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1. Introduction and preliminaries

The concept of Long bialgebras was introduced in [1]. In [2] the author gave the relations

between dimodule algebras and Long bialgebras, and in [3], the authors gave a necessary and

sufficient condition for a smash product constructed by dimodule algebras to be a bialgebra

(Hopf algebra), and gave two interesting examples to show that the conditions in [3, Theorem

2.4] “(H1) and (H2)” weaken the commutativity and cocommutativity of H in [4].

In this paper, we mainly construct quantization of dimodule algebras and quantum Yang-

Baxter H-module algebras, and give some results of smash products and braided products.

We always work over a fixed field k and follow [5] for terminologies on algebras, coalgebras,

comodules, bialgebras and Hopf algebras.

We recall some definitions used in this paper.

For a coalgebra C, a right C-comodule is a k-space M with a linear map ρ : M → M ⊗ C,

such that

(ρ ⊗ id)ρ = (id ⊗ ∆)ρ, (id ⊗ ε)ρ = id.

In what follows, the comodule structure ρ of M is written as ρ(m) = Σm(0) ⊗ m(1).

A right H-comodule algebra A is both an algebra and a right H-comodule with the comodule

structure ρ, such that for any a, b ∈ A, ρ(ab) = ρ(a)ρ(b), ρ(1A) = 1A ⊗ 1H .
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A left H-module algebra B is both an algebra and a left H-module with the module structure

“·”, satisfying

h · (ab) = Σ(h1 · a)(h2 · b), h · 1A = ε(h)1A,

for any a, b ∈ B, h ∈ H .

A bialgebra H is called a Long bialgebra in [1, 2] if there exists a linear map σ : H ⊗H → k,

such that for any x, y, z ∈ H :

(L1) Σσ(x1, y)x2 = Σσ(x2, y)x1,

(L2) σ(x, 1) = ε(x),

(L3) σ(x, yz) = Σσ(x1, y)σ(x2, z),

(L4) σ(1, x) = ε(x),

(L5) σ(xy, z) = Σσ(x, z2)σ(y, z1).

A linear map σ : H ⊗ H → k is called a two-cocycle on a bialgebra H , if for any x, y, z ∈ H ,

Σσ(x2, y2)σ(z, x1y1) = Σσ(z2, x2)σ(z1x1, y).

Assume that (H, σ) is a Long bialgebra. Then, by [2], σ is the two-cocycle. If for any x, y ∈ H,

(L1′) Σσ(x, y1)y2 = Σσ(x, y2)y1,

then we call (H, σ) a strongly Long bialgebra.

Assume that (H, σ) is a strongly Long bialgebra. Then, by (L1′) and (L5), for any h, g ∈ H ,

we have

σ(hg,−) = σ(gh,−). (A)

So, by Proposition 2.1 in [2], (H, σ) is a Yang-Baxter coalgebra given in [6] if σ is invertible.

In what follows, we give some examples of strongly Long bialgebras.

Example 1.1 Let H = H4 be the Sweedler’s 4-dimensional Hopf algebra for a given field k of

chark 6= 2. Then, by [7], it is described as follows:

H4 = k〈1, x, y, xy|x2 = 1, y2 = 0, yx = −xy〉

with the coalgebra structure

∆(x) = x ⊗ x, ∆(y) = y ⊗ 1 + x ⊗ y, ε(x) = 1, ε(y) = 0

whose antipode is given by S(x) = x−1, S(y) = −xy.

Let σ : H ⊗ H → k be a k-linear map as follows:

σ(x, 1) = 1 = σ(1, x) = σ(x, x),

σ(x, y) = 0 = σ(y, x) = σ(y, 1) = σ(1, y) = σ(y, y),

σ(xy,−) = 0 = σ(−, xy).

Then, (H, σ) is a strongly Long bialgebra.

In fact, by [1], (H, σ) is a Long bialgebra. So, in order to show that (H, σ) is a strongly

Long bialgebra, we have to prove that the conditions “Σσ(x, h1)h2 = Σσ(x, h2)h1, Σσ(y, h1)h2 =

Σσ(y, h2)h1, Σσ(xy, h1)h2 = Σσ(xy, h2)h1” hold, for any h ∈ H .
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If taking h = y, we have Σσ(x, h1)h2 = σ(x, y)1 + σ(x, x)y = y = σ(x, 1)y + σ(x, y)x =

Σσ(x, h2)h1; if taking h = x, it is easy to see that Σσ(x, h1)h2 = Σσ(x, x)x = x = Σσ(x, h2)h1.

In a similar way, we can show that the conditions

Σσ(y, h1)h2 = Σσ(y, h2)h1 and Σσ(xy, h1)h2 = Σσ(xy, h2)h1

are satisfied, for any h ∈ H .

Example 1.2 Let H = k〈xi|i = 1, 2, . . . , 6〉 be a free algebra generated by six generators. Its

comultiplication ∆ and counity ε are given by

∆(x1) = x1 ⊗ x1, ∆(x2) = x2 ⊗ x2,

∆(x3) = x3 ⊗ x2 + x4 ⊗ x3 + (x2 − x3 − x4) ⊗ x5,

∆(x4) = x4 ⊗ x4 + (x2 − x3 − x4) ⊗ (x2 − x5 − x6),

∆(x5) = x5 ⊗ x2 + (x2 − x5 − x6) ⊗ x3 + x6 ⊗ x5,

∆(x6) = (x2 − x5 − x6) ⊗ (x2 − x3 − x4) + x6 ⊗ x6,

ε(x1) = ε(x2) = ε(x4) = ε(x6) = 1, ε(x3) = ε(x5) = 0.

Now we denote c11 = x1, c22 = x2, c32 = x3, c33 = x4, c42 = x5, c44 = x6 and define the map

φ : {x1, x2, x3, x4} → k by

φ(x1) = 1, φ(x2) = φ(x3) = φ(x4) = 2,

and σ(civ, cju) = δuvδφ(xi)vδφ(xj)v. Then, by [1], (H, σ) is a Long bialgebra. Moreover, it is not

difficult to show that (H, σ) satisfies the condition “Σσ(x, y1)y2 = Σσ(x, y2)y1”, for any x, y ∈ H ,

so, it is a strongly Long bialgebra.

2. Twisted dimodule algebras and their smash products

In this section, we always think that (H, σ) is a strongly Long bialgebra.

A k-module M which is both a left H-module and a right H-comodule is called a left, right

H-dimodule if for any m ∈ M , h ∈ H ,

(DM) Σ(h · m)(0) ⊗ (h · m)(1) = Σh · m(0) ⊗ m(1).

Let M be a left, right H-dimodule. If M is both a left H-module algebra and a right

H-comodule algebra, then M is called an H-dimodule algebra.

Let (H, σ) be a strongly Long bialgebra, and A a right H-comodule algebra. Define a new

multiplication “·σ” on A:

a ·σ b = Σσ(a(1), b(1))a(0)b(0).

Then, by [5], (A, ·σ) is an algebra. In what follows, we denote the algebra by Aσ, and hence

we have

Lemma 2.1 (Aσ, ρ) is a right H-comodule algebra.
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Proof For any a, b ∈ A,

ρ(a ·σ b) = Σσ(a(1), b(1))ρ(a(0)b(0)) = Σσ(a(1), b(1))ρ(a(0))ρ(b(0))

= Σσ(a(1), b(1))a(0)(0)b(0)(0) ⊗ a(0)(1)b(0)(1)

= Σσ(a(1)2, b(1)2)a(0)b(0) ⊗ a(1)1b(1)1

(L1,L1′)
= Σσ(a(0)(1), b(0)(1))a(0)(0)b(0)(0) ⊗ a(1)b(1)

= Σa(0) ·σ b(0) ⊗ a(1)b(1).

Assume that A is an H-dimodule algebra. Then, via the left module structure “⇀σ ” on A:

h ⇀σ a = Σσ(a(1), h1)h2 · a(0),

we have

Lemma 2.2 (Aσ, ⇀σ) is a left H-module algebra.

Proof For h, ℓ ∈ H , a, b ∈ Aσ,

ℓ ·σ (h ·σ a) = Σσ(a(1), h1)ℓ ·σ (h2 · a(0))

= Σσ(a(1), h1)σ((h2 · a(0))(1), ℓ1)ℓ2 · (h2 · a(0))(0)

= Σσ(a(1), h1)σ(a(0)(1), ℓ1)(ℓ2h2) · a(0)(0)

(L3)
= Σσ(a(1), (ℓh)1)(ℓh)2 · a(0) = (ℓh) ·σ a,

h ⇀σ (a ·σ b) = Σh ⇀σ (σ(a(1), b(1))a(0)b(0))

= Σσ(a(1), b(1))σ((a(0)b(0))(1), h1)h2 · (a(0)b(0))(0)

= Σσ(a(1), b(1))σ(a(0)(1)b(0)(1), h1)h2 · (a(0)(0)b(0)(0))

= Σσ(a(0)(1), b(0)(1))σ(a(1)b(1), h1)h2 · (a(0)(0)b(0)(0))

= Σσ(a(0)(1), b(0)(1))σ(a(1)b(1), h1)(h2 · (a(0)(0))(h3 · b(0)(0))

= Σσ(a(1)b(1), h1)σ((h2 · a(0))(1), (h3 · b(0))(1))(h2 · a(0))(0)(h3 · b(0))(0)

(L5,L1′)
= Σσ(a(1), h1)σ(b(1), h2)(h3 · a(0)) ·σ (h4 · b(0))

= Σ(h1 ·σ a) ·σ (h2 ·σ b).

It is obvious that 1H ⇀σ a = a and h ⇀σ 1A = ε(h)1A, so, (Aσ , ⇀σ) is a left H-module

algebra.

Proposition 2.3 (1) (Aσ, ⇀σ, ρ) is an H-dimodule algebra.

(2) If A is also a bialgebra, then, the tensor product coalgebra structure on A is compatible

with the twisted product structure making Aσ into a bialgebra if

fA : A ⊗ A → A, a ⊗ x 7→ Σσ(a(1), x(1))a(0)x(0)

is a coalgebra map.

Proof (1) It is straightforward by Lemmas 2.1 and 2.2. (2) It is easy to show that ∆Aσ
is an
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algebra map if and only if fA is a comultiplication map, and εAσ
is an algebra map if and only

if fA is a counit map.

Example 2.4 (1) Let (H, σ) be a strongly Long bialgebra, and let h •σ x = Σσ(h, x1)x2, for

any h, x ∈ H . Then, via the left H-module action “•σ”, it is easy to show that (H, •σ, ∆) is

an H-dimodule algebra. Again by Proposition 2.3, (Hσ, ⇀σ, ∆) is also an H-dimodule algebra

whose module action is given by h ⇀σ x = Σσ(x2, h1)h2 •σ x1, where the multiplication of Hσ

is given by x ·σ y = Σσ(x1, y1)x2y2.

(2) Let H = H4 be the Sweedler’s 4-dimensional Hopf algebra. Then, by Example 1.1, (H, σ)

is a strongly Long bialgebra. So, by (1), (Hσ, ⇀σ, ∆) is an H-dimodule algebra.

(3) Let (H, σ) be a coquasitriangular Hopf algebra in [5]. Define a measuring action of H

on H : h •σ x = Σσ(h, x1)x2. Then, by Example 2.3 in [3], (H, •σ, ∆) is an H-dimodule algebra.

It is obvious that any cocommutative coquasitriangular Hopf algebra is a strongly Long

bialgebra. So, by (1), we know that (Hσ, ⇀σ, ∆) is an H-dimodule algebra whose module action

is given by h ⇀σ x = Σσ(x2, h1)h2 •σ x1.

Let A and B be two H-dimodule algebras. A smash product A#B in [4] is defined as follows:

A#B = A ⊗ B as k-modules and its multiplication is given by

(a#b)(c#d) = Σa(b(1) · c)#b(0)d,

for any a, c ∈ A; b, d ∈ B.

By Theorem 2.4 in [3] (weaken the commutativity and cocommutativity of H in [4]), we have

Lemma 2.5 Let H be a Hopf algebra and let A and B be two H-dimodule algebras such that

the following conditions hold,

(H1) Σh1 · a ⊗ h2 = Σh2 · a ⊗ h1, for all a ∈ A, h ∈ H,

(H2) Σx(0) ⊗ x(1)h = Σx(0) ⊗ hx(1), for all h ∈ H, x ∈ B,

then we have the following conclusions.

(1) A#B is an H-dimodule algebra,

where the left H-module and the right H-comodule of A#B are respectively defined by

(M1) h · (a#x) = Σh1 · a#h2 · x,

(M2) ρA⊗B(a#x) = Σa(0)#x(0) ⊗ a(1)x(1).

(2) If A and B are two bialgebras, then the tensor product coalgebra structure on A#B is

compatible with the smash product structure making A#B into a bialgebra if and only if the

map

f : A#B → A#B, a#x 7→ Σx(1) · a#x(0)

is a coalgebra map.

By the above lemma, we get

Proposition 2.6 Let A and B be two H-dimodule algebras, such that the following conditions

hold,

(H1) h1 · a ⊗ h2 = h2 · a ⊗ h1, for all h ∈ H, a ∈ A,
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(H2) Σb(0) ⊗ b(1)h = Σb(0) ⊗ hb(1), for all h ∈ H, b ∈ B.

Then we have the following conclusions.

(1) Aσ#Bσ is an H-dimodule algebra whose multiplication is given by

(a#b)(c#d) = Σa ·σ (b(1) ⇀σ c)#b(0) ·σ d,

where the left H-module and the right H-comodule of Aσ#Bσ are respectively defined by

(M1′) h · (a#x) = Σh1 ⇀σ a#h2 ⇀σ x,

(M2) ρ(a#x) = Σa(0)#x(0) ⊗ a(1)x(1).

In what follows, we call the smash product Aσ#Bσ a twisted smash product.

(2) If A and B are two bialgebras such that fA and fB are coalgebra maps, then the tensor

product coalgebra structure on Aσ#Bσ is compatible with the smash product structure making

Aσ#Bσ into a bialgebra if and only if the map

f : Aσ#Bσ → Aσ#Bσ, a#x 7→ Σx(1) ⇀σ a#x(0)

is a coalgebra map.

According to the above proposition and Example 2.4, we get

Corollary 2.7 (1) Let (H, σ) be a strongly Long bialgebra. If H is commutative, then Hσ#Hσ

is an H-dimodule algebra whose multiplication is given by

(h#x)(g#y) = Σh ·σ (x2 ⇀σ g)#x1 ·σ y.

(2) Let (H, σ) be a cocommutative coquasitriangular Hopf algebra. Then, Hσ#Hσ is an

H-dimodule algebra whose multiplication is given by

(h#x)(g#y) = Σh •σ (x2 ⇀σ g)#x1 •σ y.

Proof (1) is straightforward by Proposition 2.6. (2) By Corollary 2.9 in [3], the cocommutativity

of coquasitriangular Hopf algebra (H, σ) implies that H is commutative, so, the condition (H2)

holds. So, by Example 2.4 and Proposition 2.6, we know that Hσ#Hσ is an H-dimodule algebra.

Proposition 2.8 Let (H, σ) be a strongly Long bialgebra where σ is invertible with inverse

σ−1. Let A and B be two H-dimodule algebras, such that the conditions (H1) and (H2) hold.

If σ2 = σ ◦ τ , then, there exists an isomorphism of dimodule algebras as follows:

f : Aσ#Bσ → (A#B)σ , a#b 7→ Σσ(a(1), b(1))a(0)#b(0)

with the inverse g : (A#B)σ → Aσ#Bσ, c#d 7→ Σσ−1(c(1), d(1))c(0)#d(0), where Aσ#Bσ and

(A#B)σ are H-dimodule algebras given in Proposition 2.6.

Proof For any a#b, c#d ∈ Aσ#Bσ, we have

f(a#b) ·σ f(c#d) =Σσ(a(1), b(1))σ(c(1), d(1))(a(0)#b(0)) ·σ (c(0)#d(0))

=Σσ(a(1), b(1))σ(c(1), d(1))σ(a(0)(1)b(0)(1), c(0)(1)d(0)(1))×

a(0)(0)(b(0)(0)(1) · c(0)(0))#b(0)(0)(0)d(0)(0)

=Σσ(a(1)2, b(1)3)σ(c(1)2, d(1)2)σ(a(1)1b(1)2, c(1)1d(1)1)×
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a(0)(b(1)1 · c(0))#b(0)d(0).

And, by σ2 = σ ◦ τ , we get

f((a#b)(c#d)) = Σf(a ·σ (b(1) ⇀σ c)#b(0) ·σ d)

= Σσ(c(1), b(1)1)σ(a(1), c(0)(1))σ(b(0)(1), d(1))f(a(0)(b(1)2 · c(0)(0))#b(0)(0)d(0))

= Σσ(c(1), b(1)1)σ(a(1), c(0)(1))σ(b(0)(1), d(1))σ(a(0)(1)c(0)(0)(1), b(0)(0)(1)d(0)(1))×

a(0)(0)(b(1)2 · c(0)(0)(0))#b(0)(0)(0)d(0)(0)

= Σσ(c(1)3, b(1)3)σ(a(1)2, c(1)2)σ(b(1)2, d(1)2)σ(a(1)1c(1)1, b(1)1d(1)1)×

a(0)(b(1)4 · c(0))#b(0)d(0)

(L3)
= Σσ(c(1)4, b(1)3)σ(a(1)3, c(1)3)σ(b(1)2, d(1)2)σ(a(1)1c(1)1, b(1)1)×

σ(a(1)2c(1)2, d(1)1)a(0)(b(1)4 · c(0))#b(0)d(0)

(L5)
= Σσ(c(1)4, b(1)4)σ(a(1)3, c(1)3)σ(b(1)3, d(1)3)σ(a(1)1, b(1)1)σ(c(1)1, b(1)2)×

σ(a(1)2, d(1)1)σ(c(1)2, d(1)2)a(0)(b(1)5 · c(0))#b(0)d(0)

(L1,1′)
= Σ σ(c(1)3, b(1)3)σ(c(1)2, b(1)2)

︸ ︷︷ ︸

σ(a(1)3, c(1)4)σ(b(1)4, d(1)3)σ(a(1)1, b(1)1)×

σ(a(1)2, d(1)1)σ(c(1)1, d(1)2)a(0)(b(1)5 · c(0))#b(0)d(0)

(L1′)
= Σσ(b(1)2, c(1)2)σ(a(1)2, c(1)3)σ(b(1)3, d(1)2)σ(a(1)1, b(1)1)×

σ(a(1)3, d(1)3)σ(c(1)1, d(1)1)a(0)(b(1)4 · c(0))#b(0)d(0)

(L3)
= Σσ(b(1)2, c(1)2d(1)2)σ(a(1)2, c(1)3d(1)3)σ(a(1)1, b(1)1)σ(c(1)1, d(1)1)×

a(0)(b(1)3 · c(0))#b(0)d(0)

(L5)
= Σσ(a(1)2b(1)2, c(1)2d(1)2)σ(a(1)1, b(1)1)σ(c(1)1, d(1)1)a(0)(b(1)3 · c(0))#b(0)d(0)

= Σσ(a(1)1b(1)2, c(1)1d(1)1)σ(a(1)2, b(1)3)σ(c(1)2, d(1)2)a(0)(b(1)1 · c(0))#b(0)d(0).

So, f((a#b)(c#d)) = f(a#b) ·σ f(c#d) and hence f is an algebra map.

The left proof is easy.

3. Twisted quantum Yang-Baxter module algebras and their braided

products

In this section, we always assume that H is a Hopf algebra with bijective antipode S, and

(H, σ) a strongly Long bialgebra. So, by [2], we know that σ is invertible with inverse σ ◦ (S⊗ I)

or σ ◦ (I ⊗ S). Hence σ = σ ◦ (S ⊗ S).

A left, right quantum Yang-Baxter H-module M is a k-module which is a left H-module and

a right H-comodule satisfying the following equivalent compatibility conditions:

(YB1) Σh1 · m(0) ⊗ h2m(1) = Σ(h2 · m)(0) ⊗ (h2 · m)(1)h1;

(YB2) Σ(h · m)(0) ⊗ (h · m)(1) = Σh2 · m(0) ⊗ h3m(1)S
−1(h1).

A k-algebra A which is a quantum Yang-Baxter H-module is said to be a quantum Yang-

Baxter H-module algebra in [7] if it is both a left H-module algebra and a right Hop-comodule
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algebra, where Hop denotes the Hopf algebra with the opposite underlying algebra of H .

For every left, right quantum Yang-Baxter H-module A, since (H, σ) is a strongly Long

bialgebra, we have

Σσ(S((h · a)(1)), ℓ)(h · a)(0) = Σσ(S(a(1)), ℓ)h · a(0), (B)

for any h, ℓ ∈ H , a ∈ A.

According to the above equality (B), we easily get

Σσ((h · a)(1), ℓ)(h · a)(0) = Σσ(a(1), ℓ)h · a(0). (C)

Lemma 3.1 (1) Let A be a quantum Yang-Baxter H-module algebra. Then Aσ is a quantum

Yang-Baxter H-module algebra with the left H-module structure: h ։σ a = Σσ(S(a(1)), h1)h2 ·

a(0) and the multiplication of Aσ is given by a ·σ b = Σσ(a(1), b(1))a(0)b(0).

(2) If A is also a bialgebra, then, the tensor product coalgebra structure on A is compatible

with the twisted product structure making Aσ into a bialgebra if there exists a map

fA : A ⊗ A → A, a ⊗ x 7→ Σσ(a(1), x(1))a(0)x(0)

such that it is a coalgebra map.

Proof In a similar way of Proposition 2.3(2), we can show the second statement.

It is easy to show that (Aσ , ։σ) is a left H-module algebra by equalities (A) and (C) and

(Aσ, ρ) a right Hop-comodule algebra. So, Aσ is a left, right quantum Yang-Baxer H-module

algebra.

Let A and B be two quantum Yang-Baxter H-module algebras. Define a new multiplication

on A ⊗ B as follows:

(a ⊗ x)(b ⊗ y) = Σab(0) ⊗ (b(1) · x)y.

A⊗B with the above multiplication is denoted by A ∝ B and called the braided product of

A and B in [4].

By Theorem 4.3 in [3], we get

Lemma 3.2 Let A and B be two quantum Yang-Baxter H-module algebras. Then

(1) A ∝ B is a quantum Yang-Baxter H-module algebra;

(2) if A and B are bialgebras, then A ∝ B is a bialgebra if and only if

f : A ∝ B → A ∝ B, a ∝ x 7→ Σa(0) ∝ a(1) · x

is a coalgebra map, where the braided product A ∝ B is a tensor product coalgebra as a

coalgebra.

According to Lemmas 3.1 and 3.2, we obtain

Proposition 3.3 Let A and B be two quantum Yang-Baxter H-module algebras. Then

(1) Aσ ∝ Bσ is a quantum Yang-Baxter H-module algebra whose multiplication is given by

(a ⊗ x)(b ⊗ y) = Σσ(a(1), b(1)1)a(0)b(0) ⊗ σ(S(x(1)2), b(1)2)σ(x(1)1, y(1))(b(1)3 · x(0))y(0).
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(2) If A and B are bialgebras such that fA and fB are coalgebra maps, then Aσ ∝ Bσ is a

bialgebra if and only if

f : Aσ ∝ Bσ → Aσ ∝ Bσ, a ∝ x 7→ Σa(0) ∝ a(1) ։σ x

is a coalgebra map.

Example 3.4 Let H be a finite dimensional Hopf algebra. Then, by [4], (H, ·, ρ) is a quantum

Yang-Baxter H-module algebra with the H-structures as follows:

h · x = Σh1xS(h2); ρ(h) = Σh2 ⊗ S−1(h1).

By Lemma 3.1, we know that Hσ is a quantum Yang-Baxter H-module algebra whose module

structure is given by

h ։σ x = Σσ(S(x(1)), h1)h2 · x(0) = Σσ(S(S−1(x1)), h1)h2 · x2

= Σσ(x1, h1)h2x2S(h3),

and whose multiplication is given by

h ·σ g = Σσ(h(1), g(1))h(0) · g(0) = Σσ(S−1(h1), S
−1(g1))h2 · g2

= Σσ(S−1(h1), S
−1(g1))h2g2S(h3)

= Σσ(h1, g1)h2g2S(h3).

Note here that σ ◦ (S−1⊗S−1) = σ by σ ◦ (S⊗S) = σ. Hence by Proposition 3.3, the braided

product Hσ ∝ Hσ is a quantum Yang-Baxter H-module algebra.

In a similar way of Proposition 2.8, we can show the following proposition.

Proposition 3.5 Let A and B be quantum Yang-Baxter H-module algebras. If σ = (σ◦τ)∗σ−1,

then, there exists an isomorphism of quantum Yang-Baxter H-module algebras as follows:

f : Aσ ∝ Bσ → (A ∝ B)σ, a ∝ b 7→ Σσ(a(1), b(1))a(0) ∝ b(0)

with the inverse g : (A ∝ B)σ → Aσ ∝ Bσ given by g(c ∝ d) = Σσ−1(c(1), d(1))c(0) ∝ d(0), where

Aσ ∝ Bσ and (A ∝ B)σ are quantum Yang-Baxter H-module algebras given in Proposition 3.3.
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