lǫ : M → C(0, 1) by

(Lǫu)(t) = −
(

|u′|p−2u′
)′

+Hǫ(t, u, u
′), 0 < t < 1.

Consider the problem:
{

(Lǫu)(t) = 0, 0 < t < 1,

u(1) = u(0) = 0.
(6)

We say that u is an upper solution (lower solution) to BVP (6) if Lǫu > (6)0 in (0, 1) and

u(t) > (6)0 at t = 0, 1.

To show the existence of a solution to BVP (1), we will use the upper and lower solutions

method (see Theorem 1 and Remark 2.4 in [9]). Note that
∫ +∞

0
sp−1

H(t) dt = +∞. Then it suffices

to find a lower solution and an upper solution to obtain a solution to BVP (6).

Lemma 1 Let W = Cψα with α = p
p−1 , where ψ(t) is defined by

ψ(t) =
p− 1

p

[

(
1

2
)p/(p−1) − |

1

2
− t|p/(p−1)

]

, (7)

and the constant C ∈ (0, 1) such that [(1 + λ)αp−1 + γαp]Cp−1 6 min[0,1] f . Then for any

ǫ ∈ (0, 1), W is a lower solution to BVP (6).

Proof It is easy to check that ψ possesses the following properties:

(a) ψ > 0 in (0, 1), ψ ∈ C1[0, 1].

(b) (|ψ′|p−2ψ′)′ = −1 in (0, 1), ψ(1) = ψ(0) = 0.

(c) |ψ(t)| 6 t, |ψ′(t)| 6 1, ∀t ∈ [0, 1].

Using the properties of ψ, one arrives at

LǫW = −
(

|W ′|p−2W ′
)′
−

λ

t+ ǫ1/α
|W ′|p−2W ′ +

γ

W + ǫ2
|W ′|p − f(t)

6 −
(

|W ′|p−2W ′
)′
−

λ

t+ ǫ1/α
|W ′|p−2W ′ +

γ

W
|W ′|p − min

[0,1]
f(t)

= − (Cα)p−1ψ(|ψ′|p−2ψ′)′ − (Cα)p−1|ψ′|p−
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λ(Cα)p−1

t+ ǫ1/α
ψ|ψ′|p−2ψ′ + γCp−1αp|ψ′|p − min

[0,1]
f(t)

=(Cα)p−1ψ − (Cα)p−1|ψ′|p−

λ(Cα)p−1

t+ ǫ1/α
ψ|ψ′|p−2ψ′ + γCp−1αp|ψ′|p − min

[0,1]
f(t)

6(Cα)p−1ψ +
λ(Cα)p−1

t+ ǫ1/α
ψ|ψ′|p−1 + γCp−1αp|ψ′|p − min

[0,1]
f(t)

6(Cα)p−1 + λ(Cα)p−1 + γCp−1αp − min
[0,1]

f(t)

6 0, 0 < t < 1.

The proof of the lemma is completed. 2

Remark 1 Since ψ′(t) = (1/2 − t)1/(p−1) on [0, 1/2], ψ′(t) > 4−1/(p−1) on [0, 1/4], and hence,

by noticing ψ(0) = 0,

ψ(t) > 4−1/(p−1)t, 0 6 t 6 1/4. (8)

Lemma 2 There exist constants ǫ0 ∈ (0, 1) and C > 0 independent of ǫ, such that for any

ǫ ∈ (0, ǫ0), Vǫ = C(t+ ǫ1/α)α with α = p
p−1 is an upper solution to BVP (6).

Proof Since Vǫ > ǫ, we have

LǫVǫ = −
(

|V ′
ǫ |

p−2V ′
ǫ

)′
−

λ

t+ ǫ1/α
|V ′

ǫ |
p−2V ′

ǫ +
γ

Vǫ + ǫ2
|V ′

ǫ |
p − f

= −(Cα)p−1 − λ(Cα)p−1 +
γCp−1αp

1 + C−1(t+ ǫ1/α)−αǫ2
− f

> −(Cα)p−1 − λ(Cα)p−1 +
γCp−1αp

1 + C−1ǫ
− max

[0,1]
f

= Cp−1αp
[

γ −
p− 1

p
(1 + λ)

]

− max
[0,1]

f +RC(ǫ), 0 < t < 1,

where

RC(ǫ) = γαpCp−1[(1 + C−1ǫ)−1 − 1].

Since γ > p−1
p (1 + λ), one can choose a positive constant C∗ such that

Cp−1
∗ αp

[

γ −
p− 1

p
(1 + λ)

]

− max
[0,1]

f > 1.

Note that RC∗
(ǫ) → 0 (ǫ → 0+). Then there exists a constant ǫ0 ∈ (0, 1), such that for all

ǫ ∈ (0, ǫ0),

Cp−1
∗ αp

[

γ −
p− 1

p
(1 + λ)

]

− max
[0,1]

f +RC∗
(ǫ) > 0.

So that for all ǫ ∈ (0, ǫ0),

LǫVǫ > 0, 0 < t < 1.

The proof is completed. 2
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From Theorem 1 and Remark 2.4 in [9], it follows that for any fixed ǫ ∈ (0, ǫ0) BVP (6) has

a solution uǫ ∈ C1[0, 1] ∩M satisfying

C(t+ ǫ1/α)α
> uǫ > Cψα, t ∈ [0, 1]. (9)

Hence, uǫ > 0 in (0, 1) and satisfies

−
(

|u′ǫ|
p−2u′ǫ

)′
−

λ

t+ ǫ1/α
|u′ǫ|

p−2u′ǫ + γ
|u′ǫ|

p

uǫ + ǫ2
− f(t) = 0, t ∈ (0, 1). (10)

Next we shall establish some (locally) uniform estimates for u′ǫ.

Lemma 3 There exists a positive constant C independent of ǫ, such that for all ǫ ∈ (0, ǫ0),

|u′ǫ(t)| 6 C, ∀t ∈ [0, 1]. (11)

Proof Noticing uǫ(1) = uǫ(0) = 0 and uǫ > 0 on [0, 1], we have

u′ǫ(0) > 0 > u′ǫ(1). (12)

Integrating (10) over (0, 1) yields

−
(

|u′ǫ|
p−2u′ǫ

)

∣

∣

∣

1

0
+ γ

∫ 1

0

|u′ǫ|
p

uǫ + ǫ2
dt = λ

∫ 1

0

|u′ǫ|
p−2u′ǫ

t+ ǫ1/α
dt+

∫ 1

0

f(t)dt.

By (12), one derives that

γ

∫ 1

0

|u′ǫ|
p

uǫ + ǫ2
dt 6 λ

∫ 1

0

|u′ǫ|
p−1

t+ ǫ1/α
dt+

∫ 1

0

f(t)dt. (13)

Using Young’s inequality: ab 6 σal + σ−q/lbq(a, b > 0, σ > 0, q, l > 1, 1
l + 1

q = 1), one deduces

by taking l = p/(p− 1),

|u′ǫ|
p−1

t+ ǫ1/α
6 σ

|u′ǫ|
p

(t+ ǫ1/α)α
+ σ1−p. (14)

On the other hand, by the first estimate in (9) we obtain

uǫ(t) + ǫ2 6 C(t+ ǫ1/α)α + ǫ2 6 2C(t+ ǫ1/α)α, t ∈ [0, 1]. (15)

Therefore
|u′ǫ|

p

(t+ ǫ1/α)α
6 C

|u′ǫ|
p

uǫ + ǫ2
, t ∈ [0, 1],

where C is a positive constant independent of ǫ. Combining this and (14), one obtains

|u′ǫ|
p−1

t+ ǫ1/α
6 σC

|u′ǫ|
p

uǫ + ǫ2
+ σ1−p, t ∈ [0, 1]. (16)

Taking σ = γ
2λC in (16), one derives from (13) that

γ

2

∫ 1

0

|u′ǫ|
p

uǫ + ǫ2
dt 6 λ(

γ

2λC
)1−p +

∫ 1

0

f(t)dt. (17)

This and (16) imply that
∫ 1

0

|u′ǫ|
p−1

t+ ǫ1/α
dt 6 C. (18)
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Again integrating (10) over (t1, t2), one gets

(

|u′ǫ|
p−2u′ǫ

)

∣

∣

∣

t2

t1
=

∫ t2

t1

( γ

uǫ + ǫ2
|u′ǫ|

p −
λ

t+ ǫ1/α
|u′ǫ|

p−2u′ǫ − f(t)
)

dt.

Combining this with (17) and (18), we find that there exists a positive constant C independent

of ǫ, such that

∣

∣|u′ǫ(t2)|
p−2u′ǫ(t2) − |u′ǫ(t1)|

p−2u′ǫ(t1)
∣

∣ 6 C, ∀t2, t1 ∈ [0, 1]. (19)

Since uǫ(0) = uǫ(1) = 0 and uǫ ∈ C1[0, 1], by the mean value theorem, there exists t∗ǫ ∈ (0, 1),

such that u′ǫ(t
∗
ǫ ) = 0. Then taking t1 = t∗ǫ in (19) gives

∣

∣|u′ǫ(t)|
p−2u′ǫ(t)

∣

∣ 6 C, ∀t ∈ [0, 1].

This completes the proof. 2

Lemma 4 For any δ ∈ (0, 1/2), there exists a positive constant Cδ independent of ǫ, such that

for all ǫ ∈ (0, ǫ0),

|u′ǫ(t2) − u′ǫ(t1)| 6 Cδ|t2 − t1|
β , ∀t2, t1 ∈ [δ, 1 − δ], (20)

where β = 1/(p− 1) if p > 2, β = 1 if 1 < p < 2.

Proof By (9) and (11), it is easy to derive from (10) that for any δ ∈ (0, 1/2) there exists a

positive constant Cδ independent of ǫ, such that for all ǫ ∈ (0, ǫ0),

∣

∣

(

|u′ǫ|
p−2u′ǫ

)′∣
∣ 6 Cδ, δ 6 t 6 1 − δ. (21)

Recalling the inequality [7]:

(|η|p−2η − |η′|p−2η′)(η − η′) >

{

C1|η − η′|p, p > 2,

C2|η − η′|2(|η| + |η′|)p−2, 1 < p < 2

for any η, η′ ∈ R, where Ci (i = 1, 2) are positive constants depending only on p, one derives

that if p > 2, then using (21) yields

|u′ǫ(t2) − u′ǫ(t1)|
p

6 C−1
1 [u′ǫ(t2) − u′ǫ(t1)] · [|u

′
ǫ(t2)|

p−2u′ǫ(t2) − |u′ǫ(t1)|
p−2u′ǫ(t1)]

6 Cδ|u
′
ǫ(t2) − u′ǫ(t1)||t2 − t1|, ∀t2, t1 ∈ [δ, 1 − δ],

hence

|u′ǫ(t2) − u′ǫ(t1)| 6 Cδ|t2 − t1|
1/(p−1), ∀t2, t1 ∈ [δ, 1 − δ],

and if p ∈ (1, 2), then

|u′ǫ(t2) − u′ǫ(t1)|
2[|u′ǫ(t2)| + |u′ǫ(t1)|]

p−2

6 C−1
2 [u′ǫ(t2) − u′ǫ(t1)] · [|u

′
ǫ(t2)|

p−2u′ǫ(t2) − |u′ǫ(t1)|
p−2u′ǫ(t1)]

6 Cδ|u
′
ǫ(t2) − u′ǫ(t1)||t2 − t1|, ∀t2, t1 ∈ [δ, 1 − δ],

using (11) yields

|u′ǫ(t2) − u′ǫ(t1)| 6 Cδ|t2 − t1|[|u
′
ǫ(t2)| + |u′ǫ(t1)|]

2−p
6 Cδ|t2 − t1|
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for all t2, t1 ∈ [δ, 1 − δ]. This ends our proof. 2

By (11) and (20) and using Arzelá-Ascoli theorem, there exist a subsequence of {uǫ}, still

denoted by {uǫ}, and a function u ∈ C1(0, 1) ∩ C[0, 1] such that, as ǫ→ 0+,

uǫ → u uniformly in C[0, 1],

uǫ → u uniformly in C1[δ, 1 − δ],
(22)

where δ ∈ (0, 1/2). Hence, it follows from uǫ(1) = uǫ(0) = 0 and (9) that u(1) = u(0) = 0 and

Ctp/(p−1)
> u(t) > C[ψ(t)]p/(p−1), t ∈ [0, 1],

therefore u > 0 in (0, 1). Noticing (8), we have u ∈ C.

We now show that u satisfies (1). Integrating (10) over (t0, r) (0 < t0, r < 1) gives

|u′ǫ(t)|
p−2u′ǫ(t) =

∫ t

t0

(

γ
|u′ǫ|

p

uǫ + ǫ2
−

λ

s+ ǫ1/α
|u′ǫ|

p−2u′ǫ − f(s)
)

ds+

|u′ǫ(t0)|
p−2u′ǫ(t0).

Letting ǫ→ 0+ and using Lebesgue’s dominated convergence theorem yield

|u′(t)|p−2u′(t) =

∫ t

t0

(

γ
|u′|p

u
−
λ

s
|u′|p−2u′ − f

)

ds+ |u′(t0)|
p−2u′(t0). (23)

This shows that |u′(t)|p−2u′(t) ∈ C1(0, 1) and (1) is satisfied.

It remains to show that u ∈ C1[0, 1]. In (17) and (18), letting ǫ → 0+ and using Fatou’s

lemma yield
∫ 1

0

|u′|p

u
dt 6 C,

∫ 1

0

|u′|p−1

t
dt 6 C. (24)

So, |u′|p

u , |u
′|p−2u′

t ∈ L1[0, 1]. By (23), the function ω(t) = |u′(t)|p−2u′(t) = Φp(u
′(t)) is absolutely

continuous on [0, 1]. Since u′(t) = Φq(ω(t)), where 1/p+ 1/q = 1, we see that u′ ∈ C[0, 1].

The proof of Theorem 1 is completed. 2

3. Proof of Theorem 2

Assume that u ∈ C is a solution to BVP (1) and (2). Denote w(t) = t−p/(p−1)u(t). Since

|u′|p−2u′ ∈ C1(0, 1), u ∈ C2 in some neighborhood of the point t where u′(t) 6= 0, and hence

w ∈ C2 in some neighborhood of the point t where

(tp/(p−1)w)′ ≡ tp/(p−1)w′ +
p

p− 1
t1/(p−1)w 6= 0.

Substituting u = tp/(p−1)w(t) into (1) yields
∣

∣

∣
tp/(p−1)w′ +

p

p− 1
t1/(p−1)w

∣

∣

∣

p−2

·

(

(p− 1)tp/(p−1)w′′ + 2pt1/(p−1)w′ +
p

p− 1
t(2−p)/(p−1)w

)

+

λ
∣

∣

∣
tw′ +

p

p− 1
w

∣

∣

∣

p−2(

tw′ +
p

p− 1
w

)

− γ
|tw′ + p

p−1w|
p

w
+ f(t) = 0 (25)
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in (0, 1) at the points where

(tp/(p−1)w)′ ≡ tp/(p−1)w′ +
p

p− 1
t1/(p−1)w 6= 0.

Since u ∈ C, there exist positive constants τ ∈ [0, 1/4] and C > 1, such that

C−1
6 w(t) 6 C, 0 < t 6 τ. (26)

We claim that

w is monotone in some interval (0, t0) ⊆ (0, τ). (27)

Assume that this is not true. Then there exist two points 0 < t2, t1 < τ such that w′(t2) < 0 <

w′(t1). Without loss of generality, we assume that t2 > t1. Then there exists some t3 ∈ (0, t1)

such that w′(t3) < 0. Therefore, w reaches a minimum at some t∗ ∈ (t3, t1) such that

w′(t∗) = 0. (28)

Clearly, (tp/(p−1)w)′(t∗) 6= 0, so w ∈ C2 in some neighborhood of t∗. Then

w′′(t∗) > 0. (29)

Using (28) and (29), one derives from (25) that

(
p

p− 1
)p

[p− 1

p
(1 + λ) − γ

]

[w(t∗)]
p−1 + f(t∗) 6 0.

Since γ 6 (p− 1)(1 + λ)/p, f(t∗) 6 0. This contradiction proves the claim.

It follows from (26) and (27) that limt→0+ w(t) exists and is positive. Denote limt→0+ w(t) =

M > 0 and w(0) = M . Then w ∈ C[0, 1].

Let wε(t) = w(εt), 0 6 t 6 ε−1, ε ∈ (0, 1), and vε(t) = Ψ(tp/(p−1)wε(t)), 0 < t < 1, where

Ψ(s) : (0,∞) → R is defined as follows

Ψ(s) =

{

s1−γ/(p−1)

1−γ/(p−1) , γ 6= p− 1,

ln(s), γ = p− 1.
(30)

Clearly, as ε→ 0+,

wε(t) →M uniformly on [0, 1], (31)

vε(t) → Ψ(Mtp/(p−1)) uniformly on [1/2, 1]. (32)

By (31), there exists ε0 ∈ (0, 1), such that for all ε ∈ (0, ε0),

M/2 6 wε(t) 6 3M/2 on [0, 1]. (33)

Moreover, it is easy to derive from (1) that

(

Φp([Ψ(u)]′)
)′

+
λ

t
Φp([(Ψ(u)]′) +

f(t)

uγ
= 0, 0 < t < 1.

From this and some elementary calculations it follows that

(

Φp(v
′
ε)

)′
+
λ

t
Φp(v

′
ε) +

f(εt)

(tp/(p−1)wε)γ
= 0, 0 < t < 1, (34)
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which is equivalent to

(

tλΦp(v
′
ε)

)′
+

tλf(εt)

(tp/(p−1)wε)γ
= 0, 0 < t < 1,

i.e.,
(

Φp(t
λ/(p−1)v′ε)

)′
+

tλf(εt)

(tp/(p−1)wε)γ
= 0, 0 < t < 1.

By (33), there exists a constant C > 0 independent of ε, such that for all ǫ ∈ (0, ǫ0),

∣

∣

(

Φp(t
λ/(p−1)v′ε)

)′∣
∣ 6 C, 1/2 6 t < 1.

Like in the proof to (20), one can show that for all ǫ ∈ (0, ǫ0),

∣

∣t
λ/(p−1)
2 v′ε(t2) − t

λ/(p−1)
1 v′ε(t1)

∣

∣ 6 C|t2 − t1|
β , 1/2 6 t2, t1 < 1,

where β is the same as that in Lemma 2.4. By Arzelá-Ascoli theorem and noticing (32), there

exists a subsequence of {vε}, still denoted by {vε}, such that

v′ε(t) → [Ψ(Mtp/(p−1))]′ in (1/2, 1), as ε→ 0+. (35)

Multiplying (34) by φ ∈ C1
0 (1/2, 1) and integrating over (1/2, 1), one obtains

∫ 1

1/2

(

− Φp(v
′
ε)φ

′ +
λ

t
Φp(v

′
ε)φ+

f(εt)φ

(tp/(p−1)wε)γ

)

dt = 0.

Letting ε→ 0+ and using (31) and (35), one gets
∫ 1

1/2

(

− Φp([Ψ(Mtp/(p−1))]′)φ′ +
λ

t
Φp([Ψ(Mtp/(p−1))]′)φ +

f(0)φ

(Mtp/(p−1))γ

)

dt = 0.

Therefore, noticing (30), one has

−

∫ 1

1/2

Mp−1−γ(
p

p− 1
)p−1t1−pγ/(p−1)φ′dt+

∫ 1

1/2

(

λMp−1−γ(
p

p− 1
)p−1 φ

tpγ/(p−1)
+

f(0)φ

Mγtpγ/(p−1)

)

dt = 0.

And integrating by parts to the first integral, one obtains

[

Mp−1(
p

p− 1
)p−1(1 + λ−

pγ

p− 1
) + f(0)

]

∫ 1

1/2

φ

tpγ/(p−1)
dt = 0,

which implies that

Mp−1(
p

p− 1
)p−1(1 + λ−

pγ

p− 1
) + f(0) = 0,

so γ > p−1
p (1 + λ) by noticing f(0) > 0, which leads to a contradiction.

The proof of Theorem 2 is completed. 2

Example Let λ > 0. Consider the problem
{

(

|u′|4u′
)′

+ λ
t |u

′|4u′ − 11|u′|6

6u + sin(πt)
100t+1 + 1 = 0, 0 < t < 1,

u(1) = u(0) = 0.
(36)
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Let p = 6, γ = 11/6, and f(t) = sin(πt)
100t+1 + 1. Clearly, f ∈ C[0, 1] with f > 1 on [0, 1]. According

to Theorem 3, problem (36) has one solution in C if and only if 0 6 λ < 6/5.
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