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Abstract In this paper, we introduce an iterative sequence for finding a common element of the
set of fixed points of a relatively nonexpansive mapping and the set of solutions of the variational
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1. Introduction

Let E be a real Banach space with norm | - ||, let E* denote the dual of E and let (z, f)
denote the value of f € E* at x € E. Suppose that C' is a nonempty, closed convex subset of
E and A is a monotone operator of C' into E*. Then we study the problem of finding a point
u € C such that

(v —u,Au) >0, Vv e C. (1.1)

This problem is called the variational inequality problem [1]. The set of solutions of the varia-
tional inequality problem is denoted by VI(C, A). Such a problem is connected with the convex
minimization problem, the complementarity problem, the problem of finding a point u € E sat-
isfying 0 = Au and so on. An operator A of C into E* is said to be inverse-strongly-monotone

[2—4] if there exists a positive real number « such that
(v —y, Az — Ay) > o] Az — Ay|]®

for all z,y € C. In such a case, A is said to be a-inverse-strongly-monotone. If A is an a-inverse-

strongly-monotone mapping of C' into E*, then it is obvious that A is é—Lipschitz continuous.
In 2005, Tiduka and Takahashi [5] proved strong convergence theorems for finding a com-

mon element of the set of solution of the variational inequality problem for an inverse-strongly-

monotone mapping and the set of fixed points of a nonexpansive mapping in a Hilbert space. In
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the same year, Matsushita, and Takahashi [6] proved a strong convergence theorem for relatively
nonexpansive mappings in a Banach space by using generalized projection algorithm. Recently,

Tiduka and Takahashi [7] introduced the following iteration process:
Tpy1 = Mo YTz, — A\ Axy). (1.2)

They proved the sequence {x,} converges weakly to a solution of the variational inequality
problem (1.1) for an operator A that satisfies the following conditions in a 2-uniformly convex
and uniformly smooth Banach space F :

(1) A is a-inverse-strongly-monotone; (2) VI(C, A) # 0;

(3) || Ay|| < ||Ay — Aul| for all y € C and u € VI(C, A).

Inspired and motivated by these facts, our purpose in this paper is to obtain a weak conver-
gence theorem for finding a common element of the set of solutions of a variational inequality

problem and the set of fixed points of a relatively nonexpansive mapping in a Banach space.

2. Preliminaries

Throughout this paper, we denote by N and R the sets of positive integers and real numbers,
respectively. When {z,} is a sequence in E, we denote strong convergence of {z,} to x € E by
x, — x and weak convergence by x, — x.

A multi-valued operator T : E — 28" with domain D(T) = {z € E : Tz # ()} and range
R(T) = U{Tz € E* : z € D(T)} is said to be monotone if {(x; — z2,y1 — y2) > 0 for each
z; € D(T) and y; € Tx;, i = 1,2. A monotone operator T is said to be maximal if its graph
G(T) = {(z,y) : y € Ta} is not properly contained in the graph of any other monotone operator.

Let U = {z € E : ||z|| = 1}. A Banach space E is said to be strictly convex if for any
z,y € U, x # y implies || 25| < 1. It is also said to be uniformly convex if for each € € (0,2],
there exists § > 0 such that for any z,y € U, ||z — y| > € implies ||ZF2|| < 1 — 4. It is known
that a uniformly convex Banach space is reflexive and strictly convex. And we define a function
d:[0,2] — [0, 1] called the modulus of convexity of E as follows:

Tty
2
Then E is a uniformly convex if and only if §(e) > 0 for all € € (0, 2]. Let p be a fixed real number

5(e) = inf{1 — |

|2,y € U,llz —yl| > €}

with p > 2. A Banach space E is said to be p-uniformly convex if there exists a constant ¢ > 0
such that d(e) > ceP for all € € [0,2]. For example, see [8] and [9] for more details. We know the

following fundamental characterization [7, 8] of p-uniformly convex Banach spaces:

Lemma 2.1 ([8]) Let p be a real number with p > 2 and E a Banach space. Then E is

p-uniformly convex if and only if there exists a constant 0 < ¢ <1 such that

1
Uz +yll” +llz = ylIP) = |l«|” + llyl*  for all 2,y € E. (2.1)

The best constant 1/c¢ in Lemma 2.1 is called the p-uniformly convexity constant of E ([8]).
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A Banach space E is said to be smooth if the limit
t —
Ll gl el

lim " (2.2)
exists for all z,y € U. It is also said to be uniformly smooth if the limit (2.2) is attained uniformly
for x,y € U. One should note that no Banach space is p-uniformly convex for 1 < p < 2; see
[9] for more details. It is well known that Hilbert and the Lebesgue L? (1 < g < 2) spaces are
2-uniformly convex, uniformly smooth.

On the other hand, with each p > 1, the (generalized) duality mapping .J, from E into 2% ’
is defined by

Tp(x) = {v € E" : (w,v) = ||a|]”, |vll = [[«[I"~"}, Va € E.

In particular, J = Js is called the normalized duality mapping. If E is a Hilbert space, then
J = I, where I is the identity mapping. The duality mapping J has the following properties:
(i) If E is smooth, then J is single-valued,;
(ii) If E is strictly convex, then J is one-to-one;
(iii) If E is reflexive, then J is surjective.
(iv) If E is uniformly smooth, then J is uniformly norm-to-norm continuous on each bounded
subset of E.
The duality mapping J from a smooth Banach space F into E* is said to be weakly sequentially

continuous [7] if x, — = implies Jx,, =* Jx, where —* implies the weak* convergence.

Lemma 2.2 ([7]) Let p be a given real number with p > 2 and E a p-uniformly convex Banach
space. Then, for all x,y € E, j, € Jyx and j, € Jpy,
. . cP
where J, is the generalized duality mapping of E and 1/c is the p-uniformly convexity constant
of E.
Let E be a smooth Banach space. The function ¢ : E X E — R is defined by
oy, ) = |lylI* - 2(y, Jz) + |||

for all z,y € E. It is obvious from the definition of the function ¢ that

(lyll = Nz)* < ¢y, @) < (lyll + llzl)?, Y,y € E. (2:3)

Remark 2.1 From the Remark 2.1 of [6], we can know that if E is a strictly convex and smooth

Banach space, then for z,y € E, ¢(y,x) = 0 if and only if x = y.

Lemma 2.3 ([6]) Let E be a uniformly convex and smooth Banach space and let {y,},{zn} be
two sequences of E. If ¢(yn, zn) — 0, and either {y,}, or {z,} is bounded, then y,, — z, — 0.
Let C' be a nonempty closed convex subset of E. Suppose that E is reflexive, strictly convex

and smooth. Then, for any x € E, there exists a unique element zy € C such that

P(x0, ) = ]328 Py, x).
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The mapping I : F — C defined by Hox = xq is called the generalized projection [6,7,10]. In

a Hilbert space, Ilc = Pe (metric projection). The following are well-known results.

Lemma 2.4 ([6,7,10]) Let C' be a nonempty closed convex subset of a smooth Banach space
E, xz € E and xg € C. Then, xo = llcx if and only if

(o —y,Jx — Jxg) >0, forall yeC.

Lemma 2.5 ([6,7,10]) Let E be a reflexive, strictly convex and smooth Banach space, let C
be a nonempty closed convex subset of E and let x € E. Then

oy, Hox) + ¢o(llcz, x) < ¢y, x), Vye C.

Lemma 2.6 ([7]) Let S be a nonempty, closed convex subset of a uniformly convex, smooth

Banach space E. Let {x,} be a sequence in E. Suppose that, for all u € S,

(b(u, $n+1) < ¢(uv xn)

for every n € N. Then {Ils(z,)} is a Cauchy sequence.

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach
space E, let T be a mapping from C into itself. We denote by F(T) the set of fixed points of
T. A point p € C is said to be an asymptotic fixed point of T if there exists {x,} in C' which
converges weakly to p and lim,_,« ||z, — Tz,| = 0. We denote the set of all asymptotic fixed
points of T' by F (T). A mapping T of C into itself is said to be relatively nonexpansive [6, 11] if
the following conditions are satisfied:

(i) F(T) is nonempty;

(i) ¢(u,Tz) < ¢p(u, x),Yu € F(T),z € C; (iii) F(T) = F(T).

Lemma 2.7 ([6]) Let E be a strictly convex and smooth Banach space, let C' be a closed convex
subset of E, and let T be a relatively nonexpansive mapping from C into itself. Then F(T) is
closed and convex.

Let E be a reflexive, strictly convex, smooth Banach space and J the duality mapping from
E into E*. Then J~! is also single-valued, one-to-one, surjective, and it is the duality mapping

from E* into E. We make use of the following mapping V studied in Alber [12]:
V(z,a*) = 2] - 2(z, %) + [|«*||? (2.4)

for all z € E and z* € E*. In other words, V(z,2*) = ¢(x, J (2*)) for all z € E and z* € E*.
For each x € F, the mapping ¢ defined by g(a*) = V(x,2*) for all * € E* is a continuous,

convex function from E* into R. We know the following lemma [12]:

Lemma 2.8 ([12]) Let E be a reflexive, strictly convex, smooth Banach space and let V be as
in (2.4). Then

V(z,2*) +2(J (%) — x,y") < V(z,2* +y*), forallx € F and 2*,y* € E*.
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An operator A of C into E* is said to be hemicontinuous if for all z,y € C, the mapping f of
[0,1] into E* defined by f(t) = A(tx+ (1 —t)y) is continuous with respect to the weak* topology
of E*. We denote by N¢(v) the normal cone for C at a point v € C, that is,

Ne(w)={a*€ E*: (v—y,z") >0 forall ye C}.
We know the following theorem ([13]):

Theorem 2.9 ([13]) Let C be a nonempty, closed convex subset of a Banach space E and A
a monotone, hemicontinuous operator of C' into E*. Let T C E x E* be an operator defined as

follows:

Av + N¢(v), veC,
Tv = _
0, veC.

Then T is maximal monotone and T~*0 = VI(C, A).

Lemma 2.10 ([7]) Let C' be a nonempty, closed convex subset of a Banach space E and A a

monotone, hemicontinuous operator of C' into E*. Then

VI(C,A) ={ueC:{v—u,Av) >0 forall ve C}.

It is obvious from Lemma 2.10 that the set VI(C, A) is a closed convex subset of C.

Lemma 2.11 ([14]) Let E be a uniformly convex Banach space and let r > 0. Then there exists
a continuous strictly increasing convex function g : [0,2r] — R such that g(0) = 0 and
[tz + (1 = t)yl* < thz]* + (1 = )lly]* = 1 = g(llz - yl),

for all z,y € B, and t € [0,1], where B, ={z € E : ||z| < r}.
3. Main results

Theorem 3.1 Let E be a 2-uniformly convex, uniformly smooth Banach space whose duality
mapping J is weakly sequentially continuous. Let C' be a nonempty, closed convex subset of E.
Assume that A is an operator of C into E* that satisfies the conditions (1)—(3). Assume that
S is a relatively nonexpansive mapping from C' into itself such that F = F(S)(VI(C, A) # 0.
Suppose that x1 = x € C' and {z,} is defined by

2n = He(J 7 (Jzym — AnAzy)), (3.1)
Tni1 = o HanJz, + (1 — ay)JS2,), '
n=1,2,..., where {\,} is a sequence of positive numbers, {«,,} C (0,1), satisfies lim inf,,_. o o, (1—

an) > 0. If {\,} is chosen so that )\, € [a,b] for some a,b with 0 < a < b < c?a/2, then the
sequence {z,} converges weakly to some element z € F, where % is the 2-uniformly convexity

constant of E. Further z = lim, .o IIp(zy,).

Proof Put y, = J '(Jz, — M\, Az,) for every n € N. Let p € F. Tt follows from Lemmas 2.5
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and 2.8 that

o(ps 2nt1) =P, Lcynt1) < d(p,Ynt1) = V(p, Jrnt1 — Ang1ATny1)
<V(p, (Jxnt1 — M1AZni1) + Anp1ATp 1) —
2(J N (J g1 — A1 ATng1) — P, Ang1 ATng1)
=V(p, Jxn+1) = 2An+1(Ynt1 — P, ATns1)
=o(p, Tny1) = 2Ant1{Tnt1 — Py AZnt1) + 2(Unt1 — g1, —Anp1Azng)  (3.2)

for every n € N. From the condition (1) and p € VI(C, A), we have

—2Xn41(Tnt1 — D, AZng1) = — 2041 (@nt1 — P, ATpp1 — Ap) — 2Xn41(Tnt1 — D, Ap)
< = 2010l Aznia — Aplf® (3.3)

for every n € N. By Lemma 2.2 and the condition (3), we also have

2<yn+1 — Tn+1, _)‘n+len+l> < 2||yn+l - xn-i-l””)‘n-i-len-i-l”

4 4
< c_2||Jyn+l — Jrp ||| A1 ATy | = 0_2” = A1 AT 1 || [ Ant 1 Az |
4 4
= c—2>\721+1||A33n+1||2 < 0—2/\i+1||A33n+1 — Ap|? (3.4)

for each n € N. Therefore, from (3.3), (3.4), (3.2), and the convexity of || - |2, we get

$(p, 1) SO, Pns1) + 2a( 3 — @) [ A1 — Apl?
<6(p, T Tz + (1= n)TSz) + 20( 3 — )| Azs1 — Apl?
<|plI? = 2(p, nJ 2 + (1 — ) J Sz )+
nllzall? + (1 = a2l +2a( 56 — )| Aznss — Apl?
—00(p,20) + (1= )6, S20) + 20(3b = )| A1 — 4p]?
<00, 20) + 20( 5 = @) [ Av1 — A < 6(0,20) (35)

for each n € N. Therefore, {¢(p, z,)} is nonincreasing and hence there exists lim,,_,o ¢(p, zn)-
So, {zn} is bounded. It follows from (3.5) that

~20( b~ )| A1 — Apl? < (5, 20) — 6(p, zur1),
which implies lim,, o ||Azp+1 — Ap|| = 0. From Lemmas 2.5, 2.8 and (3.4), we have
P(@n, 2n) = d(wn, Moyn) < (wn, yn) = V(@n, Jtn — AnAtn)
<V (xp, JTy — MAxy + ANAxy) — 2(J Y (Jxp — MAxy) — T, A\p Ay
= ¢(Xn, Tn) — 2{Yn — Tny A Azy)
= 2(yn — T, —AnAzy) < ;iz)\iHA:z:n — Ap||?
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for each n € N. By lim,,, || Azn+1 — Ap|| = 0, we get
nh_}rrgo &(xp, 2n) = 0. (3.6)
Applying Lemma 2.3, we obtain from (3.6) that
nlg{.lo |2 — zn] = 0. (3.7)
Since J is uniformly norm-to-norm continuous on bounded sets, we have
nlg{.lo |[Jzp — Jzn| = 0. (3.8)

Since {z,} is bounded, {Sz,} is also bounded. Let r = sup, cn{|lznll;[S2znl}. Since E is a
uniformly smooth Banach space, we know that E* is a uniformly convex Banach space. Therefore,
from Lemma 2.11 there exists a continuous, strictly increasing, convex function g with g(0) =0
such that

laz” + (1 = a)y*|I* < afla”|* + (1 = )y > — a1 — a)g(ll=" - y7[])
for «*,y* € B} and « € [0,1]. So, for p € F, from (3.1) and (3.5), we have

(P, 2nt1) <P, Tni1) < (0, I Han Tz + (1 — @) JS2))
<Ipl? = 2(p, andzn + (1 — o) JS20)+
|zl + (1 = an)|S2a]|? — (1 — ) g(| J2zn — JSznl|)
<o(p,zn) — an(l — an)g(||Jzn — JSzn]|).

Therefore, we have

an(l = an)g(|Jzn — JS2nll) < ¢(p, 20) — ¢(Ps 2n41), ¥n € N.

Since there exists lim, o0 ¢(p, z,) and liminf, oo @, (1 — ) > 0, we have limy, o g(||J2n —
JS2,|]) = 0. Therefore, from the property of g we have lim,, . ||Jz, — JSz,|| = 0. Since J 1 is

also uniformly norm-to-norm continuous on bounded sets, we have

lim ||z, — Sz,|| = 0. (3.9)

Since {z,} is bounded, there exists a subsequence {z,,} of {z,} such that z,, — z. Since S
is relatively nonexpansive, we have z € F(S) = F(S). Next, we show that z € VI(C, A). Let
T C E x E* be an operator as follows:

Av + N C

Tv = v+ No(v), U% ’

0, veC.
By Theorem 2.9, T is maximal monotone and 7710 = VI(C, A). Let (v,w) € G(T). Since
w € Tv = Av + N¢(v), we have w — Av € N¢(v). From z,, € C, we get

(v = zp,w — Av) > 0. (3.10)

On the other hand, from z,, = ¢y, and Lemma 2.4, we have (v— z,,, Jz,, — (Jxn — A\ Az,)) >0

and hence J J
y — Az,) <0. (3.11)



Weak convergence of a projection algorithm 723
Then it follows from (3.10) and (3.11) that

(v = zZp,w) >V — z,, Av)

Jx, — Jz,
> (v — zp, Av) + (v — 2y, % — Axy)

Jx, — Jz,
:<U—zn,Av—Axn>+<v—zn,¥>
=(v— zp, Av — Az,)) + (v — 2y, Az, — Axp)+

Jx, — Jz,
<’U—Zn,)\7>
|20 — znl| | J2n — J 24|
B e it i
o a

>_M(||Zn_33n|| + [ Sz = Jan||

)

for every n € N, where M = sup{||jv—=z,]|| : n € N}. Taking n = ny, from (3.7) and (3.8), we have
(v — z,w) >0 as k — oco. By the maximality of T, we obtain z € 7710 and hence z € VI(C, A).
Therefore, z € F.

« a

Put u, = IIp(z,). It follows from (3.5) and Lemma 2.6 that {u,} is a Cauchy sequence.
Since F is closed, {u,} converges strongly to w € F. By the uniform smoothness of F, we also
have lim,,_, o || Ju, — Jw|| = 0. Finally, we prove z = w. It follows from Lemma 2.4, u,, = Iy (2,)
and z € F that (z — up,, Jun, — Jzn,) > 0. Since J is weakly sequentially continuous, we
have (z — w,Jw — Jz) > 0, as k — o0. On the other hand, since J is monotone, we have
(z —w,Jw — Jz) < 0. Hence we have (z — w, Jw — Jz) = 0. From the strict convexity of E,
we have z = w. Therefore, the sequence {z,} converges weakly to z = lim, oo IIF(2,). This

completes the proof. O

Corollary 3.1 ([7, Theorem 3.1]) Let E be a 2-uniformly convex, uniformly smooth Banach
space whose duality mapping J is weakly sequentially continuous and C a nonempty, closed
convex subset of E. Assume that A is an operator of C into E* that satisfies the conditions
(1)—(3). Suppose that x1 = x € C and {x,} is given by

Tpi1 = o (J (T, — M\ Azy))

for every n € N, where {\,} is a sequence of positive numbers. If {\,} is chosen so that
An € la,b] for some a,b with 0 < a < b < c?a/2, then the sequence {z,} converges weakly

1

to some element z € VI(C, A), where - is the 2-uniformly convexity constant of E. Further

z = limy, o0 Hyi(c,a) (T0)-

Proof Taking S = I in Theorem 3.1, we have z,, = x,,+1. Thus, it is obvious that the conclusion

is true.

Remark 3.1 From Corollary 3.1, we can see Theorem 3.1 in this paper generalizes the Theorem
3.1 in [7].
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