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1. Introduction

Let E be a real Banach space with norm ‖ · ‖, let E∗ denote the dual of E and let 〈x, f〉

denote the value of f ∈ E∗ at x ∈ E. Suppose that C is a nonempty, closed convex subset of

E and A is a monotone operator of C into E∗. Then we study the problem of finding a point

u ∈ C such that

〈v − u, Au〉 ≥ 0, ∀v ∈ C. (1.1)

This problem is called the variational inequality problem [1]. The set of solutions of the varia-

tional inequality problem is denoted by VI(C, A). Such a problem is connected with the convex

minimization problem, the complementarity problem, the problem of finding a point u ∈ E sat-

isfying 0 = Au and so on. An operator A of C into E∗ is said to be inverse-strongly-monotone

[2–4] if there exists a positive real number α such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2

for all x, y ∈ C. In such a case, A is said to be α-inverse-strongly-monotone. If A is an α-inverse-

strongly-monotone mapping of C into E∗, then it is obvious that A is 1
α
-Lipschitz continuous.

In 2005, Iiduka and Takahashi [5] proved strong convergence theorems for finding a com-

mon element of the set of solution of the variational inequality problem for an inverse-strongly-

monotone mapping and the set of fixed points of a nonexpansive mapping in a Hilbert space. In
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the same year, Matsushita, and Takahashi [6] proved a strong convergence theorem for relatively

nonexpansive mappings in a Banach space by using generalized projection algorithm. Recently,

Iiduka and Takahashi [7] introduced the following iteration process:

xn+1 = ΠCJ−1(Jxn − λnAxn). (1.2)

They proved the sequence {xn} converges weakly to a solution of the variational inequality

problem (1.1) for an operator A that satisfies the following conditions in a 2-uniformly convex

and uniformly smooth Banach space E :

(1) A is α-inverse-strongly-monotone; (2) VI(C, A) 6= ∅;

(3) ‖Ay‖ ≤ ‖Ay − Au‖ for all y ∈ C and u ∈ VI(C, A).

Inspired and motivated by these facts, our purpose in this paper is to obtain a weak conver-

gence theorem for finding a common element of the set of solutions of a variational inequality

problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,

respectively. When {xn} is a sequence in E, we denote strong convergence of {xn} to x ∈ E by

xn → x and weak convergence by xn ⇀ x.

A multi-valued operator T : E → 2E∗

with domain D(T ) = {z ∈ E : Tz 6= ∅} and range

R(T ) =
⋃

{Tz ∈ E∗ : z ∈ D(T )} is said to be monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 for each

xi ∈ D(T ) and yi ∈ Txi, i = 1, 2. A monotone operator T is said to be maximal if its graph

G(T ) = {(x, y) : y ∈ Tx} is not properly contained in the graph of any other monotone operator.

Let U = {x ∈ E : ‖x‖ = 1}. A Banach space E is said to be strictly convex if for any

x, y ∈ U , x 6= y implies ‖x+y
2 ‖ < 1. It is also said to be uniformly convex if for each ǫ ∈ (0, 2],

there exists δ > 0 such that for any x, y ∈ U, ‖x − y‖ ≥ ǫ implies ‖x+y
2 ‖ ≤ 1 − δ. It is known

that a uniformly convex Banach space is reflexive and strictly convex. And we define a function

δ : [0, 2] → [0, 1] called the modulus of convexity of E as follows:

δ(ǫ) = inf{1 − ‖
x + y

2
‖ : x, y ∈ U, ‖x− y‖ ≥ ǫ}.

Then E is a uniformly convex if and only if δ(ǫ) > 0 for all ǫ ∈ (0, 2]. Let p be a fixed real number

with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a constant c > 0

such that δ(ǫ) ≥ cǫp for all ǫ ∈ [0, 2]. For example, see [8] and [9] for more details. We know the

following fundamental characterization [7, 8] of p-uniformly convex Banach spaces:

Lemma 2.1 ([8]) Let p be a real number with p ≥ 2 and E a Banach space. Then E is

p-uniformly convex if and only if there exists a constant 0 < c ≤ 1 such that

1

2
(‖x + y‖p + ‖x − y‖p) ≥ ‖x‖p + cp‖y‖p for all x, y ∈ E. (2.1)

The best constant 1/c in Lemma 2.1 is called the p-uniformly convexity constant of E ([8]).



718 Y. LIU

A Banach space E is said to be smooth if the limit

lim
n→∞

‖x + ty‖ − ‖x‖

t
(2.2)

exists for all x, y ∈ U. It is also said to be uniformly smooth if the limit (2.2) is attained uniformly

for x, y ∈ U. One should note that no Banach space is p-uniformly convex for 1 < p < 2; see

[9] for more details. It is well known that Hilbert and the Lebesgue Lq (1 < q ≤ 2) spaces are

2-uniformly convex, uniformly smooth.

On the other hand, with each p > 1, the (generalized) duality mapping Jp from E into 2E∗

is defined by

Jp(x) := {v ∈ E∗ : 〈x, v〉 = ‖x‖p, ‖v‖ = ‖x‖p−1}, ∀x ∈ E.

In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space, then

J = I, where I is the identity mapping. The duality mapping J has the following properties:

(i) If E is smooth, then J is single-valued;

(ii) If E is strictly convex, then J is one-to-one;

(iii) If E is reflexive, then J is surjective.

(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded

subset of E.

The duality mapping J from a smooth Banach space E into E∗ is said to be weakly sequentially

continuous [7] if xn ⇀ x implies Jxn ⇀∗ Jx, where ⇀∗ implies the weak∗ convergence.

Lemma 2.2 ([7]) Let p be a given real number with p ≥ 2 and E a p-uniformly convex Banach

space. Then, for all x, y ∈ E, jx ∈ Jpx and jy ∈ Jpy,

〈x − y, jx − jy〉 ≥
cp

2p−2p
‖x − y‖p,

where Jp is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant

of E.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2

for all x, y ∈ E. It is obvious from the definition of the function φ that

(‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2, ∀x, y ∈ E. (2.3)

Remark 2.1 From the Remark 2.1 of [6], we can know that if E is a strictly convex and smooth

Banach space, then for x, y ∈ E, φ(y, x) = 0 if and only if x = y.

Lemma 2.3 ([6]) Let E be a uniformly convex and smooth Banach space and let {yn}, {zn} be

two sequences of E. If φ(yn, zn) → 0, and either {yn}, or {zn} is bounded, then yn − zn → 0.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive, strictly convex

and smooth. Then, for any x ∈ E, there exists a unique element x0 ∈ C such that

φ(x0, x) = min
y∈C

φ(y, x).



Weak convergence of a projection algorithm 719

The mapping ΠC : E → C defined by ΠCx = x0 is called the generalized projection [6, 7, 10]. In

a Hilbert space, ΠC = PC (metric projection). The following are well-known results.

Lemma 2.4 ([6, 7, 10]) Let C be a nonempty closed convex subset of a smooth Banach space

E, x ∈ E and x0 ∈ C. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, for all y ∈ C.

Lemma 2.5 ([6, 7, 10]) Let E be a reflexive, strictly convex and smooth Banach space, let C

be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C.

Lemma 2.6 ([7]) Let S be a nonempty, closed convex subset of a uniformly convex, smooth

Banach space E. Let {xn} be a sequence in E. Suppose that, for all u ∈ S,

φ(u, xn+1) ≤ φ(u, xn)

for every n ∈ N. Then {ΠS(xn)} is a Cauchy sequence.

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach

space E, let T be a mapping from C into itself. We denote by F (T ) the set of fixed points of

T. A point p ∈ C is said to be an asymptotic fixed point of T if there exists {xn} in C which

converges weakly to p and limn→∞ ‖xn − Txn‖ = 0. We denote the set of all asymptotic fixed

points of T by F̂ (T ). A mapping T of C into itself is said to be relatively nonexpansive [6, 11] if

the following conditions are satisfied:

(i) F (T ) is nonempty;

(ii) φ(u, Tx) ≤ φ(u, x), ∀u ∈ F (T ), x ∈ C; (iii) F̂ (T ) = F (T ).

Lemma 2.7 ([6]) Let E be a strictly convex and smooth Banach space, let C be a closed convex

subset of E, and let T be a relatively nonexpansive mapping from C into itself. Then F (T ) is

closed and convex.

Let E be a reflexive, strictly convex, smooth Banach space and J the duality mapping from

E into E∗. Then J−1 is also single-valued, one-to-one, surjective, and it is the duality mapping

from E∗ into E. We make use of the following mapping V studied in Alber [12]:

V (x, x∗) = ‖x‖2 − 2〈x, x∗〉 + ‖x∗‖2 (2.4)

for all x ∈ E and x∗ ∈ E∗. In other words, V (x, x∗) = φ(x, J−1(x∗)) for all x ∈ E and x∗ ∈ E∗.

For each x ∈ E, the mapping g defined by g(x∗) = V (x, x∗) for all x∗ ∈ E∗ is a continuous,

convex function from E∗ into R. We know the following lemma [12]:

Lemma 2.8 ([12]) Let E be a reflexive, strictly convex, smooth Banach space and let V be as

in (2.4). Then

V (x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V (x, x∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗.
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An operator A of C into E∗ is said to be hemicontinuous if for all x, y ∈ C, the mapping f of

[0, 1] into E∗ defined by f(t) = A(tx+(1− t)y) is continuous with respect to the weak∗ topology

of E∗. We denote by NC(v) the normal cone for C at a point v ∈ C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0 for all y ∈ C}.

We know the following theorem ([13]):

Theorem 2.9 ([13]) Let C be a nonempty, closed convex subset of a Banach space E and A

a monotone, hemicontinuous operator of C into E∗. Let T ⊂ E × E∗ be an operator defined as

follows:

Tv =

{

Av + NC(v), v ∈ C,

∅, v∈̄C.

Then T is maximal monotone and T−10 = VI(C, A).

Lemma 2.10 ([7]) Let C be a nonempty, closed convex subset of a Banach space E and A a

monotone, hemicontinuous operator of C into E∗. Then

VI(C, A) = {u ∈ C : 〈v − u, Av〉 ≥ 0 for all v ∈ C}.

It is obvious from Lemma 2.10 that the set VI(C, A) is a closed convex subset of C.

Lemma 2.11 ([14]) Let E be a uniformly convex Banach space and let r > 0. Then there exists

a continuous strictly increasing convex function g : [0, 2r] → R such that g(0) = 0 and

‖tx + (1 − t)y‖2 ≤ t‖x‖2 + (1 − t)‖y‖2 − t(1 − t)g(‖x − y‖),

for all x, y ∈ Br and t ∈ [0, 1], where Br = {z ∈ E : ‖z‖ ≤ r}.

3. Main results

Theorem 3.1 Let E be a 2-uniformly convex, uniformly smooth Banach space whose duality

mapping J is weakly sequentially continuous. Let C be a nonempty, closed convex subset of E.

Assume that A is an operator of C into E∗ that satisfies the conditions (1)–(3). Assume that

S is a relatively nonexpansive mapping from C into itself such that F = F (S)
⋂

VI(C, A) 6= ∅.

Suppose that x1 = x ∈ C and {zn} is defined by
{

zn = ΠC(J−1(Jxn − λnAxn)),

xn+1 = ΠCJ−1(αnJzn + (1 − αn)JSzn),
(3.1)

n = 1, 2, . . . , where {λn} is a sequence of positive numbers, {αn} ⊂ (0, 1), satisfies lim infn→∞ αn(1−

αn) > 0. If {λn} is chosen so that λn ∈ [a, b] for some a, b with 0 < a < b < c2α/2, then the

sequence {zn} converges weakly to some element z ∈ F, where 1
c

is the 2-uniformly convexity

constant of E. Further z = limn→∞ ΠF (zn).

Proof Put yn = J−1(Jxn − λnAxn) for every n ∈ N. Let p ∈ F . It follows from Lemmas 2.5
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and 2.8 that

φ(p, zn+1) =φ(p, ΠCyn+1) ≤ φ(p, yn+1) = V (p, Jxn+1 − λn+1Axn+1)

≤V (p, (Jxn+1 − λn+1Axn+1) + λn+1Axn+1)−

2〈J−1(Jxn+1 − λn+1Axn+1) − p, λn+1Axn+1〉

=V (p, Jxn+1) − 2λn+1〈yn+1 − p, Axn+1〉

=φ(p, xn+1) − 2λn+1〈xn+1 − p, Axn+1〉 + 2〈yn+1 − xn+1,−λn+1Axn+1〉 (3.2)

for every n ∈ N. From the condition (1) and p ∈ VI(C, A), we have

−2λn+1〈xn+1 − p, Axn+1〉 = − 2λn+1〈xn+1 − p, Axn+1 − Ap〉 − 2λn+1〈xn+1 − p, Ap〉

≤ − 2λn+1α‖Axn+1 − Ap‖2 (3.3)

for every n ∈ N. By Lemma 2.2 and the condition (3), we also have

2〈yn+1 − xn+1,−λn+1Axn+1〉 ≤ 2‖yn+1 − xn+1‖‖λn+1Axn+1‖

≤
4

c2 ‖Jyn+1 − Jxn+1‖‖λn+1Axn+1‖ =
4

c2 ‖ − λn+1Axn+1‖‖λn+1Axn+1‖

=
4

c2 λ2
n+1‖Axn+1‖

2 ≤
4

c2 λ2
n+1‖Axn+1 − Ap‖2 (3.4)

for each n ∈ N. Therefore, from (3.3), (3.4), (3.2), and the convexity of ‖ · ‖2, we get

φ(p, zn+1) ≤φ(p, xn+1) + 2a(
2

c2 b − α)‖Axn+1 − Ap‖2

≤φ(p, J−1(αnJzn + (1 − αn)JSzn)) + 2a(
2

c2 b − α)‖Axn+1 − Ap‖2

≤‖p‖2 − 2〈p, αnJzn + (1 − αn)JSzn〉+

αn‖zn‖
2 + (1 − αn)‖Szn‖

2 + 2a(
2

c2 b − α)‖Axn+1 − Ap‖2

=αnφ(p, zn) + (1 − αn)φ(p, Szn) + 2a(
2

c2 b − α)‖Axn+1 − Ap‖2

≤φ(p, zn) + 2a(
2

c2 b − α)‖Axn+1 − Ap‖2 ≤ φ(p, zn) (3.5)

for each n ∈ N . Therefore, {φ(p, zn)} is nonincreasing and hence there exists limn→∞ φ(p, zn).

So, {zn} is bounded. It follows from (3.5) that

−2a(
2

c2
b − α)‖Axn+1 − Ap‖2 ≤ φ(p, zn) − φ(p, zn+1),

which implies limn→∞ ‖Axn+1 − Ap‖ = 0. From Lemmas 2.5, 2.8 and (3.4), we have

φ(xn, zn) = φ(xn, ΠCyn) ≤ φ(xn, yn) = V (xn, Jxn − λnAxn)

≤ V (xn, Jxn − λnAxn + λnAxn) − 2〈J−1(Jxn − λnAxn) − xn, λnAxn〉

= φ(xn, xn) − 2〈yn − xn, λnAxn〉

= 2〈yn − xn,−λnAxn〉 ≤
4

c2 λ2
n‖Axn − Ap‖2
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for each n ∈ N. By limn→∞ ‖Axn+1 − Ap‖ = 0, we get

lim
n→∞

φ(xn, zn) = 0. (3.6)

Applying Lemma 2.3, we obtain from (3.6) that

lim
n→∞

‖xn − zn‖ = 0. (3.7)

Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn − Jzn‖ = 0. (3.8)

Since {zn} is bounded, {Szn} is also bounded. Let r = supn∈N{‖zn‖, ‖Szn‖}. Since E is a

uniformly smooth Banach space, we know that E∗ is a uniformly convex Banach space. Therefore,

from Lemma 2.11 there exists a continuous, strictly increasing, convex function g with g(0) = 0

such that

‖αx∗ + (1 − α)y∗‖2 ≤ α‖x∗‖2 + (1 − α)‖y∗‖2 − α(1 − α)g(‖x∗ − y∗‖)

for x∗, y∗ ∈ B∗

r and α ∈ [0, 1]. So, for p ∈ F, from (3.1) and (3.5), we have

φ(p, zn+1) ≤φ(p, xn+1) ≤ φ(p, J−1(αnJzn + (1 − αn)JSzn))

≤‖p‖2 − 2〈p, αnJzn + (1 − αn)JSzn〉+

αn‖zn‖
2 + (1 − αn)‖Szn‖

2 − αn(1 − αn)g(‖Jzn − JSzn‖)

≤φ(p, zn) − αn(1 − αn)g(‖Jzn − JSzn‖).

Therefore, we have

αn(1 − αn)g(‖Jzn − JSzn‖) ≤ φ(p, zn) − φ(p, zn+1), ∀n ∈ N.

Since there exists limn→∞ φ(p, zn) and lim infn→∞ αn(1 − αn) > 0, we have limn→∞ g(‖Jzn −

JSzn‖) = 0. Therefore, from the property of g we have limn→∞ ‖Jzn − JSzn‖ = 0. Since J−1 is

also uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖zn − Szn‖ = 0. (3.9)

Since {zn} is bounded, there exists a subsequence {znk
} of {zn} such that znk

⇀ z. Since S

is relatively nonexpansive, we have z ∈ F̂ (S) = F (S). Next, we show that z ∈ VI(C, A). Let

T ⊂ E × E∗ be an operator as follows:

Tv =

{

Av + NC(v), v∈ C,

∅, v ∈̄C.

By Theorem 2.9, T is maximal monotone and T−10 = VI(C, A). Let (v, w) ∈ G(T ). Since

w ∈ Tv = Av + NC(v), we have w − Av ∈ NC(v). From zn ∈ C, we get

〈v − zn, w − Av〉 ≥ 0. (3.10)

On the other hand, from zn = ΠCyn and Lemma 2.4, we have 〈v−zn, Jzn− (Jxn−λnAxn)〉 ≥ 0

and hence

〈v − zn,
Jxn − Jzn

λn

− Axn〉 ≤ 0. (3.11)
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Then it follows from (3.10) and (3.11) that

〈v − zn, w〉 ≥〈v − zn, Av〉

≥〈v − zn, Av〉 + 〈v − zn,
Jxn − Jzn

λn

− Axn〉

=〈v − zn, Av − Axn〉 + 〈v − zn,
Jxn − Jzn

λn

〉

=〈v − zn, Av − Azn〉 + 〈v − zn, Azn − Axn〉+

〈v − zn,
Jxn − Jzn

λn

〉

≥ − ‖v − zn‖
‖zn − xn‖

α
− ‖v − zn‖

‖Jzn − Jxn‖

a

≥− M(
‖zn − xn‖

α
+

‖Jzn − Jxn‖

a
)

for every n ∈ N, where M = sup{‖v−zn‖ : n ∈ N}. Taking n = nk, from (3.7) and (3.8), we have

〈v − z, w〉 ≥ 0 as k → ∞. By the maximality of T, we obtain z ∈ T−10 and hence z ∈ VI(C, A).

Therefore, z ∈ F.

Put un = ΠF (zn). It follows from (3.5) and Lemma 2.6 that {un} is a Cauchy sequence.

Since F is closed, {un} converges strongly to w ∈ F. By the uniform smoothness of E, we also

have limn→∞ ‖Jun−Jw‖ = 0. Finally, we prove z = w. It follows from Lemma 2.4, un = ΠF (zn)

and z ∈ F that 〈z − unk
, Junk

− Jznk
〉 ≥ 0. Since J is weakly sequentially continuous, we

have 〈z − w, Jw − Jz〉 ≥ 0, as k → ∞. On the other hand, since J is monotone, we have

〈z − w, Jw − Jz〉 ≤ 0. Hence we have 〈z − w, Jw − Jz〉 = 0. From the strict convexity of E,

we have z = w. Therefore, the sequence {zn} converges weakly to z = limn→∞ ΠF (zn). This

completes the proof. 2

Corollary 3.1 ([7, Theorem 3.1]) Let E be a 2-uniformly convex, uniformly smooth Banach

space whose duality mapping J is weakly sequentially continuous and C a nonempty, closed

convex subset of E. Assume that A is an operator of C into E∗ that satisfies the conditions

(1)–(3). Suppose that x1 = x ∈ C and {xn} is given by

xn+1 = ΠC(J−1(Jxn − λnAxn))

for every n ∈ N, where {λn} is a sequence of positive numbers. If {λn} is chosen so that

λn ∈ [a, b] for some a, b with 0 < a < b < c2α/2, then the sequence {xn} converges weakly

to some element z ∈ VI(C, A), where 1
c

is the 2-uniformly convexity constant of E. Further

z = limn→∞ ΠVI(C,A)(xn).

Proof Taking S = I in Theorem 3.1, we have zn = xn+1. Thus, it is obvious that the conclusion

is true.

Remark 3.1 From Corollary 3.1, we can see Theorem 3.1 in this paper generalizes the Theorem

3.1 in [7].
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