A Note on Eigenvalues of Hermite Matrix

Zhi Zhen WANG*, Xiao Lin WU, Li XIA
Department of Applied Mathematics, Shanghai Normal University, Shanghai 200234, P. R. China

Abstract

This note investigates the relationship of eigenvalues of Hermitian matrices P and $U P U^{*}$ with $U U^{*}=I_{k}$ and $k \leq n$. We present several equivalent conditions for $\lambda_{i}\left(U P U^{*}\right)=$ $\lambda_{i}(P)(i \leq k \leq n)$.

Keywords eigenvalues; matrix product; orthonormal vector; Hermitian matrix.
Document code A
MR(2000) Subject Classification 15A18; 15A57
Chinese Library Classification O175.6

1. Introduction

In matrix theory, the term $U P U^{*}$ appears in many results [1-11]. Such matrix also appears in the algebraic Riccati equation which arises in the fields of optimal control and filtering theory [1]. Estimate of bounds on the solution of this equation is important for analysis and synthesis of linear systems. Much work is done particularly on the bounds of traces and the extreme eigenvalues of matrix product. In [3-11], some lower and upper bounds for the trace of the solutions to the equation were presented. In [4], some eigenvalue inequalities for matrix product were obtained. In those results, an important term is the eigenvalue of $U P U^{*}$ with $U U^{*}=I_{k}$ and $k \leq n$. But, the class of $U P U^{*}$ with $U U^{*}=I_{k}$ and $k<n$ fails to have many important properties of the class of $U P U^{*}$ with $U U^{*}=I_{k}$ and $k=n$. It is well known that $\lambda_{i}\left(U P U^{*}\right)=\lambda_{i}(P)$ if $U U^{*}=I_{n}$. However, this is not true if $U U^{*}=I_{k}$ and $k<n$. For this reason, we shall return to study the further relationship of eigenvalues of $U P U^{*}$ and P.

2. Preliminaries

Denote by \mathbb{R} and \mathbb{C} the sets of the real numbers and the complex numbers, respectively, and \mathbb{R}^{n} and \mathbb{C}^{n} denote the n-tuples with components from \mathbb{R} and \mathbb{C}, respectively.

The set of all m-by- n matrices over \mathbb{C} is denoted by $M_{m, n}$, and $M_{m, n}$ is abbreviated to M_{n} if $m=n$. The rank of matrix $A \in M_{m, n}$ is denoted by $\mathrm{R}(A)$. The symbol $I_{n} \in M_{n}$ denotes the

[^0]identity matrix.
Definition 1 Given $A \in M_{n}$. If a scalar λ and a nonzero vector $x \in \mathbb{C}^{n}$ happen to satisfy the equation $A x=\lambda x$, then λ is called an eigenvalue of A and x is called an eigenvector of A associated with λ.

Definition $2 A$ matrix $A \in M_{n}$ is called Hermitian if $\bar{A}^{\mathrm{T}}=A$ and the Hermitian adjoint A^{*} of $A \in M_{m, n}$ is defined by $A^{*}=\bar{A}^{\mathrm{T}}$.

The following result is known as the Poincaré Separation Theorem [2].
Proposition 1 Let $P \in M_{n}$ be Hermitian, and $U \in M_{k, n}$ have k orthonormal rows. If the eigenvalues of P and $U P U^{*}$ are arranged in decreasing order, we have

$$
\lambda_{n-k+i}(P) \leq \lambda_{i}\left(U P U^{*}\right) \leq \lambda_{i}(P)
$$

3. Main results

In this section, we shall study the relationship of eigenvalues of Hermitian matrices P and $U P U^{*}$ while $U U^{*}=I_{k}$ and $k \leq n$.

Lemma 1 If λ is an eigenvalue of $U P U^{*}$, then λ is an eigenvalue of $U^{*} U P$. And if $\lambda \neq 0$ is an eigenvalue of $U^{*} U P$, then λ is an eigenvalue of $U P U^{*}$.

Proof The result is well known since matrices $A B$ and $B A$ have the same nonzero eigenvalues.
Example 1 Take

$$
U=\left(\begin{array}{ccccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & 0 & 0 \\
\frac{-1}{2 \sqrt{6}} & \frac{-1}{2 \sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{\sqrt{6}}{4} & \frac{\sqrt{6}}{4} \\
\frac{3}{2 \sqrt{26}} & \frac{3}{2 \sqrt{26}} & \frac{-3}{\sqrt{26}} & \frac{7}{2 \sqrt{26}} & \frac{-1}{2 \sqrt{26}}
\end{array}\right), \quad P=\left(\begin{array}{ccccc}
5 & 4 & 3 & 2 & 1 \\
4 & 5 & 2 & 3 & 1 \\
3 & 2 & 5 & 4 & 1 \\
2 & 3 & 4 & 5 & 1 \\
1 & 1 & 1 & 1 & 5
\end{array}\right)
$$

we have

$$
U P U^{*}=\left(\begin{array}{ccc}
11 & \frac{11}{2 \sqrt{2}} & \frac{23 \sqrt{3}}{2 \sqrt{26}} \\
\frac{11}{2 \sqrt{2}} & 6 & \frac{2 \sqrt{3}}{\sqrt{13}} \\
\frac{23 \sqrt{3}}{2 \sqrt{26}} & \frac{2 \sqrt{3}}{\sqrt{13}} & \frac{34}{13}
\end{array}\right), \quad U^{*} U P=\left(\begin{array}{ccccc}
\frac{57}{13} & \frac{57}{13} & \frac{37}{13} & \frac{37}{13} & \frac{4}{13} \\
\frac{57}{13} & \frac{57}{13} & \frac{37}{13} & \frac{37}{13} & \frac{4}{13} \\
\frac{42}{13} & \frac{29}{13} & \frac{56}{13} & \frac{43}{13} & \frac{31}{13} \\
\frac{29}{13} & \frac{42}{13} & \frac{43}{13} & \frac{56}{13} & \frac{31}{13} \\
\frac{7}{13} & \frac{7}{13} & \frac{31}{13} & \frac{31}{13} & \frac{29}{13}
\end{array}\right) .
$$

All eigenvalues of P are $\frac{19+\sqrt{97}}{2}, \frac{19-\sqrt{97}}{2}, 4,2,0$; eigenvalues of $U P U^{*}$ are $\frac{121+21 \sqrt{10}}{13}, \frac{121-21 \sqrt{10}}{13}$,
1 and eigenvalues of $U^{*} U P$ are $\frac{121+21 \sqrt{10}}{13}, \frac{121-21 \sqrt{10}}{13}, 1,0,0$.
Lemma 2 The rank of $U^{*} U P$ is the same as the rank of $U P U^{*}$, i.e., $R\left(U^{*} U P\right)=R\left(U P U^{*}\right)$.
Lemma 3 Given $A \in M_{n}$, then λ is an eigenvalue of A if and only if $R\left(A-\lambda I_{n}\right)<n$.

Lemma 4 Given $\lambda \in \mathbb{C}$, then
(1) $R\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}=R\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U}$;
(2) $R\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}<n \Leftrightarrow$ The system $\left\{\begin{array}{c}P y=\lambda y \\ y=U^{*} U y\end{array}\right.$ has a nonzero solution $y \neq 0$.

Proof (1) This result follows from the relationship

$$
\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}=\left(\begin{array}{cc}
O & I_{n} \\
I_{n} & P
\end{array}\right)\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U}
$$

(2) Since $\mathrm{R}\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}<n \Leftrightarrow$ The system $\binom{I_{n}-U^{*} U}{P-\lambda I_{n}} y=0$ has a nonzero solution $y \neq 0, y \in \mathbb{R}^{n}$, and the latter is equivalent to that the system $\left\{\begin{array}{c}P y=\lambda y \\ y=U^{*} U y\end{array}\right.$ has a nonzero solution $y \neq 0$.

Theorem 1 Let λ be an eigenvalue of Hermitian matrix P, and $U \in M_{k, n}$ such that $U U^{*}=I_{k}$.
(1) λ is an eigenvalue of $U P U^{*}$ if and only if $R\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}<n$;
(2) λ is an eigenvalue of $U P U^{*}$ if and only if there exists a $y \neq 0, P y=\lambda y$ satisfying $\left(I_{n}-U^{*} U\right) y=0$;
(3) λ is an eigenvalue of $U P U^{*}$ if $R\left(P-\lambda I_{n}\right)<k$.

Proof (1) Sufficiency. If there exists a $y \neq 0, P y=\lambda y$ satisfying $\left(I_{n}-U^{*} U\right) y=0$, we have

$$
\lambda y=P y=P\left(U^{*} U y\right)=P U^{*}(U y)
$$

and $U P U^{*}(U y)=\lambda(U y)$. Since $y \neq 0, y=U^{*} U y$ and $U U^{*}=I_{k}$, we know $U y \neq 0$. So λ is an eigenvalue of $U P U^{*}$.

Necessity. The equation

$$
\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}=\left(\begin{array}{cc}
O & I_{n} \\
I_{n} & P
\end{array}\right)\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U}
$$

shows $\mathrm{R}\binom{I_{n}-U^{*} U}{P-\lambda I_{n}}=\mathrm{R}\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U}$.
Using Lemma 2, we have

$$
\mathrm{R}\left(\left(U^{*} U P-\lambda I_{n}\right)^{*}\right)=\mathrm{R}\left(U^{*} U P-\lambda I_{n}\right)=R\left(U P U^{*}-\lambda I_{k}\right)
$$

and $\mathrm{R}\left(U P U^{*}-\lambda I_{k}\right)<k$. This gives $\mathrm{R}\left(\left(U^{*} U P-\lambda I_{n}\right)^{*}\right)<k$ and

$$
\mathrm{R}\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U} \leq \mathrm{R}\left(U^{*} U P-\lambda I_{n}\right)^{*}+\mathrm{R}\left(I_{n}-U^{*} U\right)<k+(n-k)=n
$$

So, we have $\mathrm{R}\binom{\left(U^{*} U P-\lambda I_{n}\right)^{*}}{I_{n}-U^{*} U}<n$.
(2) By Lemma 4, it is clear that (2) is equivalent to (1).
(3) Since $U P U^{*}-\lambda I_{k}=U\left(P-\lambda I_{n}\right) U^{*}, \mathrm{R}\left(P-\lambda I_{n}\right)<k$ and $\mathrm{R}(U)=\mathrm{R}\left(U^{*}\right)=k$, we have $\mathrm{R}\left(U P U^{*}-\lambda I_{k}\right)<k$. By Lemma $3, \lambda$ is an eigenvalue of $U P U^{*}$.

Example 2 Take the same matrix P as that in Example 1, and

$$
U=\left(\begin{array}{ccccc}
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{3}{2 \sqrt{11}} & \frac{5}{2 \sqrt{11}} & \frac{3}{2 \sqrt{11}} & \frac{1}{2 \sqrt{11}} & 0 \\
\frac{2}{\sqrt{209}} & -\frac{4}{\sqrt{209}} & \frac{2}{\sqrt{209}} & \frac{8}{\sqrt{209}} & \frac{11}{\sqrt{209}}
\end{array}\right)
$$

A direct calculation shows that

$$
\mathrm{R}\binom{I_{5}-U^{*} U}{P-\lambda I_{5}}= \begin{cases}5, & \lambda=\frac{19+\sqrt{97}}{2} \\ 5, & \lambda=\frac{19-\sqrt{97}}{2} \\ 5, & \lambda=4 \\ 4, & \lambda=2 \\ 5, & \lambda=0\end{cases}
$$

So $\frac{19+\sqrt{97}}{2}, \frac{19-\sqrt{97}}{2}, 4,0$ are not eigenvalues of $U P U^{*}$, and 2 must be an eigenvalue of $U P U^{*}$. In fact, we have

$$
U P U^{*}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & \frac{130}{\sqrt{11}} & \frac{210}{11 \sqrt{19}} \\
0 & \frac{210}{11 \sqrt{19}} & \frac{1149}{209}
\end{array}\right)
$$

and the eigenvalues of $U P U^{*}$ are $\frac{329+\sqrt{42121}}{38}, \frac{329-\sqrt{42121}}{38}, 2$.
Remark The condition (3) in Theorem 1 is sufficient, but not necessary.
Take

$$
U=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad P=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then

$$
U P U^{*}=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

And we have $\mathrm{R}\left(P-\lambda I_{3}\right)=2=k$ with $\lambda=1$.
Theorem 2 Assume that P is a Hermitian matrix.
(1) If λ_{1}, λ_{2} are eigenvalues of P and $\lambda_{1}>\lambda_{2}$, then there exists an $x \neq 0, x \in \mathbb{R}^{n}$ such that $x^{*} P x=\lambda_{1}$, but x is not an eigenvector of P associated with λ_{1};
(2) If λ is an eigenvalue of P and $x \neq 0, x^{*} x=1$ such that $x^{*} P x=\lambda$, then x is an eigenvector of P associated with λ.

Proof (1) Let $\left\{\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right\}$ be an orthonormal set of eigenvectors of P with $P \xi_{i}=\lambda_{i} \xi_{i}$. Take

$$
\lambda= \begin{cases}1, & \lambda_{2}=0 \\ \frac{2}{\sqrt{5}}, & \lambda_{1} \lambda_{2}>0 \\ \frac{2}{\sqrt{3}}, & \lambda_{1} \lambda_{2}<0\end{cases}
$$

we have

$$
\begin{aligned}
& \lambda\left(\xi_{1}+\lambda_{1} \xi_{2}\right)^{*} P \lambda\left(\xi_{1}+\lambda_{1} \xi_{2}\right)=\lambda^{2}\left(\lambda_{1}+\lambda_{1}^{2} \lambda_{2}\right)=\lambda_{1}, \quad \lambda_{2}=0 \\
& \lambda\left(\xi_{1}+\frac{1}{2} \sqrt{\left.\left|\frac{\lambda_{1}}{\lambda_{2}}\right| \xi_{2}\right)^{*} P \lambda\left(\left.\xi_{1}+\frac{1}{2} \sqrt{\left\lvert\, \frac{\lambda_{1}}{\lambda_{2}}\right.} \right\rvert\, \xi_{2}\right)=\lambda^{2}\left(\lambda_{1}+\frac{1}{4}\left|\frac{\lambda_{1}}{\lambda_{2}}\right| \lambda_{2}\right)=\lambda_{1}, \quad \lambda_{2} \neq 0}\right.
\end{aligned}
$$

But $\lambda\left(\xi_{1}+\lambda_{1} \xi_{2}\right), \lambda\left(\xi_{1}+\frac{1}{2} \sqrt{\left\lvert\, \frac{\lambda_{1}}{\lambda_{2}}\right.} \xi_{2}\right)$ are not eigenvectors of P associated with λ_{1}.
(2) Since λ is an eigenvalue of $U P U^{*}$ with $U=x^{*}$, using Theorem 1 gives a $y \neq 0, P y=\lambda y$ satisfying $\left(I_{n}-x x^{*}\right) y=0$. This shows $x^{*} y \neq 0$ and $(P x-\lambda x)\left(x^{*} y\right)=0$, which means $P x=\lambda x$, i.e., x is an eigenvector of P associated with λ.

4. Conclusion

This note investigates the relationship of eigenvalues of Hermitian matrices P and $U P U^{*}$ with $U U^{*}=I_{k}$ and $k \leq n$. A theorem guarantees $\lambda_{i}\left(U P U^{*}\right)=\lambda_{i}(P)(i \leq k)$ if $k=n$. In this case, P is unitarily equivalent to $U P U^{*}$. In general, it is not true. The Poincaré Separation Theorem gives an eigenvalue inequality for $U P U^{*}$. We present several equivalent conditions for $\lambda_{i}\left(U P U^{*}\right)=\lambda_{i}(P)(i \leq k)$ if $k \leq n$. The results in this note deserve a pure theoretical interest as well as computational purpose.

References

[1] BROCKETT R W. Finite Dimensional Linear Systems [M]. Wiley, New York, 1970.
[2] HORN R A, JOHNSON C R. Matrix Analysis [M]. Cambridge University Press, Cambridge, 1985.
[3] XING Wei, ZHANG Qingling, WANG Qiyi. A trace bound for a general square matrix product [J]. IEEE Trans. Automat. Control, 2000, 45(8): 1563-1565.
[4] ZHANG F, ZANG Q, Eigenvalue ineaualites for matrix product [J]. IEEE Trans. Automat. Control, 2006, 51(9): 1506-1509.
[5] WANG Shengde, KUO T S, HSU C F. Trace bounds on the solution of the algebraic matrix Riccati and Lyapunov equation [J]. IEEE Trans. Automat. Control, 1986, 31(7): 654-656.
[6] FANG Yuguang, LOPARO K A, FENG Xiangbo. Inequalities for the trace of matrix product [J]. IEEE Trans. Automat. Control, 1994, 39(12): 2489-2490.
[7] LASSERRE J B. A trace inequality for matrix product [J]. IEEE Trans. Automat. Control, 1995, 40(8): 1500-1501.
[8] PARK P. On the trace bound of a matrix product [J]. IEEE Trans. Automat. Control, 1996, 41(12): 1799-1802.
[9] KARNAM V R. Eigenvalue bounds for algebraic Riccati and Lyapunov equations [J]. IEEE Trans. Automat. Control, 1982, 27(2): 461-463.
[10] MORI T, FUKURA N, KUWAHARA M. On the discrete Reccati equations [J]. IEEE Trans. Automat. Control, 1987, 32(5): 483-487.
[11] GARLOFF J. Bounds for the eigenvalues of the solution of the discrete Riccati and Lyapunov equations and the continuous Lyapunov equation [J]. Internat. J. Control, 1986, 43(2): 423-431.

[^0]: Received June 16, 2008; Accepted June 30, 2009
 Supported by the Innovation Program of Shanghai Municipal Education Commission (Grant No. 08YZ73), Science and Technology Commission of Shanghai Municipality (Grant No. 075105118), Shanghai Leading Academic Discipline Project (Grant No. S30405) and Leading Academic Discipline Project of Shanghai Normal University (Grant No. DZL707).

 * Corresponding author

 E-mail: wzhzh@shnu.edu.cn (Z. Z. WANG)

